首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeh SH  Lin CS  Wu FH  Wang AY 《Planta》2011,234(6):1179-1189
A cDNA, BohLOL1, encoding a protein containing three zf-LSD1 (zinc finger-Lesions Simulating Disease resistance 1) domains was cloned from growing bamboo (Bambusa oldhamii) shoots. A phylogenetic analysis revealed that BohLOL1 is a homolog of Arabidopsis LSD1 and LOL1 (LSD-one-like 1), which have been reported to act antagonistically in controlling cell death via the maintenance of reactive oxygen species homeostasis. The BohLOL1 gene was differentially expressed in various bamboo shoot tissues and was upregulated in shoots with higher rates of culm elongation. The expression level of this gene in multiple shoots of bamboo, which were cultured in vitro, was also upregulated by auxins, cytokinins, pathogen infection, 2,6-dichloroisonicotinic acid (a functional analog of salicylic acid), and hydrogen peroxide. The results suggest that BohLOL1 participates in bamboo growth and in the response to biotic stress. The DNA-binding assays and subcellular localization studies demonstrated that BohLOL1 is a nuclear DNA-binding protein. BohLOL1 might function through protein-DNA interactions and thus affect the expression of its target genes. The results of this study extend the role of plant LSD1 and LOL1 proteins from the regulation of cell death to cell growth. The growth-dependent up-regulation of BohLOL1 expression, which uniquely occurs in growing bamboo, might be one of the critical factors that contribute to the rapid growth of this remarkable plant.  相似文献   

2.
3.
4.
5.
6.
Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions.  相似文献   

7.
8.
Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.  相似文献   

9.
In stems of woody angiosperms responding to mechanical stress, imposed for instance by tilting the stem or formation of a branch, tension wood (TW) forms above the affected part, while anatomically distinct opposite wood (OW) forms below it. In poplar TW the S3 layer of the secondary walls is substituted by a “gelatinous layer” that is almost entirely composed of cellulose and has much lower hemicellulose contents than unstressed wood. However, changes in xylan contents (the predominant hemicelluloses), their interactions with other wall components and the mechanisms involved in TW formation have been little studied. Therefore, in the study reported here we determined the structure and distribution of xylans, cloned the genes encoding the xylan remodeling enzymes β-xylosidases (PtaBXLi), and examined their expression patterns during tension wood, normal wood and opposite wood xylogenesis in poplar. We confirm that poplar wood xylans are substituted solely by 4-O-methylglucuronic acid in both TW and OW. However, although glucuronoxylans are strongly represented in both primary and secondary layers of OW, no 4-O-methylGlcA xylan was found in G-layers of TW. Four full-length BXL cDNAs encoding putative β-xylosidases were cloned. One, PtaBXL1, for which xylosidase activity was confirmed by heterologous expression in Escherichia coli, exhibited a wood-specific expression pattern in TW. In conclusion, xylan as PtaBXL1, encoding β4-xylosidase activity, are down-regulated in TW.  相似文献   

10.
Bamboo shoots grow quickly through the rapid elongation of internodes, but the precise molecular mechanisms underlying this process remain unknown. We used a combination of suppressive subtractive hybridization (SSH), dot blotting, sequencing and bioinformatics to identify Phyllostachys pubescens genes that are differentially expressed in rapidly elongating vs. static internodes (SIs). We isolated 1020 expressed sequence tags (ESTs) by SSH, 173 of which were shown to be differentially expressed by dot blotting. We then sequenced the 20 ESTs showing the greatest difference in expression, 13 of which were preferentially expressed in elongating internodes and seven in SIs. Functional characterization of the ESTs showed that rapid internode elongation requires meristem initiation and proliferation, high-level protein synthesis, cellular respiration, and cell wall synthesis, as well as the regulation of the activated methyl cycle, gibberellin and brassinosteroid biosynthesis, and their signal transduction pathways.  相似文献   

11.
12.
Transverse viscoelastic extensibility was measured directly in isolated walls of Nitella internode cells. Cell walls extended transversely exhibit a yield point which is approximately twice the yield point in the longitudinal direction. Walls from young, growing cells are four to seven times more extensible longitudinally than transversely, while walls from mature, nongrowing cells are only two times more extensible longitudinally. Although longitudinal extensibility decreases drastically with the decrease in the growth rate, lateral extensibility is constant through development. There is a discrepancy between the lateral growth rate and transverse creep, since the lateral growth rate is not constant. However, the degree of wall anisotropy observed is consistent with the view that the transversely oriented cellulose microfibrils act as a “reinforcing filler” in Nitella cell walls.  相似文献   

