首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Twenty-three ursolic acid (1) derivatives 224 including nine new 1 derivatives 5, 711, 2022 were synthesized and evaluated for cytotoxicities against NTUB1 cells (human bladder cancer cell line). Compounds 5 and 17 with an isopropyl ester moiety at C-17-COOH and a succinyl moiety at C-3-OH showed potent inhibitory effect on growth of NTUB1 cells. Compounds 23 and 24 with seco-structures prepared from 1 also showed the increase of the cytotoxicity against NTUB1 cells. Exposure of NTUB1 to 5 (40 μM) and 23 (20 and 50 μM) for 24 h significantly increased the production of reactive oxygen species (ROS) while exposure of NTUB1 to 5 (20 and 40 μM) and 23 (20 and 50 μM) for 48 h also significantly increased the production of ROS while exposure of cells to 17 did not increase the amount of ROS. Flow cytometric analysis exhibited that treatment of NTUB1 with 5 or 17 or 23 led to the cell cycle arrest accompanied by an increase in apoptotic cell death after 24 or 48 h. These data suggest that the presentation of G1 phase arrest and apoptosis in 5- and 23-treated NTUB1 for 24 h mediated through increased amount of ROS in cells exposed with 5 and 23, respectively, while the presence of G2/M arrest before accumulation of cells in sub-G1 phase in 5-treated cells for 48 h also due to increased amount of ROS in cells exposed with 5. The inhibition of tubulin polymerization and cell cycle arrest at G2/M following by apoptosis presented in the cell cycle of 23 also mediates through the increase amount of ROS induced by treating NTUB1 with 23 for 48 h.  相似文献   

2.
Two new spirostanol saponins (1) and (2), together with three known saponins (35), were isolated from the roots and rhizomes of Tupistra chinensis, and their structures were determined as (20S, 22R)-spirost-25(27)-en-1β, 3β, 4β, 5β-tetraol-5-O-β-d-glucopyranoside (1) and (20S, 22R)-spirost-25(27)-en-1β, 3β, 5β-triol-5-O-β-d-glucopyranoside (2), (20S, 22R)-spirost-25(27)-en-1β, 2β, 3β, 4β, 5β-pentaol-5-O-β-d-glucopyranoside (3), Δ25(27)-pentrogenin (4) and ranmogenin A (5) on the basis of physicochemical properties and spectral analysis. The isolated compounds were evaluated for their cytotoxic activities against A549 and H1299 tumor cell lines in vitro. Among them, compound 2 showed cytotoxicities against A549 cells (IC50 52.66 ± 3.12 μmol L−1) and H1299 cells (IC50 57.29 ± 2.51 μmol L−1), respectively.  相似文献   

3.
Six 1,3-diphenylpropanes exhibiting inhibitory activities against both the monophenolase and diphenolase actions of tyrosinase were isolated from the methanol (95%) extract of Broussonetia kazinoki. These compounds, 16, were identified as kazinol C (1), D (2), F (3), broussonin C (4), kazinol S (5) and kazinol T (6). The latter two species (5 and 6) emerged to be new 1,3-diphenylpropanes which we fully spectroscopically characterized. The IC50 values of compounds (1, 35) for monophenolase inhibition were determined to range between 0.43 and 17.9 μM. Compounds 1 and 35 also inhibited diphenolase significantly with IC50 values of 22.8, 1.7, 0.57, and 26.9 μM, respectively. All four active tyrosinase inhibitors (1, 35) were competitive inhibitors. Interestigly they all mainfested simple reversible slow-binding inhibition against diphenolase. The most potent inhibitor, compound 4 diplayed the following kinetic parameters k3 = 0.0993 μM?1 min?1, k4 = 0.0048 min-1, and Kiapp = 0.0485 μM.  相似文献   

