共查询到20条相似文献,搜索用时 0 毫秒
1.
Schulte-Uentrop L El-Awady RA Schliecker L Willers H Dahm-Daphi J 《Nucleic acids research》2008,36(8):2561-2569
Non-homologous end-joining (NHEJ) of DNA double-strand breaks (DSBs) is mediated by two protein complexes comprising Ku80/Ku70/DNA-PKcs/Artemis and XRCC4/LigaseIV/XLF. Loss of Ku or XRCC4/LigaseIV function compromises the rejoining of radiation-induced DSBs and leads to defective V(D)J recombination. In this study, we sought to define how XRCC4 and Ku80 affect NHEJ of site-directed chromosomal DSBs in murine fibroblasts. We employed a recently developed reporter system based on the rejoining of I-SceI endonuclease-induced DSBs. We found that the frequency of NHEJ was reduced by more than 20-fold in XRCC4−/− compared to XRCC4+/+ cells, while a Ku80 knock-out reduced the rejoining efficiency by only 1.4-fold. In contrast, lack of either XRCC4 or Ku80 increased end degradation and shifted repair towards a mode that used longer terminal microhomologies for rejoining. However, both proteins proved to be essential for the repair of radiation-induced DSBs. The remarkably different phenotype of XRCC4- and Ku80-deficient cells with regard to the repair of enzyme-induced DSBs mirrors the embryonic lethality of XRCC4 knock-out mice as opposed to the viability of the Ku80 knock-out. Thus, I-SceI-induced breaks may resemble DSBs arising during normal DNA metabolism and mouse development. The removal of these breaks likely has different genetic requirements than the repair of radiation-induced DSBs. 相似文献
2.
Casado JA Núñez MI Segovia JC Ruiz de Almodóvar JM Bueren JA 《Radiation research》2005,164(5):635-641
Fanconi anemia is a genetically heterogeneous recessive disease characterized mainly by bone marrow failure and cancer predisposition. Although it is accepted that Fanconi cells are highly sensitive to DNA crosslinking agents, their response to ionizing radiation is still unclear. Using pulsed-field gel electrophoresis, we have observed that radiation generates a similar number of DNA double-strand breaks in normal and Fanconi cells from three (FA-A, FA-C and FA-F) of the 11 complementation groups identified. Nonsynchronized as well as nonproliferating Fanconi anemia cells showed an evident defect in rejoining the double-strand breaks generated by ionizing radiation, indicating defective non-homologous end-joining repair. At the cellular level, no difference in the radiosensitivity of normal and FA-A lymphoblast cells was noted, and a modest increase in the radiosensitivity of Fanca-/- hematopoietic progenitor cells was observed compared to Fanca+/+ cells. Finally, when animals were exposed to a fractionated total-body irradiation of 5 Gy, a similar hematopoietic syndrome was observed in wild-type and Fanca-/- mice. Taken together, our observations suggest that Fanconi cells, in particular those having nonfunctional Fanconi proteins upstream of FANCD2, have a defect in the non-homologous end-joining repair of double-strand breaks produced by ionizing radiation, and that compensatory mechanisms of DNA repair and/or stem cell regeneration should limit the impact of this defect in irradiated organisms. 相似文献
3.
Morgan WF 《Radiation research》2003,159(5):567-580
A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open. 相似文献
4.
Suzuki K Yamaji H Kobashigawa S Kawauchi R Shima K Kodama S Watanabe M 《Radiation research》2011,175(4):416-423
We examined mechanisms involved in delayed mutagenesis in CHO-LacZeo cells harboring the fusion gene between the bacterial LacZ and the Zeocin-resistance genes. After X irradiation, Zeocin-resistant primary colonies were isolated, and the primary clones were subjected to the secondary colony formation in the absence of Zeocin. We found that the surviving primary clones showed a significantly higher delayed mutation frequency compared with those derived from nonirradiated CHO-LacZeo cells. The mutation spectrum of the LacZ gene was analyzed by the LacZ gene-specific PCR. We found that more than 90% of the spontaneous and direct mutants were PCR-product negative, indicating that deletion of the LacZ gene was a predominant change in these mutants. While deletion of the LacZ gene was also observed in delayed mutants, we found that more than 20% of delayed mutants had a PCR product similar to that of the parental CHO-LacZeo cells. These PCR product-positive mutants spontaneously reverted to LacZ-positive (LacZ(+)) cells, and all of these mutants became LacZ-positive after 5-azacytidine treatment. These results indicate that epigenetic gene silencing, in addition to elevated recombination, is involved in delayed mutagenesis, which is a novel mechanism underlying delayed manifestations of radiation-induced genomic instability. 相似文献
5.
