首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142 g/L with production yield of 0.89 g/g and productivity of 3.55 g L−1 h−1 under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.  相似文献   

3.
Glandular trichomes, known as metabolic cell factories, have been proposed as highly suitable for metabolically engineering the production of plant high-value specialized metabolites. Natural pyrethrins, found only in Dalmatian pyrethrum (Tanacetum cinerariifolium), are insecticides with low mammalian toxicity and short environmental persistence. Type I pyrethrins are esters of the monoterpenoid trans-chrysanthemic acid with one of the three rethrolone-type alcohols. To test if glandular trichomes can be made to synthesize trans-chrysanthemic acid, we reconstructed its biosynthetic pathway in tomato type VI glandular trichomes, which produce large amounts of terpenoids that share the precursor dimethylallyl diphosphate (DMAPP) with this acid. This was achieved by coexpressing the trans-chrysanthemic acid pathway related genes including TcCDS encoding chrysanthemyl diphosphate synthase and the fusion gene of TcADH2 encoding the alcohol dehydrogenase 2 linked with TcALDH1 encoding the aldehyde dehydrogenase 1 under the control of a newly identified type VI glandular trichome-specific metallocarboxypeptidase inhibitor promoter. Whole tomato leaves harboring type VI glandular trichomes expressing all three aformentioned genes had a concentration of total trans-chrysanthemic acid that was about 1.5-fold higher (by mole number) than the levels of β-phellandrene, the dominant monoterpene present in non-transgenic leaves, while the levels of β-phellandrene and the representative sesquiterpene β-caryophyllene in transgenic leaves were reduced by 96% and 81%, respectively. These results suggest that the tomato type VI glandular trichome is an alternative platform for the biosynthesis of trans-chrysanthemic acid by metabolic engineering.  相似文献   

4.
We evaluated the photochemical and enzymatic synthesis of methanol from formaldehyde with alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae and NAD+ photoreduction by the visible-light sensitization of zinc tetraphenylporphyrin tetrasulfonate (ZnTPPS) in the presence of methylviologen (MV2+), diaphorase, and triethanolamine (TEOA). When the sample solution containing ZnTPPS, MV2+, NAD+, diaphorase, and TEOA in potassium phosphate buffer solution was irradiated, the NADH produced increased with the irradiation time. After irradiation for 180 min, the conversion yield of NAD+ to NADH was about 60% under 0.1 mM NAD+ condition. The methanol production also depended on the conversion yield of NAD+ to NADH. After irradiation for 180 min, 0.38 μM of methanol was produced from formaldehyde (16 μM). The conversion ratio of formaldehyde to methanol was about 2.3%. This result indicates that a system for the photochemical synthesis of methanol from formaldehyde was developed with ADH and the NADH produced by the photosensitization of ZnTPPS in water media.  相似文献   

5.
AimEthanol metabolism leads to the formation of acetaldehyde and malondialdehyde. Acetaldehyde and malondialdehyde can together form malondialdehyde–acetaldehyde (MAA) adducts. The role of alcohol dehydrogenase (ADH) and cytochrome P4502E1 (CYP2E1) in the formation of MAA-adducts in liver cells has been investigated.Main methodsChronic ethanol treated VL-17A cells over-expressing ADH and CYP2E1 were pretreated with the specific CYP2E1 inhibitor — diallyl sulfide or ADH inhibitor — pyrazole or ADH and CYP2E1 inhibitor — 4-methyl pyrazole. Malondialdehyde, acetaldehyde or MAA-adduct formation was measured along with assays for viability, oxidative stress and apoptosis.Key findingsInhibition of CYP2E1 with 10 μM diallyl sulfide or ADH with 2 mM pyrazole or ADH and CYP2E1 with 5 mM 4-methyl pyrazole led to decreased oxidative stress and toxicity in chronic ethanol (100 mM) treated VL-17A cells. In vitro incubation of VL-17A cell lysates with acetaldehyde and malondialdehyde generated through ethanol led to increased acetaldehyde (AA)-, malondialdehyde (MDA)-, and MAA-adduct formation. Specific inhibition of CYP2E1 or ADH and the combined inhibition of ADH and CYP2E1 greatly decreased the formation of the protein aldehyde adducts. Specific inhibition of CYP2E1 led to the greatest decrease in oxidative stress, toxicity and protein aldehyde adduct formation, implicating that CYP2E1 accelerates the formation of protein aldehyde adducts which can be an important mechanism for alcohol mediated liver injury.SignificanceCYP2E1-mediated metabolism of ethanol leads to increased AA-, MDA-, and MAA-adduct formation in liver cells which may aggravate liver injury.  相似文献   

