首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary— Malate synthase (MS; EC 4.1.3.2), an enzyme specific to the glyoxylate cycle, was studied in cotyledons of dark-grown soybean (Glycine max L) seedlings with light and electron microscopy techniques. Immunogold localization confirmed biochemical evidence that MS from soybean is a glyoxysomal matrix enzyme.  相似文献   

2.
Protoplasts were isolated from immature cotyledons of six cultivars of Glycine max L. and cultured in the KP8 liquid medium supplemented with 0.2 mg/L 2,4-D, 1 mg/L NAA and 0.5 mg/L ZT. The protoplasts started to divide after 3–5 days of culture. Sustained divisions resulted in mass production of cell colonies and small calli in 6 weeks. The calli further grew to 2–3 mm on the gelritesolidified K8 medium and were transferred onto the MSB medium with 1 mg/L 2,4-D and 0.25 mg/L BA, to obtain compact and nodular calli. Shoot formation was initiated on MSB medium with 0.15 mg/L NAA, and BA, KT and ZT, 0.5 mg/L of each, with or without 500 mg/L CH. It was followed by plant regeneration. So far, 87 plants have been regenerated from 4 cultivars, and normal seeds were obtained from them after transplanting into pots.Abbreviation IAA indol-3-acetic acid - NAA naphthalene acetic acid - 2,4-D 2,4-dichlorophenoxy acetic acid - KT kinetin - BA 6-benzyladenine - ZT zeatin - CH casein hydrolysate  相似文献   

3.
Protoplasts were isolated from immature cotyledons of Glycine max L. Merr. cv. Clark 63 and cultured in liquid or in agarose-gelled modified KP8 medium. Plating efficiencies of 45–50% were obtained in liquid medium and 55–60% in 1.2% (w/v) agarose beads. Upon regular dilution with K8 medium rapidly growing green microcalli (1–2 mm in size) were obtained in 5–6 weeks, which upon transfer to MSB medium with 0.5 mg 1–1 each of 2,4-D, BA, Kn and 500 mg 1–1 CH produced compact green calli in 4–6 weeks. After 3–4 regular subcultures of 14 days each on MSB medium containing 0.5 mg 1–1 each of BA, Kn, ZT, 0.1 mg 1–1 NAA and 500 mg 1–1 CH, about 21% of the compact calli formed multiple shoots. Addition of glutamine, asparagine and GA3 enhanced shoot regeneration up to 30%. Shoots of 0.5–1.0 cm length were transferred to 1/2 MS medium with 0.01 mg 1–1 TH and 0.5 mg 1–1 GA3 for elongation. In 2 to 3 weeks, approximately 60% of the shoots were 2–3 cm in length. These shoots were rooted on 1/2 MS with 1% sucrose and 0.2 mg 1–1 IBA or 0.5 mg 1–1 NAA. So far, twenty six plants have been transferred to the greenhouse, where they all have set seed.Abbreviations BA 6-benzyladenine - CH casein hydrolysate - 2,4-D 2,4-dichlorophenoxyacetic acid - FDA fluorescein diacetate - GA3 gibberellic acid - IBA indole-3-butyric acid - Kn kinetin - MES 2[N-morpholino] ethane sulfonic acid - NAA naphthaleneacetic acid - TH thidiazuron - ZT zeatin  相似文献   

4.
Stable transformation of soybean (Glycine max (L.) Merr.) protoplasts isolated from immature cotyledons was achieved following electroporation with plasmid DNA carrying chimeric genes encoding ß-glucuronidase (GUS) and hygromycin phosphotransferase (HPT) under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Transformed colonies were stringently selected by growing 15-day-old protoplast-derived cells in the presence of 40 g/ml of hygromycin-B for 6 weeks. Over 93% of the resistant cells and colonies exhibited GUS activity, indicating that the two marker genes borne on a single plasmid were co-introduced and co-expressed at a very high freguency. This transformation procedure reproducibly yields transformants at frequencies of 2.9–6.8 × 10–4 (based on the number of protoplasts electroporated) or 23.0% (based on the number of control microcalli formed) counted after 6 weeks of selection. After repeated subculturing on regeneration medium, shoots were induced from 8.0% of the transformed calli. Southern hybridization confirmed the presence of both the GUS and hygromycin genes in the transformed calli and shoots.  相似文献   