Wael Y. Mansour K. Borgmann C. Petersen Ekkehard Dikomey Jochen Dahm-Daphi 《DNA Repair》2013,12(12):1134-1142
Classical-non-homologous end-joining (C-NHEJ) is considered the main pathway for repairing DNA double strand breaks (DSB) in mammalian cells. When C-NHEJ is defective, cells may switch DSB repair to an alternative-end-joining, which depends on PARP1 and is more erroneous. This PARP1-EJ is suggested to be active especially in tumor cells contributing to their genomic instability. Here, we define conditions under which cells would switch the repair to PARP1-EJ. Using the end jining repair substrate pEJ, we revealed that PARP1-EJ is solely used when Ku is deficient but not when either DNA-PKcs or Xrcc4 is lacking. In the latter case, DSB repair, however, could be shuttled to PARP1-EJ after additional Ku80 down-regulation, which partly rescued the DSB repair in these mutants. We demonstrate here that PARP-EJ may work on DSB ends at high fidelity manner, as evident from the unchanged efficiency upon blocking end resection by either roscovitin or mirin. Furthermore, we demonstrate for that PARP-EJ is likewise involved in the repair of multiple DSBs (I-PpoI- and IR-induced). Importantly, we identified a chromatin signature associated with the switch to PARP1-EJ which is characterized by a strong enrichment of both PARP1 and LigIII at damaged chromatin. Together, these data indicate that Ku is the main regulator for the hierarchal organization between C-NHEJ and PARP1-EJ. 相似文献
6.
Aneuploidy is among the most serious impairments of hereditary material in somatic and germline cells of living organisms. Chromosome loss or the appearance of an extra homolog in the chromosome set can result in either cell death or the development of various neoplasms with high probability of malignancy. It was traditionally believed that ionizing radiation produces primarily a clastogenic effect. However, there is apparently an aneugenic component of radiation, with mechanism different from that of structural chromosome damage. The present review focuses on the evidence for the existence of the aneugenic effect of ionizing radiation in mammalian and human somatic cells. 相似文献
7.
Bhattacharya RK 《Indian journal of experimental biology》2001,39(8):727-734
Ionizing radiations elicit a variety of biological effects in mammalian cells. In recent years altered signal transduction has been recognized as a key cellular response to ionizing radiation. Several oncogenes, the products of which are components of signal transduction pathways and which are over-expressed in many tumors, are specifically induced in cells exposed to radiation. It has also become evident that the oncogene ras and the serine/threonine protein kinase oncogenes raf and PKC confer radio-resistance to tumor cells. Modulation of these genes or their activity by natural compounds may offer a strategy to treat cancer by enhancing radiation-induced apoptosis of tumor cells. 相似文献
8.
In this study, the ku70 and ku80 homologs from the Aspergillus niger genome were identified and their function was analyzed using targeted mutagenesis. The role of the ku80 gene in non-homologous end-joining (NHEJ) was investigated by calculating the frequency of homologous recombination. The
transformation test verified that the frequency of homologous recombination significantly increased, from 1.78 to 65.6% in
ku80 single deletion strains and to 100% in ku70/ku80 double deletion strains. These results suggest that the ku80 gene is important for non-homologous end-joining. Although the morphology of the ku deletion strains colonies was similar to that of the wildtype strain, mutants were more sensitive to the mutagen phleomycin.
Furthermore, the purified ku80 deletion strain produced some sectored colonies on hygromycin B-containing plates. This result suggests that the ku80 gene deletion leads to genomic instability in A. niger. 相似文献
9.
A "hypermutable" genome is a common characteristic of cancer cells, and it may contribute to the progressive accumulation of mutations required for the development of cancer. It has been reported that mammalian cells surviving exposure to gamma radiation display several highly persistent genomic instability phenotypes which may reflect a hypermutability similar to that seen in cancer. These phenotypes include an increased mutation frequency and a decreased plating efficiency, and they continue to be observed many generations after the radiation exposure. The underlying causes of this genomic instability have not been fully determined. We show here that exposure to gamma radiation and other DNA-damaging treatments induces a similar genomic instability in the yeast Saccharomyces cerevisiae. A dose-dependent increase in intrachromosomal recombination was observed in cultures derived from cells surviving gamma irradiation as many as 50 generations after the exposure. Increased forward mutation frequencies and low colony-forming efficiencies were also observed. Persistently elevated recombination frequencies in haploid cells were dominant after these cells were mated to nonirradiated partners, and the elevated recombination phenotype was also observed after treatment with the DNA-damaging agents ultraviolet light, hydrogen peroxide, and ethyl methanesulfonate. Radiation-induced genomic instability in yeast may represent a convenient model for the hypermutability observed in cancer cells. 相似文献
10.
Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration 总被引:4,自引:0,他引:4
Double-strand break (DSB) repair pathways catalyze the rejoining of broken chromosomes and the integration of transforming DNAs. These processes have been well characterized in bacteria, fungi, and animals. Plants are generally thought primarily to utilize a non-homologous end joining (NHEJ) pathway to repair DSBs and integrate transgenes, as transforming DNAs with large tracts of homology to the chromosome are integrated at random. In order to test the hypothesis that NHEJ is an important pathway for the repair of DSBs in plants, we isolated T-DNA insertion mutations in the Arabidopsis homologs of the Ku80 and DNA ligase IV genes, required for the initiation and completion, respectively, of NHEJ. Both mutants were hypersensitive to the cytostatic effects of gamma radiation, suggesting that NHEJ is indeed a critical pathway for the repair of DSBs. T-DNA insertion rates were also decreased in the mutants, indicating that Ku80 and DNA ligase IV play an important role in either the mechanism or the regulation of T-DNA integration in Arabidopsis. 相似文献
11.
12.
Kolomiĭtseva IK Kulagina TP Markevich LN Potekhina NI Slozhenikina LV Fialkovskaia LA 《Biofizika》2002,47(6):1106-1115
Changes in the activity of ornithindecarboxylase in various tissues and in the amount of catecholamine in rat hypothalamus by the action of acute and chronic ionizing radiation were studied. A nonmonotonous relationship between the metabolic parameters of animal tissues and cells and the radiation dose was revealed. It was assumed that the nonmonotonous character of the dose-response dependence results from the nonmonotonous time course of the metabolic response to irradiation. It was also assumed that living systems have the property of responding to stress agents by nonmonotonous changes in metabolism. In the case of acute irradiation, this response manifests itself as oscillations of metabolic parameters about the control. The oscillations occur with a particular amplitude and periods, which vary with radiation dose, and damp out with time. As a result, in a fixed time interval, the dose-response curve may be nonmonotonous. Reverse dose-response relationships are also possible. In the case of chronic irradiation, the metabolic and functional parameters oscillate throughout irradiation time, and a modification of the response occurs. A prolong exposure to ionizing radiation causes strong changes in the metabolism of lipids of cell membranes, organelles and chromatin, as well as in the functional properties of some mammalian cells and tissues. The necessity of constructing quantitative models for explaining the nonmonotonous dose-response dependence is discussed. 相似文献
13.
Induction of genetic instability by ionizing radiation 总被引:8,自引:0,他引:8
Little JB 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1999,322(2-3):127-134
Evidence is presented to support the hypothesis that radiation may induce a heritable, genome-wide process of instability that leads to an enhanced frequency of genetic changes occurring among the progeny of the original irradiated cell. This instability is transmissible over many generations of cell replication. Mutational instability is induced in a relatively large fraction (approximately 10%) of the cell population, and may be modulated by factors acting in vivo. Thus, it cannot be a targeted event involving a specific gene or set of genes. There is no dose-response relationship in the range 2-12 Gy, suggesting that the instability phenotype may be induced by quite low radiation doses. The molecular mechanisms associated with the genesis of mutations in unstable populations differ from those for direct X-ray-induced mutations. These results suggest that it may not be possible to predict the nature of the dose-response relationship for the ultimate genetic effects of radiation based on a qualitative or quantitative analysis of the original DNA lesions. 相似文献
14.
Regulation of telomere length and suppression of genomic instability in human somatic cells by Ku86 下载免费PDF全文
Myung K Ghosh G Fattah FJ Li G Kim H Dutia A Pak E Smith S Hendrickson EA 《Molecular and cellular biology》2004,24(11):5050-5059
Ku86 plays a key role in nonhomologous end joining in organisms as evolutionarily disparate as bacteria and humans. In eukaryotic cells, Ku86 has also been implicated in the regulation of telomere length although the effect of Ku86 mutations varies considerably between species. Indeed, telomeres either shorten significantly, shorten slightly, remain unchanged, or lengthen significantly in budding yeast, fission yeast, chicken cells, or plants, respectively, that are null for Ku86 expression. Thus, it has been unclear which model system is most relevant for humans. We demonstrate here that the functional inactivation of even a single allele of Ku86 in human somatic cells results in profound telomere loss, which is accompanied by an increase in chromosomal fusions, translocations, and genomic instability. Together, these experiments demonstrate that Ku86, separate from its role in nonhomologous end joining, performs the additional function in human somatic cells of suppressing genomic instability through the regulation of telomere length. 相似文献
15.
