首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a new pretreatment process for producing high-efficiency bioethanol from a lignocellulosic biomass. Barley straw was pretreated with sodium hydroxide in a twin-screw extruder for continuous pretreatment. The biomass to ethanol ratio (BTER) for optimal pretreatment conditions was evaluated by response surface methodology. Simultaneous saccharification and fermentation (SSF) was conducted to investigate the BTER with 30 FPU/g cellulose of enzyme and 7% (v/v) yeast (Saccharomyces cerevisiae CHY 1011) using 10% (w/v) pretreated biomass under various pretreatment conditions. The maximum BTER was 73.00% under optimal pretreatment conditions (86.61 °C, 0.58 M, and 84.79 mL/min for temperature, sodium hydroxide concentration, and solution flow rate, respectively) and the experimental BTER was 70.01 ± 0.59%. SSF was performed to investigate the optimal enzyme and biomass dosage. As a result, maximum ethanol concentration and ethanol yield were 46.00 g/L and 77.36% at a loading pretreated biomass of 20% with 30 FPU/g cellulose of the enzyme dosage for barley straw to bioethanol. These results are a significant contribution to the production of bioethanol from barley straw.  相似文献   

2.
《Process Biochemistry》2010,45(4):487-492
A thermotolerant ethanol-fermenting yeast, Saccharomyces cerevisiae KNU5377, isolated from a sludge of a local industrial complex stream in Korea, was evaluated for its capability for lignocellulosic ethanol production from waste newsprint in high temperature. In this fermentation, most of dry-defibrated waste newspaper was first saccharified at 50 °C for 108 h using a commercial cellulase and, then with the last addition of dry-defibrated newsprints to the pre-saccharified broth, simultaneous saccharification and fermentation (SSF) of 1.0 L of reaction mixture was carried out at 40 °C, slowly being dropped from 50 °C, for further 72 h in a 5 L fermentor by inoculating the overnight culture of KNU5377. The maximum production of 8.4% (v/v) ethanol was obtained when 250 g (w/v)/L of dry-defibrated waste newspaper was used for ethanol production by SSF. These results suggest that S. cerevisiae KNU5377 is very useful for cellulose ethanol production by the SSF system.  相似文献   

3.
《Process Biochemistry》2010,45(7):1196-1200
A process for conversion of cassava flour to ethanol was developed. This involved direct inoculation of Aspergillus awamori spores into a cassava flour paste and incubation for some period during which hydrolytic enzymes are produced (solid state culture or koji production) and subsequent addition of water and yeast cells, during which there is simultaneous hydrolysis and ethanol production (submerged culture). When cassava flour alone was used for the solid state phase, the paste was very sticky, making mixing and aeration difficult. However, addition of rice bran improved the texture and enzyme production. The optima rice bran concentration, spore inoculum concentration, and duration of solid state culture before submerged culture were 20%, 6.16 × 106 spores/100 g, and 2 days, respectively. Under these optimum conditions, a high ethanol concentration of 120 g/L and ethanol yield of 0.309 g-ethanol/g-cassava flour were obtained. This ethanol yield corresponds to 0.44 g-ethanol/g-cassava starch.  相似文献   

4.
An exopolysaccharide (EPS) reaching a maximum of 13 g/L was isolated from Micrococcus luteus by ethanol precipitation. The crude EPS was purified by chromatography on DEAE-cellulose and Sephacryl S-200, affording a polysaccharide active fraction (AEP) with a molecular weight of ∼137 kDa. AEP was investigated by a combination of chemical and chromatographic methods including FTIR, HPLC, periodate oxidation, methylation and GC–MS. Data obtained indicated that AEP was composed of mannose, arabinose, glucose and glucuronic acid in a molar ratio of 3.6:2.7:2.1:1.0, respectively. The main backbone consists of mannose units linked with (1→6)-glycosidic bonds and arabinose units linked with (1→5)-glycosidic bonds. There is a side chain consisting of mannose units linked with (1→6)-glycosidic bonds at C3, when all glucose and most of glucuronic acid are found in the side chain. The in vitro antioxidant assay showed that AEP possesses DPPH radical-scavenging activity, with an EC50 value of 180 μg/mL.  相似文献   