6.
In this study, pyruvate production of Fusarium equiseti was significantly increased when the yeast extract concentration was raised from 5 to 25 g/L while it was increased to only up to 10 g/L yeast extract in F. acuminatum. Upon supplementation with urea as an alternative nitrogen source, production of pyruvate for both of the Fusarium species were decreased with respect to increase in urea concentration in medium. On the other hand, ethanol production and alcohol dehydrogenase activity of F. equiseti were decreased approximately 1.9- and 1.6-fold with an increase in yeast concentration from 5 to 25 whereas the levels of F. acuminatum were increased 2.3- and 1.8-fold, respectively. In addition, ethanol productions and ADH activities in F. equiseti and F. acuminatum significantly increased on the 12th day up to 15 and 25 g/L urea concentrations, respectively. However, they were significantly decreased under these conditions at higher nitrogen sources. In addition, ethanol production and alcohol dehydrogenase activity in urea supplemented medium were higher than yeast extract supplemented. The results may suggest that the pyruvate, ethanol production and ADH enzyme activity variations and balance between aerobic and anaerobic respiration in F. equiseti and F. acuminatum were effected from yeast extract and urea concentrations in the nutrient medium.  相似文献   

7.
The introduced shrub Tamarix ramosissima invades riparian zones, but loses competitiveness under flooding. Metabolic effects of flooding could be important for T. ramosissima, but have not been previously investigated. Photosynthesis rates, stomatal conductance, internal (intercellular) CO2, transpiration, and root alcohol dehydrogenase (ADH) activity were compared in T. ramosissima across soil types and under drained and flooded conditions in a greenhouse. Photosynthesis at 1500 μmol quanta m−2 s−1 (A1500) in flooded plants ranged from 2.3 to 6.2 μmol CO2 m−2 s−1 during the first week, but A1500 increased to 6.4–12.7 μmol CO2 m−2 s−1 by the third week of flooding. Stomatal conductance (gs) at 1500 μmol quanta m−2 s−1 also decreased initially during flooding, where gs was 0.018 to 0.099 mol H2O m−2 s−1 during the first week, but gs increased to 0.113–0.248 mol H2O m−2 s−1 by the third week of flooding. However, photosynthesis in flooded plants was reduced by non-stomatal limitations, and subsequent increases indicate metabolic acclimation to flooding. Root ADH activities were higher in flooded plants compared to drained plants, indicating oxygen stress. Lower photosynthesis and greater oxygen stress could account for the susceptibility of T. ramosissima at the onset of flooding. Soil type had no effect on photosynthesis or on root ADH activity. In the field, stomatal conductance, leaf water potential, transpiration, and leaf δ13C were compared between T. ramosissima and other flooded species. T. ramosissima had lower stomatal conductance and water potential compared to Populus deltoides and Phragmites australis. Differences in physiological responses for T. ramosissima could become important for ecological concerns.  相似文献   

8.
NAD(P)-dependent oxidoreductases represent a great interest in the field of biotechnology and biotransformation. Although they have many advantages, the biggest drawback and limitation of oxidoreductase usage is the price of the coenzymes. In order to solve this problem, many in situ methods for regeneration of coenzymes have been studied and developed. Unfortunately, although results indicate that those methods are suitable for regeneration procedure, most of the processes need additional optimization to make them more sustainable. As an alternative, microreactor technology could be used as a new technique for coenzyme regeneration processes due to many advantages.In this study regeneration of coenzyme NAD+ was carried out in a microreactor by acetaldehyde reduction to ethanol using enzyme alcohol dehydrogenase (ADH). Suspended and immobilized whole permeabilized baker’s yeast cells were used as the source of the ADH enzyme. A 65.3% conversion of NADH was achieved with suspended permeabilized baker’s yeast cells for a residence time of τ = 36 s and equimolar concentration of substrates (ci,NADH = 5.5 mmol/dm3, ci,acetaldehyde = 5.5 mmol/dm3). When working with immobilized cells, conversion achieved for the same residence time was 10 fold lower. When permeabilized baker’s yeast cells were used for coenzyme regeneration process was stabile for 6 days of continuous operation which makes this system a good alternative for coenzyme regeneration.  相似文献   