5.
The aim of this work was to discover how leucoplasts from suspension cultures of soybean (Glycine max L.) oxidize hexose monophosphates. Leucoplasts were isolated from protoplast lysates on a continuous gradient of Nycodenz with a yield of 28% and an intactness of 80%. Incubation of the leucoplasts with 14C-labelled substrates led to 14CO2 production, that was dependent upon leucoplast intactness, from [U-14C]glucose 6-phosphate, [U-14C]glucose 1-phosphate, [U-14C] fructose 6-phosphate and [U-14C]glucose+ATP, but not from [U-14C]fructose-1,6-bisphosphate or [U-14C]triose phosphate. The yield from [U-14C]glucose 6-phosphate was at least four times greater than that from any of the other substrates. When [1-14C]-, [2-14C]-, [3,4-14C]-, and [6-14C]glucose 6-phosphate were supplied to leucoplasts significant 14CO2 production that was dependent upon leucoplast intactness was found only for [1-14C]glucose 6-phosphate. It is argued that soybean cell leucoplasts oxidize glucose 6-phosphate via the oxidative pentose phosphate pathway with very little recycling, and that in these plastids glycolysis to acetyl CoA is negligible.S.A.C. thanks the Science and Engineering Research Council for a research studentship.  相似文献   

6.
Balestrasse  K.B.  Gallego  S.M.  Tomaro  M.L. 《Plant and Soil》2004,262(1-2):373-381
The relationship between cadmium-induced oxidative stress and nodule senescence in soybean was investigated at two different concentrations of cadmium ions (50 and 200 μM), in solution culture. High cadmium concentration (200 μM) resulted in oxidative stress, which was indicated by an increase in thiobarbituric acid reactive substances content and a decrease in leghemoglobin levels. Consequently, nitrogenase activity was decreased, and increases in iron and ferritin levels were obtained. Senescent parameters such as ethylene production, increased levels of ammonium and an increase in protease activity were simultaneously observed. Glutamate dehydrogenase activity was also increased. Peroxidase activity decreased at the higher cadmium concentration while the lower cadmium treatment produced changes in peroxidase isoforms, compared to control nodules. Ultrastructural investigation of the nodules showed alterations with a reduction of both bacteroids number per symbiosome and the effective area for N2-fixation. These results strongly suggest that, at least at the higher concentration, cadmium induces nodule senescence in soybean plants.  相似文献   

7.
Brik AF  Sivolan IuM 《Genetika》2001,37(9):1266-1273
An approach to certification of soybean genotypes has been developed. The procedure employs three methods of DNA analysis based on polymerase chain reaction (PCR): PCR with arbitrary primers (AP PCR), simple sequence repeat polymorphism (SSRP) analysis, and inter-simple sequence repeat (ISSR) analysis. The approach to certification proposed may be used in both genetic and breeding research and seed production. A "certificate" form that reflects the unique characteristics of each cultivar studied is proposed. The results of molecular genetic analysis of allele distribution in genotypes of soybean from different ecological geographic zones permit estimation of the adaptive significance of individual alleles.  相似文献   

8.
Genes controlling nitrogen-fixing symbioses of legumes with specialized bacteria known as rhizobia are presumably the products of many millions of years of evolution. Different adaptative solutions evolved in response to the challenge of survival in highly divergent complexes of symbionts. Whereas efficiency of nitrogen fixation appears to be controlled by quantitative inheritance, genes controlling nodulation are qualitatively inherited. Genes controlling nodulation include those for non-nodulation, those that restrict certain microsymbionts, and those conditioning hypernodulation, or supernodulation. Some genes are naturally occurring polymorphisms, while others were induced or were the result of spontaneous mutations. The geographic patterns of particular alleles indicate the role of coevolution in determining symbiont specificites and compatibilities. For example, the Rj4 allele occurs with higher frequency (over 50%) among the soybean (G. max) from Southeast Asia. DNA homology studies of strains of Bradyrhizobium that nodulate soybean indicated two groups so distinct as to warrant classification as two species. Strains producing rhizobitoxine-induced chlorosis occur only in Group II, now classified as B. elkanii. Unlike B. japonicum, B. elkanii strains are characterized by (1) the ability to nodulate the rj1 genotype, (2) the formation of nodule-like structures on peanut, (3) a relatively high degree of ex planta nitrogenase activity, (4) distinct extracellular polysaccharide composition, (5) distinct fatty acid composition, (6) distinct antibiotic resistance profiles, and (7) low DNA homology with B. japonicum. Analysis with soybean lines near isogenic for the Rj4 versus rj4 alleles indicated that the Rj4 allele excludes a high proportion of B. elkanii strains and certain strains of B. japonicum such as strain USDA62 and three serogroup 123 strains. These groups, relatively inefficient in nitrogen fixation with soybean, tend to predominate in soybean nodules from many US soils. The Rj4 allele, the most common allelic form in the wild species, has a positive value for the host plants in protecting them from nodulation by rhizobia poorly adapted for symbiosis.  相似文献   