5.
《Process Biochemistry》2014,49(8):1238-1244
PH is an essential factor for acetone/butanol/ethanol (ABE) production using Clostridium spp. In this study, batch fermentations by Clostridium beijerinckii IB4 at various pH values ranging from 4.9 to 6.0 were examined. At pH 5.5, the ABE production was dominant and maximum ABE concentration of 24.6 g/L (15.7 g/L of butanol, 8.63 g/L of acetone and 0.32 g/L of ethanol) was obtained with the consumption of 60 g/L of glucose within 36 h. However, in the control (without pH control), an ABE concentration of 14.1 g/L (11.0 g/L of butanol, 3.01 g/L of acetone and 0.16 g/L of ethanol) was achieved with the consumption of 41 g/L of glucose within 40 h. A considerable improvement in the productivity of up to 93.8% was recorded at controlled pH in comparison to the process without pH control. To better understand the influence of pH on butanol production, the reducing power capability and NADH-dependent butanol dehydrogenase activity were investigated, both of which were significantly improved at pH 5.5. Thus, the pH control technique is a convenient and efficient method for high-intensity ABE production.  相似文献   

6.
Hot compressed liquid water was used to treat switchgrass in a method called hydrothermolysis to disrupt lignin, dissolve hemicellulose, and increase accessibility of cellulose to cellulase. Three temperatures (190, 200, and 210 °C) and hold times (10, 15, and 20 min) were tested. Switchgrass treated at 190 °C for 10 min had the greatest xylan recovery in the prehydrolyzate. Less than 0.65 g/L glucose were released into the prehydrolyzate for all pretreatment conditions, indicating most glucose was retained as cellulose in the solid substrate. 5-Hydroxymethylfurfural (HMF) and furfural formation in the prehydrolyzate were found to be less than 1 g/L for all treatments. The highest concentration of ethanol, 16.8 g/L (72% of theoretical), was produced from switchgrass pretreated at 210 °C and 15 min using simultaneous saccharification and fermentation (SSF) at 45 °C with the thermotolerant yeast Kluyveromyces marxianus IMB4 and 15 FPU cellulase/g glucan.  相似文献   

7.
《Process Biochemistry》2014,49(3):457-465
This work investigated effects of lignocellulose degradation products on cell biomass and lipid production by Cryptococcus curvatus. Furfural was found to have the strongest inhibitory effect. For the three phenolic compounds tested, vanillin was the most toxic, while PHB and syringaldehyde showed comparable inhibitions in the concentration range of 0–1.0 g/L. Generally little significant differences on the relative cell biomass and lipid contents at the same concentrations of tested compounds were observed between glucose and xylose as a sole carbon source. At 1.0 g/L of furfural, the cell biomass and lipid content decreased by 78.4% and 61.0% for glucose as well as 72.0% and 59.3% for xylose, respectively. C. curvatus ceased to grow at concentrations of PHB over 1.0 g/L or vanillin over 1.5 g/L. The strain could survive in the presence of syringaldehyde up to 2.0 g/L for glucose or 1.5 g/L for xylose. The compounds’ negative impact was reduced by an increase in inoculum size and a 10% (v/v) seed was detected to be optimal for cell biomass and lipid production. The results demonstrated C. curvatus could effectively utilize most of the dominant monosaccharides and cellobiose existing in lignocellulosic biomass hydrolysate in the presence of toxic compounds.  相似文献   

