首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neuritogenesis is essential in establishing the neuronal circuitry. An important intracellular signal causing neuritogenesis is cAMP. In this report, we showed that an increase in intracellular cAMP stimulated neuritogenesis in neuroblastoma N2A cells via a PKA‐dependent pathway. Two voltage‐gated K+ (Kv) channel blockers, 4‐aminopyridine (4‐AP) and tetraethylammonium (TEA), inhibited cAMP‐stimulated neuritogenesis in N2A cells in a concentration‐dependent manner that remarkably matched their ability to inhibit Kv currents in these cells. Consistently, siRNA knock down of Kv1.1, Kv1.4, and Kv2.1 expression reduced Kv currents and inhibited cAMP‐stimulated neuritogenesis. Kv1.1, Kv1.4, and Kv2.1 channels were expressed in the cell bodies and neurites as shown by immunohistochemistry. Microfluorimetric imaging of intracellular [K+] demonstrated that [K+] in neurites was lower than that in the cell body. We also showed that cAMP‐stimulated neuritogenesis may not involve voltage‐gated Ca2+ or Na+ channels. Taken together, the results suggest a role of Kv channels and enhanced K+ efflux in cAMP/PKA‐stimulated neuritogenesis in N2A cells. J. Cell. Physiol. 226: 1090–1098, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Excessive K+ efflux promotes central neuronal apoptosis; however, the type of potassium channel that mediates K+ efflux in response to different apoptosis-inducing stimuli is still unknown. It is hypothesized that the activation of large-conductance Ca2+-activated K+ channels (BKCa) mediates hypoxia/reoxygenation (H/R)- and ischemia/reperfusion (I/R)-induced neuronal apoptosis. Rat hippocampal neuronal cultures underwent apoptosis after reoxygenation, as assessed by morphologic observation, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and caspase-3 activation. Single-channel recordings revealed upregulation of BKCa channel activity 6 h after reoxygenation, which might be caused by elevated cytosolic Ca2+. The K+ ionophore valinomycin and the BKCa channel opener NS1619 induced neuronal apoptosis. Transfection of the BKCa channel α subunit into Chinese hamster ovary (CHO-K1) cells, which do not express endogenous K+ channels, or into neurons will induce cell apoptosis, indicating that the opening of the BKCa channel serves as a pivotal event in mediating cell apoptosis. The specific BKCa channel blockers charybdotoxin and iberiotoxin and the nonselective K+ channel blocker tetraethylammonium at concentrations more specific to the BKCa channel were neuroprotective. The A-type potassium channel blocker 4-aminopyridine and apamin, a small-conductance Ca2+-activated K+ channel blocker, were not protective. This result suggests the involvement of the BKCa channel in H/R-induced apoptosis. Similarly, specific BKCa channel blockers also showed neuroprotection in neurons subjected to oxygen-glucose deprivation/reoxygenation or animals subjected to forebrain ischemia–reperfusion. These results demonstrate that the over-activity of BKCa channels mediates hippocampal neuronal damage induced by H/R in vitro and I/R in vivo.  相似文献   

3.
Voltage-gated potassium (Kv) channels exist in the membranes of all living cells. Of the functional classes of Kv channels, the Kv1 channels are the largest and the best studies and are known to play essential roles in excitable cell function, providing an essential counterpoin to the various inward currents that trigger excitability. The serum potassium concentration [K o + ] is tightly regulated in mammals and disturbances can cause significant functional alterations in the electrical behavior of excitable tissues in the nervous system and the heart. At least some of these changes may be mediated by Kv channels that are regulated by changes in the extracellular K+ concentration. As well as changes in serum [K o + ], tissue acification is a frequent pathological condition known to inhibit Shaker and Kv1 voltage-gated potassium channels. In recent studies, it has become recognized that the acidification-induced inhibition of some Kv1 channels is K o + -dependent, and the suggestion has been made that pH and K o + may regulate the channels via a common mechanism. Here we discuss P/C type inactivation as the common pathway by which some Kv channels become unavailable at acid pH and lowered K o + . It is suggested that binding of protons to a regulatory site in the outer pore mouth of some Kv channels favors transitions to the inactivated state, whereas K+ ions exert countereffects. We suggest that modulation of the number of excitable voltage-gated K+ channels in the open vs inactivated states of the channels by physiological H+ and K+ concentrations represents an important pathway to control Kv channel function in health and disease.  相似文献   