4.
A series of novel 2′,5′-dimethoxylchalcone derivatives including 18 new compounds were synthesized and evaluated for cytotoxicities against two human cancer cell lines, NTUB1 (human bladder cancer cell line) and PC3 (human prostate cancer cell line). All these derivatives except for 21 exhibited significant cytotoxic effect against NTUB1 and PC3 cell lines. Compounds 13 and 17 with 4-carbamoyl moiety showed potent inhibitory effect on growth of NTUB1 and PC3 cells. Flow cytometric analysis demonstrated that treatment of NTUB1 cells with 1 μM 13 and 17 induced G1 phase arrest accompanied by an increase in apoptotic cell death of NTUB1 cells after 24 h. Treatment of PC3 cells with 1 μM and 3 μM 13, and 1 μM and 3 μM 17 induced S and G1, and G1 and G2/M phase arrests, respectively, accompanied by an increase in apoptotic cell death. These data suggested that 13 and 17 with different 4-carbamoyl moiety displayed same cell cycle arrest in NTUB1 cells while different doses of 13 and 17 revealed different cell cycle arrest in PC3 cells. Cell morphological study of 17 indicated that more cells rounding up or dead associated with tubulin polymerization. Compound 17 showed an increased α-tubulin level in polymerized microtubule fraction in a dose-dependent manner while 500 nM paclitaxel also showed similar effect in NTUB1 cells by Western blot analysis. The result suggested that 17 may be used as microtubule-targeted agents.  相似文献   

5.
Bioassay guided fractionation of the roots of Lantana montevidensis (Verbenaceae) has resulted in the isolation and identification of three new triterpenoids; 13β-hydroxy-3-oxo-olean-11-en-28-oic acid (1), 12β,13β-dihydroxyolean-3-oxo-28-oic acid (2) and 12β,13β,22β-trihydroxyolean-3-oxo-28-oic acid (3) in addition to nine known compounds: oleanonic acid (4), oleanolic acid (5), 3β,25β-dihydroxy-olean-12-en-28-oic acid (6), lantadene A (7), 19α-hydroxy-3-oxo-olean-12-en-28-oic acid (8) pomolic acid (9), camaric acid (10) together with β-sitosterol (11) and β-sitosterol-3-O-β-d-glucoside (12). The structures of the isolated metabolites were elucidated based on comprehensive 1D and 2D NMR spectroscopic data as well as HR-ESI–MS. The extracts and the isolated metabolites were evaluated for their antiprotozoal and antimicrobial activities. Compound 2 showed antibacterial activity against Staphylococcus aureus and methicillin resistant S. aureus with IC50 values against both organisms of 2.1 μM and compound 10 showed activity against same organisms with IC50 values 8.74 and 8.09 μM, respectively, compared to the positive control ciprofloxacin (IC50 = 0.3 μM against S. aureus and MRSA). Compounds 1, 4, 5, 6, and 10 showed moderate antileishmanial activity with IC50 values ranging between (2.54–14.95 μM) and IC90 values ranging between (11.90–19.47 μM), using pentamidine as a control (IC50 values 2.09  16.8 μM) and IC90 values ranging between (4.72  16.8 μM). These compounds also showed highly potent antitrypanosomal activity with IC50 values ranging between (0.39–7.12 μM) and IC90 values ranging between (1.91–10.51 μM), which are more efficient than the DFMO, the antitrypanosomal drug employed as positive control (IC50 and IC90values 11.82 and 30.82 μM).  相似文献   

6.
Two new hydroxychavicol analogs nudibaccatumin A (1) and B (2), together with twenty known compounds were isolated from the methanol extract of Piper nudibaccatum. Their structures were elucidated by extensive spectroscopic analyses (1D and 2D NMR, HRESIMS, UV, IR and polarimetry). Hydroxychavicol is a known inhibitor of xanthine oxidase (XO). In the present study, hydroxychavicol and 5 natural analogs (15) were evaluated for their XO inhibitory activity. Neotaiwanensol B (3) (IC50 = 0.28 μM) showed a greater inhibitory effect than hydroxychavicol and allopurinol (the positive control). Two new compounds 1 and 2 showed a moderate inhibition activity with an IC50 value of 62.94 μM and 70.67 μM, respectively.  相似文献   

7.
In an effort to prepare a fluorogenic substrate to be used in activity assays with metallo-β-lactamases, (6R,7R)-8-oxo-7-(2-oxo-2H-chromene-3-carboxamido)-3-((4-(2-oxo-2H-chromene-3-carboxamido)-phenylthio)methyl)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (CA) was synthesized and characterized. CA exhibited a fluorescence quantum yield (φ) of 0.0059, two fluorescence lifetimes of 3.63 × 10?10 and 5.38 × 10?9 s, and fluorescence intensity that is concentration-dependent. Steady-state kinetic assays revealed that CA is a substrate for metallo-β-lactamases (MβLs) L1 and CcrA, exhibiting Km and kcat values of 18 μM and 5 s?1 and 11 μM and 17 s?1, respectively.  相似文献   