8.
《Anaerobe》2009,15(3):65-73
Highest antimicrobial activity of peptide ST4SA (51,200 AU/mL) was recorded after 14 h of growth in MRS broth with optimal production at pH 6.0 or 6.5. Growth of strain ST4SA in the presence of tryptone, yeast extract, or a combination of the two, yielded 102,400 AU/mL. An increase in production of peptide ST4SA to 102,400 AU/mL was recorded in the presence of 20.0 g/L fructose, but decreased to 25,600 AU/mL in the presence of lactose (20.0 g/L) or mannose (20.0 g/L) as sole carbon source. Lower activity (25,600 AU/mL) was recorded when 2.0 g/L K2HPO4 was replaced by 2.0 g/L KH2PO4 in MRS broth. An increase of K2HPO4 to 10.0 g/L and 20.0 g/L resulted in higher activity (102,400 AU/mL). Addition of glycerol to MRS broth had a negative effect on peptide ST4SA production. Production of peptide ST4SA required the presence of magnesium sulphate, manganese sulphate and 5.0 g/L sodium acetate. Exclusion of tri-ammonium citrate from the medium resulted in reduction of activity to 3,200 AU/mL. Maximum activity (102,400 AU/mL) was recorded in MRS supplemented with 1.0 ppm Vit. C, DL-6,8-thioctic acid or thiamine, respectively. Growth of Listeria ivanovii susbp. ivanovii ATCC 19119 in the presence of peptide ST4SA (12,800 AU/mL) resulted in 99% cell lysis after 18 h. Improved production of peptide ST4SA was recorded in MRS broth (Biolab) pre-treated with Amberlite XAD-1180. Precipitation with ammonium sulphate, followed by gel filtration chromatography, yielded the highest level of peptide ST4SA. This paper describes the partially deproteination of growth medium to facilitate peptide ST4SA purification.  相似文献   

9.
《Process Biochemistry》2010,45(8):1299-1306
Neutralized hydrolysate and pretreated rice straw obtained from a 2% (w/v) sulfuric acid pretreatment were mixed at 10% (w/v) and subjected to simultaneous saccharification and co-fermentation (SSCF), with cellulase, β-glucosidase, and Candida tropicalis cells at 15 FPU/g-ds, 15 IU/g-ds and 1 × 109 cells/ml, respectively. A 36-h SSCF with adapted cells resulted in YP/S and ethanol volumetric productivity of 0.36 g/g and 0.57 g/l/h, respectively. In addition to ethanol, insignificant amounts of glycerol and xylitol were also produced. Adapted C. tropicalis cells produced nearly 1.6 times more ethanol than non-adapted cells. Ethanol yield (Yp/s), ethanol volumetric productivity and a xylitol concentration of 0.48 g/g, 0.33 g/l/h and 0.89 g/l, respectively, were produced from fermentation of remaining hydrolysate with adapted C. tropicalis cells. The 0.20 g/g ethanol yield and 77% production efficiency from SSCF of pretreated rice straw indicate scale-up potential for the process. This study demonstrated that C. tropicalis produced ethanol and xylitol from a mixed-sugar stream, although cell adaptation affected ethanol and xylitol yields. Scanning electron microscopy indicated agglomeration of cellulose microfibrils and globular deposition of lignin in acid-pretreated rice straw.  相似文献   

10.
When Saccharomyces cerevisiae was cultivated under ~200 g glucose/l condition, the time point at which glucose was completely utilized coincided with the moment at which the slope of a redox potential profile changed from negative or zero to positive. Based on this feature, a redox potential-driven glucose-feeding fermentation operation was developed, and resulted in a self-cycling period of 14.25 ± 0.4 h. The corresponding ethanol concentration was maintained at 88.4 ± 1.0 g/l with complete glucose conversion, and the cell viabilities increased from 80% in the transition period to 97.2 ± 1.1%, implying the occurrence of yeast acclimatization. In contrast, a pre-determined 36-h manually adjusted period was chosen to oscillate yeast cells under ~250 g glucose/l conditions, which resulted in 106.76 ± 0.7 g ethanol/l and 15.19 ± 1.3 g glucose/l remaining at the end of each cycle. Compared to the equivalent batch and continuous ethanol fermentation processes, the annual ethanol productivity of the reported fermentation operation is 2.4% and 13.2% greater, respectively in ~200 g feeding glucose/l conditions.  相似文献   