4.
钾通道在培养大鼠海马神经元凋亡性容积减少中的作用   总被引:1,自引:0,他引:1  
为探讨钾通道参与神经元凋亡的可能机制,在星形孢菌素(STS)诱导的培养海马神经元凋亡模型上,研究了凋亡时神经细胞容积的动态变化及钾通道在其中的作用.实验结果显示,钾通道阻断剂四乙铵或升高细胞外K+均能够明显抑制STS诱导的神经元凋亡,并且大电导钙激活钾通道(BK)选择性阻断剂iberiotoxin和paxilline具有同样程度的抗细胞凋亡作用,表明钾通道(可能主要是BK通道)参与了STS诱导的培养海马神经元凋亡.在STS诱导神经元凋亡的早期就出现了细胞容积的显著减少,而钾通道阻断剂或升高细胞外K+均可阻断该细胞容积减少.研究结果提示细胞内钾离子的外流可能参与了凋亡性细胞容积减少,这也可能是钾通道介导细胞凋亡的重要机制之一.  相似文献   

5.
Several potassium (K+) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K+ channels allow sodium reabsorption in the proximal tubule (PT), K+ recycling and K+ reabsorption in the thick ascending limb (TAL) and K+ secretion and K+ reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K+ to function as a secretory K+ channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K+ channels. Our results expand the repertoire of K+ channels that contribute to K+ homeostasis to include the Kv1 family.  相似文献   

6.
Peptide toxins found in a wide array of venoms block K+ channels, causing profound physiological and pathological effects. Here we describe the first functional K+ channel-blocking toxin domain in a mammalian protein. MMP23 (matrix metalloprotease 23) contains a domain (MMP23TxD) that is evolutionarily related to peptide toxins from sea anemones. MMP23TxD shows close structural similarity to the sea anemone toxins BgK and ShK. Moreover, this domain blocks K+ channels in the nanomolar to low micromolar range (Kv1.6 > Kv1.3 > Kv1.1 = Kv3.2 > Kv1.4, in decreasing order of potency) while sparing other K+ channels (Kv1.2, Kv1.5, Kv1.7, and KCa3.1). Full-length MMP23 suppresses K+ channels by co-localizing with and trapping MMP23TxD-sensitive channels in the ER. Our results provide clues to the structure and function of the vast family of proteins that contain domains related to sea anemone toxins. Evolutionary pressure to maintain a channel-modulatory function may contribute to the conservation of this domain throughout the plant and animal kingdoms.  相似文献   

7.
Cell shrinkageis an early prerequisite in programmed cell death, and cytoplasmicK+ is a dominant cation that controls intracellular ionhomeostasis and cell volume. Blockade of K+ channelsinhibits apoptotic cell shrinkage and attenuates apoptosis. We examined whether apoptotic repressor with caspase recruitment domain (ARC), an antiapoptotic protein, inhibits cardiomyocyte apoptosis by reducing K+ efflux throughvoltage-gated K+ (Kv) channels. In heart-derived H9c2cells, whole cell Kv currents (IK(V)) wereisolated by using Ca2+-free extracellular (bath) solutionand including 5 mM ATP and 10 mM EGTA in the intracellular (pipette)solution. Extracellular application of 5 mM 4-aminopyridine (4-AP), ablocker of Kv channels, reversibly reduced IK(V)by 50-60% in H9c2 cells. The remaining currents during 4-APtreatment may be generated by K+ efflux through4-AP-insensitive K+ channels. Overexpression of ARC inheart-derived H9c2 cells significantly decreasedIK(V), whereas treatment with staurosporine, apotent apoptosis inducer, enhanced IK(V)in wild-type cells. The staurosporine-induced increase inIK(V) was significantly suppressed and thestaurosporine-mediated apoptosis was markedly inhibited incells overexpressing ARC compared with cells transfected with thecontrol neomycin vector. These results suggest that theantiapoptotic effect of ARC is, in part, due to inhibition of Kvchannels in cardiomyocytes.