9.
Artemisinin from Artemisia annua has become one of the most important drugs for malaria therapy. Its biosynthesis proceeds via amorpha-4,11-diene, but it is still unknown whether the isoprenoid precursors units are obtained by the mevalonate pathway or the more recently discovered non-mevalonate pathway. In order to address that question, a plant of A. annua was grown in an atmosphere containing 700 ppm of 13CO2 for 100 min. Following a chase period of 10 days, artemisinin was isolated and analyzed by 13C NMR spectroscopy. The isotopologue pattern shows that artemisinin was predominantly biosynthesized from (E,E)-farnesyl diphosphate (FPP) whose central isoprenoid unit had been obtained via the non-mevalonate pathway. The isotopologue data confirm the previously proposed mechanisms for the cyclization of (E,E)-FPP to amorphadiene and its oxidative conversion to artemisinin. They also support deprotonation of a terminal allyl cation intermediate as the final step in the enzymatic conversion of FPP to amorphadiene and show that either of the two methyl groups can undergo deprotonation.  相似文献   

10.
BackgroundHeavy alcohol consumption increases risk of developing squamous cell carcinoma of the head and neck (SCCHN). Alcohol metabolism to cytotoxic and mutagenic intermediates acetaldehyde and reactive oxygen species is critical for alcohol-drinking-associated carcinogenesis. We hypothesized that polymorphisms in alcohol metabolism-related and antioxidant genes influence SCCHN survival.MethodsInterview and genotyping data (64 polymorphisms in 12 genes) were obtained from 1227 white and African-American cases from the Carolina Head and Neck Cancer Epidemiology study, a population-based case–control study of SCCHN conducted in North Carolina from 2002 to 2006. Vital status, date and cause of death through 2009 were obtained from the National Death Index. Kaplan–Meier log-rank tests and adjusted hazard ratios were calculated to identify alleles associated with survival.ResultsMost tested SNPs were not associated with survival, with the exception of the minor alleles of rs3813865 and rs8192772 in CYP2E1. These were associated with poorer cancer-specific survival (HRrs3813865, 95%CI = 2.00, 1.33–3.01; HRrs8192772, 95%CI = 1.62, 1.17–2.23). Hazard ratios for 8 additional SNPs in CYP2E1, GPx2, SOD1, and SOD2, though not statistically significant, were suggestive of differences in allele hazards for all-cause and/or cancer death. No consistent associations with survival were found for SNPs in ADH1B, ADH1C, ADH4, ADH7, ALDH2, GPx2, GPx4, and CAT.ConclusionsWe identified some polymorphisms in alcohol and oxidative stress metabolism genes that influence survival in subjects with SCCHN. Previously unreported associations of SNPs in CYP2E1 warrant further investigation.  相似文献   

11.
N,N'-dimethyl-4,4'-azopyridinium methyl sulfate (MAZP) was characterized as an electron transfer mediator for oxidation reactions catalyzed by NAD+- and pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases. The bimolecular rate constant of NADH reactivity with MAZP was defined as (2.2 ± 0.1) × 105 M−1 s−1, whereas the bimolecular rate constant of reactivity of the reduced form of PQQ-dependent alcohol dehydrogenase with MAZP was determined to be (4.7 ± 0.1) × 104 M−1 s−1. The use of MAZP for the regeneration of the cofactors was investigated by applying the electrochemical oxidation of the mediator. The total turnover numbers of mediator MAZP and cofactor NADH for ethanol oxidation catalyzed by NAD+-dependent alcohol dehydrogenase depended on the concentration of the substrate and the duration of the electrolysis, and the yield of the reaction was limited by the enzyme inactivation and the electrochemical process. The PQQ-dependent alcohol dehydrogenase was more stable, and the turnover number of the enzyme reached a value of 2.3 × 103. In addition, oxidation of 1,2-propanediol catalyzed by the PQQ-dependent alcohol dehydrogenase proceeded enantioselectively to yield l-lactic acid.  相似文献   