8.
Four triterpenoid saponins (14) were isolated from the aerial parts of Trifolium argutum Sol. (sharp-tooth clover) and their structures were elucidated by comprehensive spectroscopic analysis, including 1D and 2D NMR techniques, mass spectrometry and chemical methods. Two of them are new compounds, characterized as 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-galactopyranosyl-(1→2)-β-d-glucuronopyranosyl]-3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (1) and 3-O-[β-d-galactopyranosyl-(1→2)-β-d-glucuronopyranosyl]-3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (2). The occurrence of 3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (melilotigenin) in its natural form is reported for the first time as a triterpenoid aglycone within Trifolium species. The phytotoxicity of compounds was evaluated on four STS at concentration 1 μM to 333 μM. Compound 1 was the most active, showing more than 60% inhibition on the root growth of L. sativa at the higher dose, with IC50 (254.1 μM) lower than that of Logran® (492.6 μM), a commercial herbicide used as positive control. The structure–activity relationships indicated that both aglycones and glycosidic parts may influence the phytotoxicity of saponins.  相似文献   

9.
Two new oleanane-type triterpene saponins, identified as 16α-hydroxy-22-O-angeloyl-23-formyl-28,31-dihydroxymethylene-olean-12-ene-3β-O-{β-d-galactopyranosyl-(1  2)[β-d-xylopyranosyl-(1  2)-α-l-arabinopyranosyl(1  3)]-β-d-glucopyranosiduronic acid} (oleiferasaponin B1, 1) and 22-O-hydrocinnamoyl-23-formyl-28-dihydroxymethylene-olean-12-ene-3β-O-{β-d-glucopyranosyl-(1  2)[β-d-xylopyranosyl-(1  2)-α-l-arabinopyranosyl(1  3)]-β-d-glucopyranosiduronic acid} (oleiferasaponin B2, 2), were isolated from the seed cake of Camellia oleifera Abel. Their structures were established by extensive 1D- and 2D-NMR experiments along with TOF-MS analysis and acid hydrolysis. The cytotoxicity of the isolated compounds was evaluated in four human carcinoma cell lines: A 549, SK-OV-3, SK-MEL-2 and HCT15. Both compounds 1 and 2 exhibited significantly cytotoxic activity with IC50 values of 18.5 μM (A549), 11.3 μM (SK-OV-3), 13.9 μM (SK-MEL-2) and 1.6 μM (HCT15) for 1 and IC50 values of 8.4 μM (A549), 6.3 μM (SK-OV-3), 9.2 μM (SK-MEL-2) and 0.8 μM (HCT15) for 2. In addition, compound 2 showed more effective cytotoxic activity than compound 1.  相似文献   

10.
Two novel spirostanols, (23S,24R,25S)-18-norspirost-1,4,13-triene-21,23,24-triol-3,15-dione (1) and (23S,24S,25S)-spirost-5-ene-1β,3β,21,23,24-pentaol (2), a new natural product (3), and two known analogues (4 and 5) were isolated from the ethyl acetate-soluble portion of the ethanolic extract of Trillium tschonoskii Maxim. Their structures were elucidated by extensive spectroscopic analyses, and their cytotoxic activities on four kinds of human tumor cells were studied in vitro. Compound 4 showed significant cytotoxic activity against MCF-7 and A549 with IC50 values of 6.16 ± 2.21 and 28.5 ± 11.5 μM, respectively, while 5 exhibited selective cytotoxicity against A549 with an IC50 value of 13.0 ± 4.51 μM.  相似文献   