  相似文献   

8.
Overexpression of human KCNA5 increases IK V and enhances apoptosis   总被引:1,自引:0,他引:1  
Apoptotic cell shrinkage, an early hallmark of apoptosis, is regulated by K+ efflux and K+ channel activity. Inhibited apoptosis and downregulated K+ channels in pulmonary artery smooth muscle cells (PASMC) have been implicated in development of pulmonary vascular medial hypertrophy and pulmonary hypertension. The objective of this study was to test the hypothesis that overexpression of KCNA5, which encodes a delayed-rectifier voltage-gated K+ (Kv) channel, increases K+ currents and enhances apoptosis. Transient transfection of KCNA5 caused 25- to 34-fold increase in KCNA5 channel protein level and 24- to 29-fold increase in Kv channel current (IK(V)) at +60 mV in COS-7 and rat PASMC, respectively. In KCNA5-transfected COS-7 cells, staurosporine (ST)-mediated increases in caspase-3 activity and the percentage of cells undergoing apoptosis were both enhanced, whereas basal apoptosis (without ST stimulation) was unchanged compared with cells transfected with an empty vector. In rat PASMC, however, transfection of KCNA5 alone caused marked increase in basal apoptosis, in addition to enhancing ST-mediated apoptosis. Furthermore, ST-induced apoptotic cell shrinkage was significantly accelerated in COS-7 cells and rat PASMC transfected with KCNA5, and blockade of KCNA5 channels with 4-aminopyridine (4-AP) reduced K+ currents through KCNA5 channels and inhibited ST-induced apoptosis in KCNA5-transfected COS-7 cells. Overexpression of the human KCNA5 gene increases K+ currents (i.e., K+ efflux or loss), accelerates apoptotic volume decrease (AVD), increases caspase-3 activity, and induces apoptosis. Induction of apoptosis in PASMC by KCNA5 gene transfer may serve as an important strategy for preventing the progression of pulmonary vascular wall thickening and for treating patients with idiopathic pulmonary arterial hypertension (IPAH). potassium ion channel; pulmonary hypertension  相似文献   

9.
The Kv1.3 protein is a member of the large family of voltage‐dependent K+ subunits (Kv channels), which assemble to form tetrameric membrane‐spanning channels that provide a selective pore for the conductance of K+ across the cell membrane. Kv1.3 differs from most other Kv channels in that deletion of Kv1.3 gene produces very striking changes in development and structure of the olfactory bulb, where Kv1.3 is expressed at high levels, resulting in a lower threshold for detection of odors, an increased number of synaptic glomeruli and alterations in the levels of a variety of neuronal signaling molecules. Because Kv1.3 is also expressed in the cerebral cortex, we have now examined the effects of deletion of the Kv1.3 gene on the expression of interneuron populations of the cerebral cortex. Using unbiased stereology we found an increase in the number of parvalbumin (PV) cells in whole cerebral cortex of Kv1.3?/? mice relative to that in wild‐type mice, and a decrease in the number of calbindin (CB), calretinin (CR), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and somatostatin (SOM) interneurons. These changes are accompanied by a decrease in the cortical volume such that the cell density of PV interneurons is significantly increased and that of SOM neurons is decreased in Kv1.3?/? animals. Our studies suggest that, as in the olfactory bulb, Kv1.3 plays a unique role in neuronal differentiation and/or survival of interneuron populations and that expression of Kv1.3 is required for normal cortical function. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73:841–855, 2013  相似文献   

10.
Potassium (K+) channels serve a wide range of functions in plants from mineral nutrition and osmotic balance to turgor generation for cell expansion and guard cell aperture control. Plant K+ channels are members of the superfamily of voltage-dependent K+ channels, or Kv channels, that include the Shaker channels first identified in fruit flies (Drosophila melanogaster). Kv channels have been studied in depth over the past half century and are the best-known of the voltage-dependent channels in plants. Like the Kv channels of animals, the plant Kv channels are regulated over timescales of milliseconds by conformational mechanisms that are commonly referred to as gating. Many aspects of gating are now well established, but these channels still hold some secrets, especially when it comes to the control of gating. How this control is achieved is especially important, as it holds substantial prospects for solutions to plant breeding with improved growth and water use efficiencies. Resolution of the structure for the KAT1 K+ channel, the first channel from plants to be crystallized, shows that many previous assumptions about how the channels function need now to be revisited. Here, I strip the plant Kv channels bare to understand how they work, how they are gated by voltage and, in some cases, by K+ itself, and how the gating of these channels can be regulated by the binding with other protein partners. Each of these features of plant Kv channels has important implications for plant physiology.  相似文献   