11.
In the hydrolysis of softwood, significant amounts of manno-oligosaccharides (MOS) are released from mannan, the major hemicelluloses in softwood. However, the impact of MOS on the performance of cellulases is not yet clear. In this work, the effect of mannan and MOS in cellulose hydrolysis by cellulases, especially cellobiohydrolase I (CBHI) from Thermoascus aurantiacus (Ta Cel7A), was studied. The glucose yield of Avicel decreased with an increasing amount of added mannan. Commercial cellulases contained mannan hydrolysing enzymes, and β-glucosidase played an important role in mannan hydrolysis. Addition of 10 mg/ml mannan reduced the glucose yield of Avicel (at 20 g/l) from 40.1 to 24.3%. No inhibition of β-glucosidase by mannan was observed. The negative effects of mannan and MOS on the hydrolytic action of cellulases indicated that the inhibitory effect was at least partly attributed to the inhibition of Ta Cel7A (CBHI), but not on β-glucosidase. Kinetic experiments showed that MOS were competitive inhibitors of the CBHI from T. aurantiacus, and mannobiose had a stronger inhibitory effect on CBHI than mannotriose or mannotetraose. For efficient hydrolysis of softwood, it was necessary to add supplementary enzymes to hydrolyze both mannan and MOS to less inhibitory product, mannose.  相似文献   

12.
A perfluoropolymer (PFP) membrane has been prepared for use in vapor permeation to separate aqueous ethanol mixtures produced from rice straw with xylose-assimilating recombinant Saccharomyces cerevisiae. PFP membranes commonly have been used for dehydration process and possess good selectivity and high permeances. The effects of by-products during dilute acid pretreatment, addition of yeast extract, and ethanol fermentation on PFP membrane performance were investigated. While feeding mixtures of ethanol (90 wt%) in water, to which individual by-products (0.1–2 g/L) were added, the PFP membrane demonstrated no clear change in permeation rate (439–507 g m−2 h−1) or separation factor (14.9–23.5) from 2 to 4 h of the process. The PFP membrane also showed no clear change in permeation rate (751–859 g m−2 h−1) or separation factor (12.5–13.8) while feeding the mixture (final ethanol conc.: 61 wt%) of ethanol and distillation of the fermentation broth using a suspended fraction of dilute acid-pretreated rice straw for 20 h. These results suggest that the PFP membrane can tolerate actual distillation liquids from ethanol fermentation broth obtained from lignocellulosic biomass pretreated with dilute acid.  相似文献   

13.
Enzyme hydrolysis of pretreated cellulosic materials slows as the concentration of solid biomass material increases, even though the ratio of enzyme to cellulose is kept constant. This form of inhibition is distinct from substrate and product inhibition, and has been noted for lignocellulosic materials including wood, corn stover, switch grass, and corn wet cake at solids concentrations greater than 10 g/L. Identification of enzyme inhibitors and moderation of their effects is of considerable practical importance since favorable ethanol production economics require that at least 200 g/L of cellulosic substrates be used to enable monosaccharide concentrations of 100 g/L, which result in ethanol titers of 50 g/L. Below about 45 g/L ethanol, distillation becomes energy inefficient. This work confirms that the phenols: vanillin, syringaldehyde, trans-cinnamic acid, and hydroxybenzoic acid, inhibit cellulose hydrolysis in wet cake by endo- and exo-cellulases, and cellobiose hydrolysis by β-glucosidase. A ratio of 4 mg of vanillin to 1 mg protein (0.5 FPU) reduces the rate of cellulose hydrolysis by 50%. β-Glucosidases from Trichoderma reesei and Aspergillus niger are less susceptible to inhibition and require about 10× and 100× higher concentrations of phenols for the same levels of inhibition. Phenols introduced with pretreated cellulose must be removed to maximize enzyme activity.  相似文献   