9.
Summary Somatic embryos from four soybean cultivars were matured for 30 and 45 d. Success of embryo germination was evaluated for each length of maturation. The percentage of somatic embryos undergoing successful germination, as defined by rooting and shoot emergence, was greater for embryos matured 45 d than for embryos matured 30 d. Therefore, embryos matured for 45 d are probably physiologically more mature than embryos matured for 30 d. Relative percentages of fatty acids comprising oils and lipids of somatic embryos were determined for each length of maturation and for each cultivar. Variation in relative percentages of palmitic acid, oleic acid, and linoleic acid was affected by length of maturation. However, these changes were genotype dependent. A significant interaction between the cultivars Clark and Maple Arrow and stage of maturation was observed for levels of oleic acid. No other interactions were observed. These data suggest that if changes in relative percentages of certain fatty acids are associated with soybean somatic embryo maturation the changes are genotype dependent. This is journal paper No. J-12870 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 2763. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that also may be suitable. This research was supported in part by grants from the American Soybean Association Development Foundation and the Iowa Soybean Promotion Board.  相似文献   

10.
Sucrose-phosphate (SPS) from source leaves of soybean ( Glycine max (L.) Merr. cv. Ransom II) was purified 74-fold to a final specific activity of 1.8 U (mg protein)1. The partially purified preparation was free from phosphoglucoseisomerase (EC 5.3.1.9), pyrophosphatase (EC 3.6.1.1), phosphoenolpyruvate-phosphatase (EC 3.1.3.-), phosphofructokinase (EC 2.7.1.11), and uridine diphosphatase (EC 3.6.1.6), and was used for characterization of the kinetic and regulatory properties of the enzyme. The enzyme showed hyperbolic saturation kinetics for both fructose-6-phosphate (Km=0.57 m M ) and UDPGlucose (UDPG) (Km=4.8 m M ). The activity of SPS was inhibited by the product UDP. In vitro this inhibition could be partially overcome by the presence of Mg2+. Inorganic orthophosphate was only slightly inhibitory (35% inhibition at 25 m M phosphate). Glucose-6-phosphate (up to 20 m M ) had no effect on activity, and did not show any significant interaction with phosphate inhibition. A range of potential effectors was tested and had no effect on SPS activity: Glucose-1-phosphate, fructose-1, 6-bisphosphate, α-glycero-phosphate, dihydroxyacetone-phosphate, 3-phosphoglyceric acid, (all at 5 m M ), sucrose at 100 m M and pyrophosphate at 0.1 m M . The apparent lack of allosteric regulation of soybean SPS makes this enzyme markedly different from SPS previously characterized from spinach and maize.  相似文献   

11.
Wright  M. S.  Ward  D. V.  Hinchee  M. A.  Carnes  M. G.  Kaufman  R. J. 《Plant cell reports》1987,6(2):83-89
A reproducible method for regeneration of plants from primary leaf tissue of 27 varieties of soybean (Glycine max), encompassing maturity groups 00 to VIII, has been developed. Progeny from seeds recovered from regenerated plants appear normal. Best regeneration was from leaf explants (2.1–4.0 mm) obtained from 5 day old seedlings. While 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) was demonstrated to be essential for regeneration, addition of benzyladenine (BA) was found to enhance regeneration. Of the 6 other auxins tested, only picloram induced any regenerative response. Using identical volumes of medium and other conditions, regeneration could be obtained in 95 × 25 mm glass culture tubes but not in 60 × 15 mm Petri dishes.The regeneration of soybeans from primary leaf tissue was shown to be greatly enhanced by pyroglutamic acid (5-oxoproline). Stimulatory effects were attained if pyroglutamic acid was added directly to the medium or if it was formed in situ as a result of chemical transformation of glutamine during autoclaving. The active component produced by autoclaving glutamine was not a conjugate of glutamine with inorganic salts or another organic component of the medium. Filter-sterilized glutamine was shown to be inhibitory to regeneration.Murashige and Skoog (MS) and Schenk and Hildebrandt (SH) basal media were compared to Gamborg B5 medium. All contained 0.1 mg/l 2,4,5-T, 40 mg/l adenine sulfate and 10 mM pyroglutamic acid. No regeneration occurred when MS medium was used. Growth and appearance of callus growing on SH and B5 media with the additives were similar. The incidence of regeneration among cultures growing on SH medium was only one third compared to cultures grown on B5 medium.  相似文献   