11.
Electrocytes from the electric organ of Electrophorus electricus exhibited sodium action potentials that have been proposed to be repolarized by leak currents and not by outward voltage-gated potassium currents. However, patch-clamp recordings have suggested that electrocytes may contain a very low density of voltage-gated K+ channels. We report here the cloning of a K+ channel from an eel electric organ cDNA library, which, when expressed in mammalian tissue culture cells, displayed delayed-rectifier K+ channel characteristics. The amino-acid sequence of the eel K+ channel had the highest identity to Kv1.1 potassium channels. However, different important functional regions of eel Kv1.1 had higher amino-acid identity to other Kv1 members, for example, the eel Kv1.1 S4-S5 region was identical to Kv1.5 and Kv1.6. Northern blot analysis indicated that eel Kv1.1 mRNA was expressed at appreciable levels in the electric organ but it was not detected in eel brain, muscle, or cardiac tissue. Because electrocytes do not express robust outward voltage-gated potassium currents we speculate that eel Kv1.1 channels are chronically inhibited in the electric organ and may be functionally recruited by an unknown mechanism.  相似文献   

12.
Ion Channels in Cell Proliferation and Apoptotic Cell Death   总被引:14,自引:0,他引:14  
Cell proliferation and apoptosis are paralleled by altered regulation of ion channels that play an active part in the signaling of those fundamental cellular mechanisms. Cell proliferation must - at some time point - increase cell volume and apoptosis is typically paralleled by cell shrinkage. Cell volume changes require the participation of ion transport across the cell membrane, including appropriate activity of Cl and K+ channels. Besides regulating cytosolic Cl activity, osmolyte flux and, thus, cell volume, most Cl channels allow HCO3 exit and cytosolic acidification, which inhibits cell proliferation and favors apoptosis. K+ exit through K+ channels may decrease intracellular K+ concentration, which in turn favors apoptotic cell death. K+ channel activity further maintains the cell membrane potential, a critical determinant of Ca2+ entry through Ca2+ channels. Cytosolic Ca2+ may trigger mechanisms required for cell proliferation and stimulate enzymes executing apoptosis. The switch between cell proliferation and apoptosis apparently depends on the magnitude and temporal organization of Ca2+ entry and on the functional state of the cell. Due to complex interaction with other signaling pathways, a given ion channel may play a dual role in both cell proliferation and apoptosis. Thus, specific ion channel blockers may abrogate both fundamental cellular mechanisms, depending on cell type, regulatory environment and condition of the cell. Clearly, considerable further experimental effort is required to fully understand the complex interplay between ion channels, cell proliferation and apoptosis.  相似文献   

13.
The Ether-a-go-go (EAG) superfamily of voltage-gated K+ channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K+ currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K+ channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance–voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn2+. Low pH similarly reduces Mg2+ sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca2+. Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K+ currents observed in vivo.  相似文献   

14.
Crystal structures of potassium (K+) channels reveal that the selectivity filter, the narrow portion of the pore, is only ∼3-Å wide and buttressed from behind, so that its ability to expand is highly constrained, and the permeation of molecules larger than Rb+ (2.96 Å in diameter) is prevented. N-methyl-d-glucamine (NMDG+), an organic monovalent cation, is thought to be a blocker of Kv channels, as it is much larger (∼7.3 Å in mean diameter) than K+ (2.66 Å in diameter). However, in the absence of K+, significant NMDG+ currents could be recorded from human embryonic kidney cells expressing Kv3.1 or Kv3.2b channels and Kv1.5 R487Y/V, but not wild-type channels. Inward currents were much larger than outward currents due to the presence of intracellular Mg2+ (1 mM), which blocked the outward NMDG+ current, resulting in a strong inward rectification. The NMDG+ current was inhibited by extracellular 4-aminopyridine (5 mM) or tetraethylammonium (10 mM), and largely eliminated in Kv3.2b by an S6 mutation that prevents the channel from opening (P468W) and by a pore helix mutation in Kv1.5 R487Y (W472F) that inactivates the channel at rest. These data indicate that NMDG+ passes through the open ion-conducting pore and suggest a very flexible nature of the selectivity filter itself. 0.3 or 1 mM K+ added to the external NMDG+ solution positively shifted the reversal potential by ∼16 or 31 mV, respectively, giving a permeability ratio for K+ over NMDG+ (PK+/PNMDG+) of ∼240. Reversal potential shifts in mixtures of K+ and NMDG+ are in accordance with PK+/PNMDG+, indicating that the ions compete for permeation and suggesting that NMDG+ passes through the open state. Comparison of the outer pore regions of Kv3 and Kv1.5 channels identified an Arg residue in Kv1.5 that is replaced by a Tyr in Kv3 channels. Substituting R with Y or V allowed Kv1.5 channels to conduct NMDG+, suggesting a regulation by this outer pore residue of Kv channel flexibility and, as a result, permeability.  相似文献   