14.
The production of 1,3-propanediol, 2,3-butanediol and ethanol was studied, during cultivations of strain Klebsiella oxytoca FMCC-197 on biodiesel-derived glycerol based media. Different kinds of glycerol feedstocks and experimental conditions had an important impact upon the distribution of metabolic products; production of 1,3-propanediol was positively influenced by stable pH conditions and by the absence of N2 gas infusions throughout the fermentation. Thus, during batch bioreactor fermentations conducted at increasing glycerol concentrations, 1,3-propanediol at 41.3 g/L and yield ~47% (w/w) was achieved at initial glycerol concentration ~120 g/L. At even higher initial glycerol media (150 and 170 g/L), growth was not ceased, but 1,3-propanediol production declined. During fed-batch fermentation under optimal experimental conditions, 126 g/L of glycerol were converted into 50.1 g/L of 1,3-propanediol. In this experiment, also 25.2 g/L of ethanol (conversion yield ~20%, w/w) were formed. A batch-bioreactor culture was performed under non-sterilized conditions and the 1,3-propanediol production was almost equivalent to the sterilized process. Concerning 2,3-butanediol formation, the most detrimental parameter was the absence of N2 sparging and as a result, no 2,3-butanediol was produced. The presence of glucose as co-substrate seriously enhanced 2,3-butanediol production; when commercial glucose was employed as sole substrate, 32.1 g/L of 2,3-butanediol were formed.  相似文献   

15.
Conversion of xylose to ethanol by yeasts is a challenge because of the redox imbalances under oxygen-limited conditions. The thermotolerant yeast Kluyveromyces marxianus grows well with xylose as a carbon source at elevated temperatures, but its xylose fermentation ability is weak. In this study, a combination of the NADPH-preferring xylose reductase (XR) from Neurospora crassa and the NADP+-preferring xylitol dehydrogenase (XDH) mutant from Scheffersomyces stipitis (Pichia stipitis) was constructed. The xylose fermentation ability and redox balance of the recombinant strains were improved significantly by over-expression of several downstream genes. The intracellular concentrations of coenzymes and the reduced coenzyme/oxidized coenzyme ratio increased significantly in these metabolic strains. The byproducts, such as glycerol and acetic acid, were significantly reduced by the disruption of glycerol-3-phosphate dehydrogenase (GPD1). The resulting engineered K. marxianus YZJ088 strain produced 44.95 g/L ethanol from 118.39 g/L xylose with a productivity of 2.49 g/L/h at 42 °C. Additionally, YZJ088 realized glucose and xylose co-fermentation and produced 51.43 g/L ethanol from a mixture of 103.97 g/L xylose and 40.96 g/L glucose with a productivity of 2.14 g/L/h at 42 °C. These promising results validate the YZJ088 strain as an excellent producer of ethanol from xylose through the synthetic xylose assimilation pathway.  相似文献   

16.
The feasibility of bioethanol production using the lignocellulose of the shedding bark of Melaleuca leucadendron (Paper bark tree) was investigated. The effects of pretreatment parameters (temperature, time and acid concentration) on the yields of sugars and inhibitors, and optimal pretreatment conditions were determined. At very low severity conditions (combined severity factor, CSF  0.335), 28% of xylan was recovered and this recovery increased with increasing CSF till it peaked to 64.4% (11.2 g xylose L−1) at a CSF of 1.475. However, at CSF > 2.0, xylose yield declined due to degradation. Mild and progressive glucose yield was detected in prehydrolysate at CSF  1.514, and subsequent enzymatic hydrolysis allowed complete glucan solubilization. Implementing environmentally friendly subcritical water pretreatment at CSF  0.335 on the shedding bark, about 85% of glucan solubilization was achieved after enzymatic hydrolysis. An industrial Saccharomyces cerevisiae strain readily fermented crude hydrolysate within 12 h, yielding 24.7 g L−1 ethanol at an inoculum size of 2% (v/v), representing a glucose to ethanol conversion rate of 0.475 g g−1 (91% ethanol yield). Based on our findings, the shedding bark is a potential feedstock for bio-ethanol production.  相似文献   

17.
《Process Biochemistry》2014,49(12):2203-2206
When the solvent extraction of the hydrolysate from barley straw was performed using ethyl acetate (EA), the logarithm of the partition coefficient (log P) of the phenols and furans for EA was found to be more than 1.00, which means that more than 90% of the inhibitors were removed from the hydrolysate layer. Cephalosporin C (CPC) was produced from the hydrolysate of dilute acid pretreatment (DAP) by Acremonium chrysogenum M35. A. chrysogenum M35 was cultured using the hydrolysate and the amount of CPC produced was found to be 10.35 g/L at 144 h. Also, the dry cell weight was about 101.5 g/L at 120 h. The utilization of the hydrolysate for CPC production was effective and the solvent extraction method for the removal of inhibitory substances could contribute to the biorefinery process.  相似文献   