The results of numerous studies indicate that cells can become refractory to the detrimental effect of ionizing radiation when previously exposed to a low, “adapting dose”;. This phenomenon has been termed an “adaptive response”; to ionizing radiation. It has been postulated that the induced radioresistance is due to the induction of DNA repair systems which efficiently protect the adapted cells from the effects of a subsequent, high “challenging dose”;. However, a direct proof of this hypothesis is still lacking. The analyzed endpoints include chromosomal aberrations, survival, mutations, genetic instability and DNA damage repair measured by the comet assay. Frequently contradictory results were published by different authors. For example some authors observed a reduced frequency of apoptosis in adapted cells, whereas others reported the opposite. The source of variablity of the adaptive response in human lymphocytes remains unresolved. While there is no doubt that an adapting dose can trigger some protecting mechanisms within the cell it appears that there is no single, universal mechanism of the adaptive response that is valid for all cell types and irradiation conditions. 相似文献
16.
High yields of lethal mutations in somatic mammalian cells that survive ionizing radiation 总被引:9,自引:0,他引:9
C B Seymour C Mothersill T Alper 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1986,50(1):167-179
When mammalian cells are irradiated in vitro, the component cells of a normal-appearing survivor colony or clone are commonly thought to have proliferative capacity equivalent to that of the unirradiated cells. We have found, however, that cells appearing in survivor colonies may carry heritable lethal defects which come to light, perhaps only after numerous successful divisions, in the form of plating efficiencies that are reduced below those of unirradiated cells in a dose-dependent manner. We regard these heritable defects as signs of the induction of lethal mutations, which, like non-lethal mutations, may require many generations before they are expressed. This effect has been noted in two very dissimilar mammalian cell lines, one a primary culture from adult tissue, the other an immortal cell line. We suggest that induction of lethal mutations may occur also in somatic cells in vivo; this would account for the well-known observation that previously irradiated but apparently healed tissue is subsequently proved to be extraordinarily sensitive to subsequent exposure to irradiation or cytotoxic drugs. The results of our experiments in vitro suggest that current methods of estimating mutation or transformation yields may yield underestimates. If lethal mutations are induced also in vivo, interpretations of the results of fractionation experiments on normal tissues may have to be reconsidered. 相似文献
17.
Morgan WF 《Radiation research》2003,159(5):581-596
The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis. 相似文献
18.
Vorobtsova IE 《Radiatsionnaia biologiia, radioecologiia / Rossi?skaia akademiia nauk》2006,46(4):441-446
Stability of genome is one of the evolutionary important trait of cells. Various mutations (gene, chromosomal, genomic) as well as artificial manipulations with genomes (inbreeding, DNA transfection, introduction of Br-DU in DNA) cause the genetic instability. Ionizing radiation is known as the factor which induced instability of genome in late mitotic descendants of cells after in vitro and in vivo exposure. Radiation induced genetic instability can be transmitted through germline cells. On the cell level both types of radiation induced genomic instability are manifested in elevated frequency of mutations, chromosome aberrations, micronuclei, increased radiosensitivity, disappearance of adaptive response, changes in gene expression. In studies of 1970-1980 years clear evidences on the different morphological and functional injuries in tissues of irradiated organisms as well as in tissues of the progeny of exposed parents were obtained. On the organism level the instability of mitotic and of meiotic progeny of irradiated cells is resulted in increased risk of cancer and of other somatic diseases. It seems to be useful to review the earlier radiobiology literature where delayed and transgenerational effects of ionizing radiation on tissues and on organisms level were clearly shown in animals. For the estimation of pathogenic role of radiation induced genomic instability in humans, particularly in children of exposed parents the parallel study of the same human cohorts using clinical parameters and various characteristic of genomic instability seems to be very important. 相似文献
19.
20.
Thacker J 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1999,322(2-3):103-108
Ionizing radiation causes a variety of types of damage to DNA in cells, requiring the concerted action of a number of DNA repair enzymes to restore genomic integrity. The DNA base-excision repair and DNA double-strand break repair pathways are particularly important. While single base damages are rapidly excised and repaired using the opposite (undamaged) strand as a template, the correct repair of DNA double-strand breaks may present more difficulties to cellular enzymes owing to the loss of template. In the last few years evidence in support of several enzymatic pathways for the repair of such double-stranded damage has been found. At present we may distinguish at least three pathways: homologous recombination repair, non-homologous (DNA-PK-dependent) end joining, and repeat-driven end joining. This paper focuses on evidence for the first and third of these pathways, and considers in particular their relative importance in mammalian cells and implications for the fidelity of repair. 相似文献