11.
Twenty terpenoids, including a new triterpenoid (1) and a new monoterpenoid (20), were isolated from the branches and leaves of Pyrus pashia. The structures of two new compounds were determined to be 2α, 3β, 27-trihydroxyolean-12-en-28-oic acid (1) and (4α)-3-(5,5-dimethyltetrahydrofuranyl)-1-buten-3-ol 3-O-β-d-glucopyranoside (20) on the basis of spectroscopic analysis (IR, HRESIMS, 1D and 2D NMR) and chemical method. Some of the isolated compounds were evaluated for their cytotoxic activity against a panel of human cancer cell lines by MTT assay, using cisplatin as a positive control. Compound 14 exhibited cytotoxic activities against A549 (IC50 = 19.18 ± 4.26 μM), Hela (IC50 = 12.56 ± 3.89 μM), SGC7901 (IC50 = 10.48 ± 1.95 μM) and NHI-1975 (IC50 = 7.38 ± 2.31 μM) cell lines as well as compound 12 displayed cytotoxic activities against A549 (IC50 = 14.71 ± 1.47 μM) and Hela (IC50 = 12.22 ± 1.88 μM) cell lines.  相似文献   

12.
A bioassay guided isolation of potential antimalarial molecules from the stem bark of Caesalpinia volkensii Harms (Fabaceae) achieved three new 11-oxocassane-type diterpenoids named voulkensin C (1), D (2) and E (3) together with one steroid glycoside named 3-O-[β-glucopyranosyl(1→2)-O-β-xylopyranosyl]-stigmasterol (4) and seven other known compounds including stigmasterol (5), β-sitosterol (6), oleanolic acid (7), 3-β-acetoxyolean-12-en-28-methyl ester (8), voucap-5-ol (9), caesadekarin C (10), deoxycaesaldekarin C (11). The structures of the new compounds were determined on the basis of extensive spectroscopic data (IR, MS, 1H and 13C NMR and 2D NMR) analyses. The polar extracts revealed moderate to good antiplasmodial activities against chloquine-sensitive (D6) and -resistant strains (W2) of Plasmodium falciparum. Whereas the pure isolates exhibited limited to moderate antiplasmodial activities with compound 4 showing the highest antiplasmodial activities (IC50 values of 4.44 ± 0.88 and 2.74 ± 1.10 μM against D6 and W2 strains, respectively). These results suggest a possible contribution of phytochemicals from C. volkensii stem bark towards inhibition of plasmodial parasites’ growth hence potential antimalarial.  相似文献   

13.
Therapeutic potential of nandrolone and its derivatives against leishmaniasis has been studied. A number of derivatives of nandrolone (1) were synthesized through biotransformation. Microbial transformation of nandrolone (1) with Cunninghamella echinulata and Cunninghamella blakesleeana yielded three new metabolites, 10β,12β,17β-trihydroxy-19-nor-4-androsten-3-one (2), 10β,16α,17β-trihydroxy-19-nor-4-androsten-3-one (3), and 6β,10β,17β-trihydroxy-19-nor-4-androsten-3-one (4), along with four known metabolites, 10β,17β-dihydroxy-19-nor-4-androsten-3-one (5), 6β,17β-dihydroxy-19-nor-4-androsten-3-one (6) 10β-hydroxy-19-nor-4-androsten-3,17-dione (7) and 16β,17β-dihydroxy-19-nor-4-androsten-3-one (8). Compounds 18 were evaluated for their anti-leishmanial activity. Compounds 1 and 8 showed a significant activity in vitro against Leishmania major. The leishmanicidal potential of compounds 1–8 (IC50 = 32.0 ± 0.5, >100, 77.39 ± 5.52, 70.90 ± 1.16, 54.94 ± 1.01, 80.23 ± 3.39, 61.12 ± 1.39 and 29.55 ± 1.14 μM, respectively) can form the basis for the development of effective therapies against the protozoal tropical disease leishmaniasis.  相似文献   