12.
Summary Genetic analysis for germination percentage was carried out in the F3 and F4 generations of a diallel cross involving six promising genotypes of soybean. Results indicated a high amount of genetic variability and a moderately high heritability together with genetic advance, suggesting a possible improvement for this character through hybridization and selection. Correlations at different levels revealed a strong negative association of germination with only one seed character: seed weight. This observation was further confirmed from path coefficient analysis. These findings strongly suggest that to base selection on seed weight which may not influence the seed quality of soybean.  相似文献   

13.

Background and aims

Iron deficiency chlorosis (IDC) leads to severe leaf chlorosis, low photosynthetic rates, and yield reductions of several million metric tonnes each year. In order to devise breeding and genetic transformation programs that aim at generating high-yielding and IDC-tolerant soybean lines, it is necessary to better understand the mechanisms that enable tolerant plants to survive under Fe-limiting conditions.

Methods

An in silico analysis in the USDA soybean collection allowed the identification of a set of novel efficient and inefficient soybean cultivars which can be used in future studies concerning IDC response. Plants were grown in iron deficient and iron sufficient conditions using a bicarbonate system and several IDC-related aspects were studied.

Results

A new set of efficient and inefficient soybean lines were identified in silico, and their tolerance to IDC was confirmed under laboratorial conditions. New plant traits that are highly correlated to IDC scoring were identified: a negative correlation was found between SPAD values and stem weight, weight of the unifoliolates and iron concentration of the first unifoliolates was found; higher SPAD values were correlated with the amount of iron in the first trifoliate leaves. Our data also show that having higher concentrations of iron in the seeds provides increased resistance to IDC. No correlation was found between root iron reductase activity and chlorosis.

Conclusions

Soybean differential chlorosis susceptibility between different accessions is linked to specific morpho-physiological parameters such as unifoliolate leaf size, stem weigh, concentration of iron in the seeds, and tissue iron partitioning.  相似文献   

14.
15.
Michele Cope  Lee H. Pratt 《Planta》1992,188(1):115-122
The intracellular distribution of phytochrome in hypocotyl hooks of etiolated soybean (Glycine max L.) has been examined by immunofluorescence using a newly produced monoclonal antibody (Soy-1) directed to phytochrome purified from etiolated soybean shoots. Cortical cells in the hook region exhibit the strongest phytochrome-associated fluorescence, which is diffusely distributed throughout the cytosol in unirradiated, etiolated seedlings. A redistribution of immunocytochemically detectable hytochrome to discrete areas (sequestering) following irradiation with red light requires a few minutes at room temperature in soybean, whereas this redistribution is reversed rapidly following irradiation with far-red light. In contrast, sequestering in oat (Avena sativa L.) occurs within a few seconds (D. McCurdy and L. Pratt, 1986, Planta 167, 330–336) while its reversal by far-red light requires hours (J. M. Mackenzie Jr. et al., 1975, Proc. Natl. Acad. Sci. USA 72, 799–803). The time courses, however, of red-light-enhanced phytochrome pelletability and sequestering are similar for soybean as they are for oat. Thus, while these observations made with a dicotyledon are consistent with the previous conclusion derived from work with oat, namely that sequestering and enhanced pelletability are different manifestations of the same intracellular event, they are inconsistent with the hypothesis that either is a primary step in the mode of action of phytochrome.Abbreviations DIC differential interference contrast - FR far-red light - Ig immunoglobulin - Pfr, P far-red- and red-absorbing form of phytochrome, respectively - R red light This work was supported by National Science Foundation grant No. DCB-8703057.  相似文献   