12.
13.
《Process Biochemistry》2010,45(9):1529-1536
(R)-phenylephrine [(R)-PE] is an α1-adrenergic receptor agonist that is widely used in over-the-counter drugs to treat the common cold. We found that Rhodococcus erythropolis BCRC 10909 can convert detectable level of 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) to (S)-PE by high performance liquid chromatography tandem mass spectrometry analysis. An amino alcohol dehydrogenase gene (RE_AADH) which possesses the ability to convert HPMAE to (S)-PE was then isolated from R. erythropolis BCRC 10909 and expressed in Escherichia coli NovaBlue. The purified RE_AADH, tagged with 6×His, had a molecular mass of approximately 30 kDa and exhibited a specific activity of 0.19 μU/mg to HPMAE in the presence of NADPH, indicating this enzyme could be categorized as NADP+-dependent short-chain dehydrogenase reductase. E. coli NovaBlue cell expressing the RE_AADH gene was able to convert HPMAE to (S)-PE with more than 99% enantiomeric excess (ee), 78% yield and a productivity of 3.9 mmol (S)-PE/L h in 12 h at 30 °C and pH 7. The (S)-PE, recovered from reaction mixture by precipitation at pH 11.3, could be converted to (R)-PE (ee > 99%) by Walden inversion reaction. This is the first reported biocatalytic process for the production of (S)-PE from HPMAE.  相似文献   

14.
BackgroundAn amino alcohol dehydrogenase gene (RE_AADH) from Rhodococcus erythropolis BCRC 10909 has been used for the conversion of 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) to (S)-phenylephrine [(S)-PE]. However RE_AADH uses NADPH as cofactor, and only limited production of (S)-PE from HPMAE is achieved.MethodsA short-chain dehydrogenase/reductase gene (SQ_SDR) from Serratia quinivorans BCRC 14811 was expressed in Escherichia coli BL21 (DE3) for the conversion of HPMAE to (S)-PE.ResultsThe SQ_SDR enzyme was capable of converting HPMAE to (S)-PE in the presence of NADH and NADPH, with specific activities of 26.5 ± 2.3 U/mg protein and 0.24 ± 0.01 U/mg protein, respectively, at 30 °C and at a pH of 7.0. The E. coli BL21 (DE3), expressing NADH-preferring SQ_SDR, converted HPMAE to (S)-PE with more than 99% enantiomeric excess, a conversion yield of 86.6% and a productivity of 20.2 mmol/l h, which was much higher than our previous report using E. coli NovaBlue expressing NADPH-dependent RE_AADH as the biocatalyst.ConclusionThe SQ_SDR enzyme with its high catalytic activity and strong preference for NADH as a cofactor provided a significant advantage in bioreduction.  相似文献   

15.
Picris divaricata Vant., a plant species native to subtropical China, was recently identified as the first Cd/Zn hyperaccumulator from Asteraceae. P. divaricata was grown from wild collected seed for 4 months in a series of pH adjusted test soils with added Zn levels 0–7000 mg kg−1 and Cd levels 0–150 mg kg−1. Plants did not hyperaccumulate Zn (threshold >3000 μg g−1) and weakly hyperaccumulated Cd with little or no dose–response.P. divaricata has multicellular simple trichomes concentrated on the leaf margins and midrib. X-ray analysis showed that Zn was concentrated in larger trichomes and epidermal cells adjacent to the trichome but virtually absent in other leaf tissues. Within the trichomes, Zn was localized in ovate spots around the tips of individual cells. These tips and other locations in the trichome cell contained black electron dense material when examined with transmission electron microscopy, some of which was identified as SiO2. Silicon and Mn were concentrated in the same areas as Zn. Si has been previously associated with alleviating Zn, Mn and Cd toxicity. Our results support this observation and further investigation is warranted.Calcium and P were concentrated in the distal tips of trichomes, similar to patterns previously observed for calcicole plants grown in elevated Ca soils. Overall, nonsecretory trichomes from many plant families may have a common origin as tissues adapted to handle a variety of environmental metals.  相似文献   

16.
A new, acyclic NAD-analog, acycloNAD+ has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD+ with a redox potential of −324 mV and a 341 nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD+ by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD+. The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon–hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD+. In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD+ by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD+ has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases.  相似文献   