15.
The localization of Shaker-type K+ channels in specialized domains of myelinated central nervous system axons was studied during development of the optic nerve. In adult rats Kv1.1, Kv1.2, Kv1.6, and the cytoplasmic β-subunit Kvβ2 were colocalized in juxtaparanodal zones. During development, clustering of K+ channels lagged behind that for nodal Na+ channels by about 5 days. In contrast to the PNS, K+ channels were initially expressed fully segregated from nodes and paranodes, the latter identified by immunofluorescence of Caspr, a component of axoglial junctions. Clusters of K+ channels were first detected at postnatal day 14 (P14) at a limited number of sites. Expression increased until all juxtaparanodes had immunoreactivity by P40. Developmental studies in hypomyelinating Shiverer mice revealed dramatically disrupted axoglial junctions, aberrant Na+ channel clusters, and little or no detectable clustering of K+ channels at all ages. These results suggest that in the optic nerve, compact myelin and normal axoglial junctions are essential for proper K+ channel clustering and localization.  相似文献   

16.
To investigate the involvement of K+ efflux in apoptotic cell shrinkage, we monitored efflux of the K+ congener,86 Rb+, and cell volume during CD95-mediated apoptosis in Jurkat cells. An anti-CD95 antibody caused apoptosis associated with intracellular GSH depletion, a significant increase in 86Rb+ efflux, and a decrease in cell volume compared with control cells. Preincubating Jurkat cells with Val-Ala-Asp-chloromethylketone (VAD-cmk), an inhibitor of caspase proteases, prevented the observed 86Rb+ efflux and cell shrinkage induced by the anti- CD95 antibody. A wide range of inhibitors against most types of K+ channels could not inhibit CD95-mediated efflux of86 Rb+, however, the uptake of86 Rb+ by Jurkat cells was severely compromised when treated with anti-CD95 antibody. Uptake of86 Rb+ in Jurkat cells was sensitive to ouabain (a specific Na+/K+-ATPase inhibitor), demonstrating Na+/K+-ATPase dependent K+ uptake. Ouabain induced significant86 Rb+ efflux in untreated cells, as well as it seemed to compete with86 Rb+ efflux induced by the anti-CD95 antibody, supporting a role for Na+/K+-ATPase in the CD95-mediated86 Rb+ efflux. Ouabain treatment of Jurkat cells did not cause a reduction in cell volume, although together with the anti-CD95 antibody, ouabain potentiated CD95-mediated cell shrinkage. This suggests that the observed inhibition of Na++/K+-ATPase during apoptosis may also facilitate apoptotic cell shrinkage.  相似文献   

17.
Kv4 potassium channels undergo rapid inactivation but do not seem to exhibit the classical N-type and C-type mechanisms present in other Kv channels. We have previously hypothesized that Kv4 channels preferentially inactivate from the preopen closed state, which involves regions of the channel that contribute to the internal vestibule of the pore. To further test this hypothesis, we have examined the effects of permeant ions on gating of three Kv4 channels (Kv4.1, Kv4.2, and Kv4.3) expressed in Xenopus oocytes. Rb+ is an excellent tool for this purpose because its prolonged residency time in the pore delays K+ channel closing. The data showed that, only when Rb+ carried the current, both channel closing and the development of macroscopic inactivation are slowed (1.5- to 4-fold, relative to the K+ current). Furthermore, macroscopic Rb+ currents were larger than K+ currents (1.2- to 3-fold) as the result of a more stable open state, which increases the maximum open probability. These results demonstrate that pore occupancy can influence inactivation gating in a manner that depends on how channel closing impacts inactivation from the preopen closed state. By examining possible changes in ionic selectivity and the influence of elevating the external K+ concentration, additional experiments did not support the presence of C-type inactivation in Kv4 channels.  相似文献   