16.
Hempseed is rich in polyunsaturated fatty acids (PUFAs), which have potential as therapeutic compounds for the treatment of neurodegenerative and cardiovascular disease. However, the effect of hempseed meal (HSM) intake on the animal models of these diseases has yet to be elucidated. In this study, we assessed the effects of the intake of HSM and PUFAs on oxidative stress, cytotoxicity and neurological phenotypes, and cholesterol uptake, using Drosophila models. HSM intake was shown to reduce H2O2 toxicity markedly, indicating that HSM exerts a profound antioxidant effect. Meanwhile, intake of HSM, as well as linoleic or linolenic acids (major PUFA components of HSM) was shown to ameliorate Aβ42-induced eye degeneration, thus suggesting that these compounds exert a protective effect against Aβ42 cytotoxicity. On the contrary, locomotion and longevity in the Parkinson’s disease model and eye degeneration in the Huntington’s disease model were unaffected by HSM feeding. Additionally, intake of HSM or linoleic acid was shown to reduce cholesterol uptake significantly. Moreover, linoleic acid intake has been shown to delay pupariation, and cholesterol feeding rescued the linoleic acid-induced larval growth delay, thereby indicating that linoleic acid acts antagonistically with cholesterol during larval growth. In conclusion, our results indicate that HSM and linoleic acid exert inhibitory effects on both Aβ42 cytotoxicity and cholesterol uptake, and are potential candidates for the treatment of Alzheimer’s disease and cardiovascular disease.  相似文献   

17.
Changes of activity antioxidant enzymes and of levels of isoflavonoids were studied in the roots and hypocotyls of the etiolated soybean (Glycine max (L.) Merr. var. Essor) seedlings, submitted to cold. Prolonged exposure to 1 degrees C inhibited hypocotyl and root elongation and limited their growth after seedlings were transferred to 25 degrees C. Roots were more sensitive to chilling than hypocotyls. At 1 degrees C a gradual increase in MDA concentration in roots but not in hypocotyls was observed. An increase in catalase (CAT, EC 1.11.1.6) and superoxide dismutase (SOD, EC 1.15.1.1) activity in hypocotyls was observed both at 1 degrees C and after transfer of plants to 25 degrees C. In roots, CAT activity increased after 4 days of chilling, while SOD activity only after rewarming. L-Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity decreased in roots of chilled seedlings, but did not change in hypocotyls until activity increased after transfer to 25 degrees C. The content of genistein and daidzein increased after 24 h of treatment by low temperature and then decreased with prolonged chilling in hypocotyls and remained high in roots. However, it should be noted that genistin level (genistein glucoside) in chilled hypocotyls is 10 times higher than in roots, despite falling tendency. The role of antioxidant enzymes and isoflavonoids in preventing chilling injury in hypocotyls and roots of soybean seedlings is discussed.  相似文献   

18.
Selected factors affecting somatic embryogenesis efficiency have been studied, namely genotype, explant type and its orientation in the medium, different basal media, different auxins for somatic embryo induction, and two ways of donor plant cultivation. The key role is played by genotype and auxin used, the minimum effect was observed due to basal media. In the series of subsequent experiments we have found the best combination of individual factors as follows: cv. Altona, 10 uM 2,4-D, L2 basal medium, central part of immature cotyledon as initial expiant oriented by adaxial side down on the agar medium, and field grown donor plants. This combination exhibited 100 % embryogenic explants with 5.43 ± 0.65 somatic embryos per expiant,i.e. somatic embryogenesis efficiency 5.43.  相似文献   

19.
A soybean seed-specific PR-8 chitinase, named Chib2, has a markedly extended C-terminal segment compared to other plant Chib1 homologues of the PR-8 chitinase family known to date. To further characterize the molecular structure and the expression pattern of this chitinase family, we cloned two typical Chib1-similar cDNAs (Chib1-1 and Chib1-2) from soybeans by PCR-cloning techniques. The deduced primary sequence of Chib1-1 chitinase is composed of a signal peptide segment (26 amino acid residues) and a mature 273 amino acid sequence (calculated molecular mass 28,794, calculated pI 3.7). This Chib1-1 enzyme is more than 90% identical to Chib1-2 chitinase but is below 50% identical to Chib2 enzyme. Thus, we confirmed the occurrence of two distinct classes, Chib1 and Chib2 in the plant PR-8 chitinase family. The Chib1 genes, interrupted by one intron, were found to be up-regulated in response to ethylene in stems and leaves, but scarcely expressed in developing soybean seeds. Chib1 chitinases may be responsible for protecting the plant body from various pathogenic attacks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号