首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The gene structure of Cu/Zn-superoxide dismutase from sweet potato.   总被引:1,自引:0,他引:1       下载免费PDF全文
C T Lin  M T Lin  Y T Chen    J F Shaw 《Plant physiology》1995,108(2):827-828
  相似文献   

2.
3.
A Cu,Zn-superoxide dismutase has been characterized from Scedosporium apiospermum, a fungus which often colonizes the respiratory tract of patients with cystic fibrosis. Enzyme production was stimulated by iron starvation. Purification was achieved from mycelial extract from 7-day-old cultures on Amberlite XAD-16. The purified enzyme presented a relative molecular mass of 16.4 kDa under reducing conditions and was inhibited by potassium cyanide and diethyldithiocarbamate, which are two known inhibitors of Cu,Zn-SODs. Its optimum pH was 7.0 and the enzyme retained full activity after pretreatment at temperatures up to 50 degrees C. Moreover, a 450-bp fragment of the gene encoding the enzyme was amplified by PCR using degenerate primers designed from sequence alignment of four fungal Cu,Zn-SODs. Sequence data from this fragment allowed us to design primers which were used to amplify by walking-PCR the flanking regions of the known fragment. SaSODC gene (890 bp) corresponded to a 154 amino acid polypeptide with a predicted molecular mass of 15.9 kDa. A database search for sequence homology revealed for the deduced amino acid sequence 72 and 83% identity rate with Cu,Zn-SODs from Aspergillus fumigatus and Neurospora crassa, respectively. To our knowledge, this enzyme is the first putative virulence factor of S. apiospermum to be characterized.  相似文献   

4.
In cytosolic fraction of adult Paragonimus westermani, superoxide dismutase activity was identified (4.3 units/mg of specific activity) using a xanthine-xanthine oxidase system. The enzyme was purified 150 fold in its activity using the ammonium sulfate precipitation, DEAE-Trisacryl M anion-exchange chromatography and Sephadex G-100 molecular sieve chromatography. The enzyme exhibited the enhanced activity at pH 10.0. The enzyme activity totally disappeared in 1.0mM cyanide while it remained 77.8% even in 10 mM azide. These findings indicated that the enzyme was Cu, Zn-SOD type. Molecular mass of the enzyme was estimated to be 34 kDa by gel filtration and 17 kDa on reducing SDS-polyacrylamide gel electrophoresis which indicated a dimer protein.  相似文献   

5.
6.
Reduced levels of the neurotransmitter serotonin in blood platelets is a clinical symptom characteristic of individuals with Down's syndrome. To investigate the possible involvement of the Cu/Zn-superoxide dismutase (CuZnSOD) gene, which resides at the Down locus on chromosome no. 21, in the etiology of that symptom, we examined blood platelets of transgenic mice harboring the human CuZnSOD gene. It was found that platelets of transgenic CuZnSOD animals, which overexpress the transgene, contain lower levels of serotonin than nontransgenic littermate mice, due to a reduced rate of uptake of the neurotransmitter by the dense granules of the platelets. We found that the pH gradient (delta pH) across the dense granule membrane, which is the main driving force for serotonin transport, was diminished in dense granules of transgenic-CuZnSOD. Furthermore, a significantly lower than normal serotonin accumulation rate was also detected in dense granules isolated from blood platelets of Down's syndrome individuals. These findings suggest that CuZnSOD gene dosage is affecting the dense granule transport system and is thereby involved in the depressed level of blood serotonin found in patients born with Down's syndrome.  相似文献   

7.
1. Common carp (Cyprinus carpio L.) liver Cu,Zn-superoxide dismutase (Cu,Zn-SOD) was purified and characterized. 2. Its molecular weight, isoelectric point, electrophoretic mobility, amino acid pattern and some other characteristics were determined.  相似文献   