14.
The synthesis and pharmacological characterisation of (1-methyl-1H-imidazol-2-yl)-methanamine and its derivatives in PtII complexes are described. Six out of eleven new PtII complexes showed a significant cytotoxic effect on NCI-H460 lung cancer cell line with EC50 values between 1.1 and 0.115 mM, determined by MTT assay. Compound Pt-4a showed a particularly more potent cytotoxic effect than the previously described PtII complex with 2,2′-bipyridine, [Pt(bpy)Cl2], with an EC50 value equal to 172.7 μM versus 726.5 μM respectively, and similar potency of cisplatin (EC50 = 78.3 μM) in NCI-H460 cell line. The determination of the intracellular and DNA-bound concentrations of 195Pt, as marker of the presence of the complexes, showed that the cytotoxic compound Pt-4a readily diffused into the cells to a similar extent of cisplatin and directly interacted with the nuclear DNA. Pt-4a induced both p53 and p21Waf expression in NCI-H460 cells similar to cisplatin. A direct comparison of the cytotoxic effect between compound Pt-4a and cisplatin on 12 different cancer cell lines demonstrated that compound Pt-4a was in general less potent than cisplatin, but it had a comparable cytotoxic effect on non-small-cell lung cancer NCI-H460 cells, and the colorectal cancer cells HCT-15 and HCT-116. Altogether, these results suggested that the PtII complex with 1-methyl-1H-imidazol-2-yl)-methanamine (compound Pt-4a), displayed a significant cytotoxic activity in cancer cells. Similarly to cisplatin this compound interacts with nuclear DNA and induces both p53 and p21waf, and thus it represents an interesting starting point for future optimisation of new PtII complexes forming DNA adducts.  相似文献   

15.
Seven eremophilane-type sesquiterpenes (1–7), six cycloartane derivatives (813) and α-amyrin acetate (14) were isolated from the leaves of the far-eastern plant Ligularia alticola Worosch. (Family Asteraceae). (4S,5R,8S,10R)-8-Ethoxyeremophil-7(11)-en-12(8)-olide (1), 8α,11-epidioxy-8β-methoxyeremophil-6-ene (2) and 29-norcycloartan-3α-ol (8) have not been previously reported. Fukinone α-epoxide (3) was isolated for the first time from a natural source. The structures of all the compounds were established by the extensive analysis of their 1D and 2D NMR spectra and HR ESI mass spectrometry. The absolute stereochemistry of 1 was determined by comparison of theoretical and experimental ECD spectra with the application of B3LYP-TDDFT and B3LYP-GIAO calculations as well as by NMR spectroscopy. Compound 1 showed cytotoxic action against human cancer HL-60, Raji, and THP-1 cell lines (IC50 12.6, 6.0 and 6.9 μM, respectively). Compounds 2 and 4 demonstrated significant cytotoxic activities against HL-60 (IC50 2.8 and 5.8 μM, respectively) and Raji cells (IC50 2.9 and 4.2 μM, respectively). Compound 6 was cytotoxic against Raji cells (IC50 4.6 μM). None of tested compounds were cytotoxic against RAW 264.7 cells. Compounds 1 and 4–7 significantly decreased intracellular ROS levels, induced by endotoxic LPS from Escherichia coli in RAW 264.7 murine macrophages.  相似文献   

16.
Natural o-dihydroxyisoflavone (ODI) derivatives with variable hydroxyl substituent at the aromatic ring of isoflavone and three known isoflavones were isolated from five-year-old Korean fermented soybean paste (Doenjang) and evaluated as potent inhibitors on tyrosinase activity and melanin formation in melan-a cells comparing with other known isoflavones, 7,8,4′-trihydroxyisoflavone (1) and 7,3′,4′-trihydroxyisoflavone (2) inhibited tyrosinase by 50% at a concentration of 11.21 ± 0.8 μM and 5.23 ± 0.6 μM (IC50), respectively, whereas, 6,7,4′-trihydroxyisoflavone (3), daidzein (4), glycitein (5) and genistein (6) showed very low inhibition activity. Furthermore, those compounds significantly suppressed the cellular melanin formation by 50% at a concentration of 12.23 ± 0.7 μM (1), 7.83 ± 0.7 μM (2), and 57.83 ± 0.5(6) and show more activity than arbutin. But, compounds 3, 4, and 5 showed lower inhibition activity. This study shows that the position of hydroxyl substituent at the aromatic ring of isoflavone plays an important role in the intracellular regulation of melanin formation in cell-based assay system.  相似文献   

17.
A new ellagitannin, agritannin (1), a new flavone glycoside, agriflavone (2), and another flavone glycoside with spectroscopic data reported for the first time, kaempferol-3-O-[(S)-3-hydroxy-3-methylglutaryl (1→6)]-β-d-glucoside (3), along with 16 known compounds were isolated from the aerial parts of Agrimonia pilosa Ledeb. These compounds were evaluated for PTP1B inhibitory activity. Among them, compounds 9 and 18 displayed potential inhibitory activity against PTP1B with IC50 values of 7.14 ± 1.75 and 7.73 ± 0.24 μM, respectively. In addition, compound 1 showed significant inhibitory effect with an IC50 value of 17.03 ± 0.09 μM. Furthermore, these compounds were tested in AChE inhibitory assays. Most of them were found to have moderate inhibitory effects, with IC50 values ranging from 60.20 ± 1.09 to 92.85 ± 1.12 μM. Except compounds 3, 8, and 18 were inactive.  相似文献   