18.
To alleviate the problems of low substrate loading, nonisothermal, end-product inhibition of ethanol during the simultaneous saccharification and fermentation, a nonisothermal simultaneous solid state saccharification, fermentation, and separation (NSSSFS) process was investigated; one novel pilot scale nonisothermal simultaneous solid state enzymatic saccharification and fermentation coupled with CO2 gas stripping loop system was invented and tested. The optimal pretreatment condition of steam-explosion was 1.5 MPa for 5 min in industrial level. In the NSSSFS, enzymatic saccharification and fermentation proceeded at around 50 °C and 37 °C, respectively, and were coupled together by the hydrolyzate loop; glucose from enzymatic saccharification was timely consumed by yeast, and the formed ethanol was separated online by CO2 gas stripping coupled with adsorption of activated carbon; the solids substrate loading reached 25%; ethanol yields from 18.96% to 30.29% were obtained in fermentation depending on the materials tested. Based on the pilot level of 300 L fermenter, a novel industrial-level of 110 m3 solid state enzymatic saccharification, fermentation and ethanol separation plant had been successfully established and operated. The NSSSFS was a novel and feasible engineering solution to the inherent problems of simultaneous saccharification and fermentation, which would be used in large scale and in industrial production of ethanol.  相似文献   

19.
Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus was carried out for high yield of acetic acid. Acetic acid production process was divided into three stages. The first stage was the growth of S. cerevisiae and ethanol production, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. The second stage was the co-culture of S. cerevisiae and A. pasteurianus, fermentation temperature and aeration rate were maintained at 34 °C and 0.4 vvm, respectively. The third stage was the growth of A. pasteurianus and production of acetic acid, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. Inoculation volume of A. pasteurianus and S. cerevisiae was 16% and 0.06%, respectively. The average acetic acid concentration was 52.51 g/L under these optimum conditions. To enhance acetic acid production, a glucose feeding strategy was subsequently employed. When initial glucose concentration was 90 g/L and 120 g/L glucose was fed twice during fermentation, acetic acid concentration reached 66.0 g/L.  相似文献   

20.
Saccharum spontaneum is a wasteland weed consists of 45.10 ± 0.35% cellulose and 22.75 ± 0.28% of hemicellulose on dry solid (DS) basis. Aqueous ammonia delignified S. spontaneum yielded total reducing sugars, 53.91 ± 0.44 g/L (539.10 ± 0.55 mg/g of substrate) with a hydrolytic efficiency of 77.85 ± 0.45%. The enzymes required for hydrolysis were prepared from culture supernatants of Aspergillus oryzae MTCC 1846. A maximum of 0.85 ± 0.07 IU/mL of filter paperase (FPase), 1.25 ± 0.04 IU/mL of carboxy methyl cellulase (CMCase) and 55.56 ± 0.52 IU/mL of xylanase activity was obtained after 7 days of incubation at 28 ± 0.5 °C using delignified S. spontaneum as carbon source under submerged fermentation conditions. Enzymatic hydrolysate of S. spontaneum was then tested for ethanol production under batch and repeated batch production system using “in-situ” entrapped Saccharomyces cerevisiae VS3 cells in S. spontaneum stalks (1 cm × 1 cm) size. Immobilization was confirmed by the scanning electron microscopy (SEM). Batch fermentation of VS3 free cells and immobilized cells showed ethanol production, 19.45 ± 0.55 g/L (yield, 0.410 ± 0.010 g/g) and 21.66 ± 0.62 g/L (yield, 0.434 ± 0.021 g/g), respectively. Immobilized VS3 cells showed maximum ethanol production (22.85 ± 0.44 g/L, yield, 0.45 ± 0.04 g/g) up to 8th cycle during repeated batch fermentation followed by a gradual reduction in subsequent cycles of fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号