13.
Shoots of anaerobically germinated Echinochloa crus-galli var oryzicola are nonpigmented whether germinated in light or dark, and chlorophyll synthesis is minimal for the first 12 to 18 hours of greening after exposure to ambient conditions. When chlorophyll development is compared between greening anoxic and etiolated shoots, there is a 100-fold difference in chlorophyll levels at 8 hours, an 8-fold difference at 24 hours, but roughly equal amounts at 60 hours. The chlorophyll a/b ratio approaches 3 earlier in greening anoxic shoots than in greening etiolated shoots, relative to total chlorophyll. The long lag in chlorophyll synthesis can be shortened by giving dark-grown anoxic shoots a 24-hour midtreatment of air before light.

Development of photosynthetic activity in etiolated shoots, determined by CO2 gas exchange, 14CO2 uptake, and activity of carboxylating enzymes closely parallels development of chlorophylls. However, development of photosynthetic capability in greening anoxic shoots does not parallel chlorophyll development; ability to fix carbon lags behind chlorophyll synthesis. A reason for this lag is the very low activity of RuBP carboxylase during the first 36 hours of greening in anoxic shoots. The activity of phosphoenolpyruvate carboxylase is also delayed, but its kinetics more closely match those of chlorophyll development.

  相似文献   

14.
15.
16.
17.
Treatment of etiolated pea (Pisum sativum L.) internode tissue with ethylene gas inhibits elongation and induces lateral expansion. Precise kinetics of the induction of this altered mode of growth of excised internode segments were recorded using a double laser optical monitoring device. Inhibition of elongation and promotion of lateral expansion began after about 1 hour of treatment and achieved a maximum by 3 hours. Similar induction kinetics were observed after treating internodes with colchicine and 2,6-dichlorobenzonitrile, an inhibitor of cellulose synthesis. In sealed flask experiments, ethylene had no detectable effect on incorporation of label from [14C]glucose into any of the classical pectin, hemicellulose, or cellulose wall fractions. Ethylene inhibited fresh weight increase (total cell expansion) of both excised internode segments (in sealed flasks) and intact seedlings. Ethylene treatment resulted in an increase in cell sap osmolality in those tissues (intact and excised) which are inhibited by the gas. A model for ethylene-induced inhibition of elongation and induction of lateral expansion is presented.  相似文献   

18.
Several phytochrome-controlled processes have been examined in etiolated and light-grown seedlings of a normal genotype and the elongated internode (ein/ein) mutant of rapid-cycling Brassica rapa. Although etiolated ein seedlings displayed normal sensitivity to prolonged far-red light with respect to inhibition of hypocotyl elongation, expansion of cotyledons, and synthesis of anthocyanin, they displayed reduced sensitivity to prolonged red light for all three of these deetiolation responses. In contrast to normal seedlings, light-grown ein seedlings did not show a growth promotion in response to end-of-day far-red irradiation. Additionally, whereas the first internode of light-grown normal seedlings showed a marked increase in elongation in response to reduced ratio of red to far-red light, ein seedlings showed only a small elongation response. When blots of protein extracts from etiolated and light-treated ein and normal seedlings were probed with monoclonal antibody to phytochrome A, an immunostaining band at about 120 kD was observed for both extracts. The immunostaining intensity of this band was substantially reduced for extracts of light-treated normal and ein seedlings. A mixture of three monoclonal antibodies directed against phytochrome B from Arabidopsis thaliana immunostained a band at about 120 kD for extracts of etiolated and light-treated normal seedlings. This band was undetectable in extracts of ein seedlings. We propose that ein is a photoreceptor mutant that is deficient in a light-stable phytochrome B-like species.  相似文献   

19.
Seedlings of bamboo grass, Pleioblastus variegatus, were grownunder different photoperiods. Under short day, internode elongationwas greatly inhibited; also the number of shoots per plant andleaf chlorophyll content were greatly increased. Light-breaktreatment completely nullified the short-day effect. (Received September 14, 1971; )  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号