18.
BackgroundAlzheimer's disease (AD) is a progressive neurodegenerative brain disorder that is characterized by dementia, cognitive impairment, and memory loss. Diverse factors are related to the development of AD, such as increased level of β-amyloid (Aβ), acetylcholine, metal ion deregulation, hyperphosphorylated tau protein, and oxidative stress.MethodsThe following methods were used: organic syntheses of 1H-phenanthro[9,10-d]imidazole derivatives, inhibition of self-mediated and metal-induced Aβ1–42 aggregation, inhibition studies for acetylcholinesterase and butyrylcholinesterase, anti-oxidation activity studies, CD, MTT assay, transmission electron microscopy, dot plot assay, gel electrophoresis, Western blot, and molecular docking studies.ResultsWe synthesized and characterized a new type of 1H-phenanthro[9,10-d]imidazole derivatives as multifunctional agents for AD treatment. Our results showed that most of these derivatives exhibited strong Aβ aggregation inhibitory activity. Compound 9g had 74% Aβ1–42 aggregation inhibitory effect at 10 μM concentration with its IC50 value of 6.5 μM for self-induced Aβ1–42 aggregation. This compound also showed good inhibition of metal-mediated (Cu2 + and Fe2 +) and acetylcholinesterase-induced Aβ1–42 aggregation, as indicated by using thioflavin T assay, transmission electron microscopy, gel electrophoresis, and Western blot. Besides, compound 9g exhibited cholinesterase inhibitory activity, with its IC50 values of 0.86 μM and 0.51 μM for acetylcholinesterase and butyrylcholinesterase, respectively. In addition, compound 9g showed good anti-oxidation effect with oxygen radical absorbance capacity (ORAC) value of 2.29.ConclusionsCompound 9g was found to be a potent multi-target-directed agent for Alzheimer's disease.General significanceCompound 9g could become a lead compound for further development as a multi-target-directed agent for AD treatment.  相似文献   

19.
Two new protolimonoid compounds, namely, argentinin A (1) and B (2) along with five known triterpenoid compounds, dammar-24-en-3α-ol (3), 3-epi-cabraleahydroxy lactone (4), (E)-25-hydroperoxydammar-23-en-3β,20-diol (5), mixture of eichlerianic acid and shoreic acid (6a and 6b), and dammar-24-en-3α,20-diol (7), were isolated from the stem bark of Aglaia argentea. The structure of new compounds were elucidated by spectroscopic methods including one and two-dimensional NMR as well as high-resolution mass spectrometric analysis. All of the compounds were tested for their cytotoxic effects against P-388 murine leukemia cells in vitro. Among those isolated compounds, argentinin A (1) showed the strongest activity with an IC50 value of 1.27 μg/mL (3.05 μM).  相似文献   

20.
Two new compounds, gallic acid ester of torachrysone-8-O-β-d-glucoside (1) and (E)-2,3,5,4′-tetrahydroxystilbene-2-O-β-d-xyloside (4), along with eight known compounds (2, 3, 510) were isolated from a 70% ethanol extract of Polygonum multiflorum roots. The structures were determined by 1H and 13C NMR, HMQC, and HMBC spectrometry. Extracts of P. multiflorum have been reported to promote hair growth in vivo. This study was carried out to evaluate the effects of isolated compounds from P. multiflorum on promoting hair growth using dermal papilla cells (DPCs), which play an important role in hair growth. When DPCs were treated with compounds (110) from P. multiflorum, compounds 1, 2, 3, 6, and 10 increased the proliferation of DPCs compared with the control. Specifically, compound 2 (10 and 20 μM) induced a greater increase in the proliferation of DPCs than minoxidil (10 μM). Additionally, treatment of vibrissa follicles with compound 2 for 21 days increased hair-fiber length significantly. On the basis of this result, further investigation and optimization of these derivatives might help in the development of therapeutic agents for the treatment of alopecia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号