8.
Ye M  English AM 《Biochemistry》2006,45(42):12723-12732
In addition to its superoxide dismutase (SOD) activity, Cu,Zn-superoxide dismutase (CuZnSOD) catalyzes the reductive decomposition of S-nitroso-L-glutathione (GSNO) in the presence of thiols such as L-glutathione (GSH). The GSNO-reductase activity but not the superoxide dismutase (SOD) activity of CuZnSOD is inhibited by the commonly used polyaminocarboxylate metal ion chelators, EDTA and DTPA. The basis for this selective inhibition is systematically investigated here. Incubation with EDTA or DTPA caused a time-dependent decrease in the 680 nm d-d absorption of Cu(II)ZnSOD but no loss in SOD activity or in the level of metal loading of the enzyme as determined by ICP-MS. The chelators also protected the SOD activity against inhibition by the arginine-specific reagent, phenylglyoxal. Measurements of both the time course of SNO absorption decay at 333 nm and oxymyoglobin scavenging of the NO that is released confirmed that the chelators inhibit CuZnSOD catalysis of GSNO reductive decomposition by GSH. The decreased GSNO-reductase activity is correlated with decreased rates of Cu(II)ZnSOD reduction by GSH in the presence of the chelators as monitored spectrophotometrically at 680 nm. The aggregate data suggest binding of the chelators to CuZnSOD, which was detected by isothermal titration calorimetry (ITC). Dissociation constants of 0.08 +/- 0.02 and 8.3 +/- 0.2 microM were calculated from the ITC thermograms for the binding of a single EDTA and DTPA, respectively, to the CuZnSOD homodimer. No association was detected under the same conditions with the metal-free enzyme (EESOD). Thus, EDTA and DTPA must bind to the solvent-exposed active-site copper of one subunit without removing the metal. This induces a conformational change at the second active site that inhibits the GSNO-reductase but not the SOD activity of the enzyme.  相似文献   

9.
Cu,Zn-superoxide dismutase (SOD) was chemically modified with low molecular weight heparin (LMWH). To characterize the conjugate, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (native PAGE) with protein staining and polysaccharide staining were employed. The stabilities of the modified enzyme to heat, acid, alkali, and trypsin treatment were also investigated. SDS-PAGE of the conjugate presented two major bands, and native PAGE of the conjugate showed similar banding position with protein staining and polysaccharide staining, which was different from that of the unmodified SOD and LMWH/SOD mixture. Moreover, the conjugate migrated faster with increasing extent of the modification. Enhanced heat stability, acid resistance, alkali resistance, and anti-trypsin stability of the modified enzyme were observed compared with those of the unmodified enzyme. Results of the study suggest that covalent linkage in LMWH-SOD can be effectively characterized by electrophoretic techniques and the chemical modification of SOD with LMWH can enhance the stabilities of the enzyme. In addition, native PAGE with protein staining can be used to evaluate the extent of the modification.  相似文献   

10.
A thioredoxin (BbTrx) was identified from the entomopathogenic fungus Beauveria bassiana. The cloned nucleotide sequence consisted of a 423-bp open reading frame encoding a 141-amino-acid thioredoxin, a 1011-bp 5' region, and a 419-bp 3' region. The deduced protein sequence of BbTrx, including a common 95-amino-acid conserved domain and a unique 46-amino-acid carboxy terminal region, was similar (≤38% identity) to that of other thioredoxins and phylogenetically closest to that from Neurospora crassa. In insulin solution containing dithiothreitol at 25?°C, recombinant BbTrx or a truncated form lacking the carboxy terminal region (BbTrxD) exhibited disulfide reduction activity. BbTrxD was more active after pre-incubation at 40-75?°C, and cells expressing BbTrxD showed significantly higher tolerance to thermal stress (51?°C). The BbTrx expression in B. bassiana was greatly elevated when stressed at 40?°C. The results indicate that the new thioredoxin is a potential target for improving the thermotolerance of B. bassiana formulations.  相似文献   