18.
Extracellular acidification and reduction of extracellular K+ are known to decrease the currents of some voltage-gated potassium channels. Although the macroscopic conductance of WT hKv1.5 channels is not very sensitive to [K+]o at pH 7.4, it is very sensitive to [K+]o at pH 6.4, and in the mutant, H463G, the removal of K+ o virtually eliminates the current at pH 7.4. We investigated the mechanism of current regulation by K+ o in the Kv1.5 H463G mutant channel at pH 7.4 and the wild-type channel at pH 6.4 by taking advantage of Na+ permeation through inactivated channels. Although the H463G currents were abolished in zero [K+]o, robust Na+ tail currents through inactivated channels were observed. The appearnnce of H463G Na+ currents with a slow rising phase on repolarization after a very brief depolarization (2 ms) suggests that channels could activate directly from closed-inactivated states. In wild-type channels, when intracellular K+ was replaced by NMG+ and the inward Na+ current was recorded, addition of 1 mM K+ prevented inactivation, but changing pH from 7.4 to 6.4 reversed this action. The data support the idea that C-type inactivation mediated at R487 in Kv1.5 channels is influenced by H463 in the outer pore. We conclude that both acidification and reduction of [K+]o inhibit Kv1.5 channels through a common mechananism (i.e., by increasing channel inactivation, which occurs in the resting state or develops very rapidly after activation).  相似文献   

19.
Recent studies have shown that the pyruvate-isocitrate cycling pathway, involving the mitochondrial citrate/isocitrate carrier and the cytosolic NADP-dependent isocitrate dehydrogenase (ICDc), is involved in control of glucose-stimulated insulin secretion (GSIS). Here we demonstrate that pyruvate-isocitrate cycling regulates expression of the voltage-gated potassium channel family member Kv2.2 in islet β-cells. siRNA-mediated suppression of ICDc, citrate/isocitrate carrier, or Kv2.2 expression impaired GSIS, and the effect of ICDc knockdown was rescued by re-expression of Kv2.2. Moreover, chronic exposure of β-cells to elevated fatty acids, which impairs GSIS, resulted in decreased expression of Kv2.2. Surprisingly, knockdown of ICDc or Kv2.2 increased rather than decreased outward K+ current in the 832/13 β-cell line. Immunoprecipitation studies demonstrated interaction of Kv2.1 and Kv2.2, and co-overexpression of the two channels reduced outward K+ current compared with overexpression of Kv2.1 alone. Also, siRNA-mediated knockdown of ICDc enhanced the suppressive effect of the Kv2.1-selective inhibitor stromatoxin1 on K+ currents. Our data support a model in which a key function of the pyruvate-isocitrate cycle is to maintain levels of Kv2.2 expression sufficient to allow it to serve as a negative regulator of Kv channel activity.  相似文献   

20.
Modulation by Clamping: Kv4 and KChIP Interactions   总被引:1,自引:0,他引:1  
Wang K 《Neurochemical research》2008,33(10):1964-1969
The rapidly inactivating (A-type) potassium channels regulate membrane excitability that defines the fundamental mechanism of neuronal functions such as pain signaling. Cytosolic Kv channel-interacting proteins KChIPs that belong to neuronal calcium sensor (NCS) family of calcium binding EF-hand proteins co-assemble with Kv4 (Shal) α subunits to form a native complex that encodes major components of neuronal somatodendritic A-type K+ current, ISA, in neurons and transient outward current, ITO, in cardiac myocytes. The specific binding of auxiliary KChIPs to the Kv4 N-terminus results in modulation of gating properties, surface expression and subunit assembly of Kv4 channels. Here, I attempt to emphasize the interaction between KChIPs and Kv4 based on recent progress made in understanding the structure complex in which a single KChIP1 molecule laterally clamps two neighboring Kv4.3 N-termini in a 4:4 manner. Greater insights into molecular mechanism between KChIPs and Kv4 interaction may provide therapeutic potentials of designing compounds aimed at disrupting the protein–protein interaction for treatment of membrane excitability-related disorders. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号