17.
Arsenic (As) and mercury (Hg) are among the most dangerous heavy metals to humans and the environment because of their toxicity towards all living organisms and their related accumulation capability. It is known that some plant species are able to detoxify water and soil from some pollutants. In this paper we strive to investigate how a common plant species is able to accumulate these metals.In this research we considered Poa annua, a plant species easily growing in Italy and deeply involved in the food chain, to understand problems related to its use as fodder for wild and farm animals (i.e. cattle) and suitability to be used for phytoremediation purposes.Hydroponic experiments were set up; P. annua was seeded in different substrates: gravel and zeolite, alone and mixed at different percentage.For each metal three different levels of contamination were chosen, for As 0.25, 0.5 and 5 mg L?1, for Hg 0.1, 0.2 and 2 mg L?1. No substantial difference in metal absorption among plant samples watered with different As and Hg concentrations, was observed during the testing phase.Nevertheless, results show that concentrations of As and Hg accumulated in P. annua increase with the increasing contamination exposure.  相似文献   

18.
《Process Biochemistry》2014,49(10):1637-1646
One-pot conversion with whole cells of bacteria was performed for biooxidation of meso monocyclic (3a–b) and bicyclic diols (3c–e) into corresponding chiral lactones of bicyclo[4.3.0]nonane structure (2a–b) as well as exo- and endo-bridged lactones with the structure of [2.2.1] (3c–d) and [2.2.2] (3e). Micrococcus sp. DSM 30771 was selected as biocatalyst with significant alcohol dehydrogenase activity. Among tested strains, microbial oxidation of meso diols 3a–e catalyzed by Micrococcus sp. afforded enantiomerically pure ((+)-(2S,3R)-2c (ee = 99%), (+)-(2S,3R)-2e (ee = 99%)) or enriched ((+)-(1S,5R)-2a (ee = 90%), (−)-(1S,5R)-2b (ee = 86%), (+)-(2S,3R)-2d (ee = 80%)) lactone moieties. Comparative study with respect to microbial cultivation as well as biooxidation was undertaken to verify agreement of secondary metabolite biosynthesis in different scales: from MTP (4 mL), across shake flask (100 mL) till bioreactor (4 L). The results from biotransformations showed quite similar dependence in oxidation of all substrates 3a–e in MTP and flasks as well, thereby confirmed the validity and reasonable approach of using MTP for preliminary studies.  相似文献   

19.
《Journal of plant physiology》2014,171(3-4):292-300
A volatile metabolite, 2-methylisoborneol (2-MIB), causes an unpleasant taste and odor in tap water. Some filamentous cyanobacteria produce 2-MIB via a two-step biosynthetic pathway: methylation of geranyl diphosphate (GPP) by methyl transferase (GPPMT), followed by the cyclization of methyl-GPP by monoterpene cyclase (MIBS). We isolated the genes encoding GPPMT and MIBS from Pseudanabaena galeata, a filamentous cyanobacterium known to be a major causal organism of 2-MIB production in Japanese lakes. The predicted amino acid sequence showed high similarity with that of Pseudanabaena limnetica (96% identity in GPPMT and 97% identity in MIBS). P. galeata was cultured at different temperatures to examine the effect of growth conditions on the production of 2-MIB and major metabolites. Gas chromatograph–mass spectrometry (GC–MS) measurements showed higher accumulation of 2-MIB at 30 °C than at 4 °C or 20 °C after 24 h of culture. Real-time-RT PCR analysis showed that the expression levels of the genes encoding GPPMT and MIBS decreased at 4 °C and increased at 30 °C, compared with at 20 °C. Furthermore, metabolite analysis showed dramatic changes in primary metabolite concentrations in cyanobacteria grown at different temperatures. The data indicate that changes in carbon flow in the TCA cycle affect 2-MIB biosynthesis at higher temperatures.  相似文献   

20.
Microbial production of higher alcohols from renewable feedstock has attracted intensive attention thanks to its potential as a source for next-generation gasoline substitutes. Here we report the discovery, characterization and engineering of an endogenous 1-butanol pathway in Saccharomyces cerevisiae. Upon introduction of a single gene deletion adh1Δ, S. cerevisiae was able to accumulate more than 120 mg/L 1-butanol from glucose in rich medium. Precursor feeding, 13C-isotope labeling and gene deletion experiments demonstrated that the endogenous 1-butanol production was dependent on catabolism of threonine in a manner similar to fusel alcohol production by the Ehrlich pathway. Specifically, the leucine biosynthesis pathway was engaged in the conversion of key 2-keto acid intermediates. Overexpression of the pathway enzymes and elimination of competing pathways achieved the highest reported 1-butanol titer in S. cerevisiae (242.8 mg/L).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号