11.
The fungal strain Humicola lutea 103 produces a naturally glycosylated Cu/Zn-superoxide dismutase (Cu/ZnSOD) (HLSOD). To improve its yield, the effect of increased concentration of Cu2+ (from 1 to 750 microg/ml) on growth and enzyme biosynthesis was studied. The primary structure of this fungal enzyme has been determined by Edman degradation of peptide fragments derived from proteolytic digest. A single chain of the protein, consisting of 152 amino acid residues, reveals a very high degree (74-85%) of structural homology in comparison to the amino acid sequences of other fungal Cu/ZnSODs. The difference of the molecular masses of H. lutea Cu/ZnSOD, measured by MALDI-MS (15,935 Da) and calculated by its amino acid sequence (15,716 Da), is attributed to the carbohydrate chain of one mole of N-acetylglucosamine, attached to the N-glycosylation site Asn23-Glu-Ser. HLSOD protected mice from mortality after experimental influenza A/Aichi/2/68 (H3N2) virus infection. Using the glycosylated HLSOD, the survival rate is increased by 66% (protective index=86.1%) and the survival time prolonged by 5.2 days, similar to the application of ribavarin, while non-glycosylated bovine SOD conferred lower protection.  相似文献   

12.
Zhu H  Luo XM  Song JX  Fan MZ  Li ZZ 《应用生态学报》2011,22(9):2413-2418
从自然感病的温室桃蚜上分离到一株球孢白僵菌Bb21,测定了该菌株对桃蚜的致病性及其对两种捕食性天敌的影响.结果表明:Bb21菌株对桃蚜的致病力强,LD5o为97孢子·mm-2,95%置信区间为45~191孢子·mm-2;对草蛉2龄幼虫有较弱的致病性,LD50为1089孢子·mm-2,是桃蚜的11.2倍;对异色瓢虫致病性极小,高浓度处理(5×108孢子·mL-1)的平均感染率仅为l3%.该菌株低浓度处理对两种捕食性天敌的发育历期和生殖力均无显著影响,但高浓度处理(5×108孢子·mL-1)使异色瓢虫的幼虫期平均缩短1.4d,羽化率降低33%,产卵量减少14%,使普通草蛉的幼虫期平均缩短0.7d,羽化率降低24%,产卵量减少11%.该菌株对桃蚜的半致死剂量远低于对两种捕食性天敌的半致死剂量,并且在防治桃蚜使用浓度下对两种捕食性天敌成虫羽化率和繁殖力的影响极小,可作为温室桃蚜的生物控制因子在有害生物综合治理中应用.  相似文献   

13.
The activation of microglial cells in response to neuropathological stimuli is one of the prominent features of human neurodegenerative diseases. Cytokines such as IL-1 beta and TNF-alpha and inflammation-related enzymes such as inducible nitric oxide synthase are usually induced during the activation of microglial cells. We investigated the modulation of the activation of microglial cell by transfecting a Cu/Zn-SOD cDNA into BV-2 cells. Parental and transfected BV-2 cells were then subjected to LPS stimulation. The results showed that in Cu/Zn-SOD-transfected BV-2 cells, the expression and activity of Cu/Zn-SOD increased. On the other hand, upon activation by LPS, these cells produced less NO, IL-1 beta, and TNF-alpha than the parental microglial cells. This finding suggests that superoxide may be an early signal triggering the induction of cytokines and that the transfected Cu/Zn-SOD may provide a neuroprotective function via suppression of microglial activation. In addition, this approach may provide a rationale for the development of treatments for neurodegenerative diseases.  相似文献   

14.
A superoxide dismutase (SOD) was characterized from Beauveria bassiana, a fungal entomopathogen widely applied to insect control. This 209-aa enzyme (BbSod2) showed no more than 71% sequence identity to other fungal Mn-SODs, sharing all conserved residues with the Mn-SOD family and lacking a mitochondrial signal. The SOD activity of purified BbSod2 was significantly elevated by Mn2+, suppressed by Cu2+ and Zn2+ but inhibited by Fe3+. Overexpressing the enzyme in a BbSod2-absent B. bassiana strain enhanced its SOD activity (107.2 ± 6.1 U mg−1 protein) by 4–10-fold in different transformants analyzed. The best BbSod2-transformed strain with the SOD activity of 1,157.9 ± 74.7 U mg−1 was 93% and 61% more tolerant to superoxide-generating menadione in both colony growth (EC50 = 2.41 ± 0.03 versus 1.25 ± 0.01 mM) and conidial germination (EC50 = 0.89 ± 0.06 versus 0.55 ± 0.07 mM), and 23% more tolerant to UV-B irradiation (LD50 = 0.49 ± 0.02 versus 0.39 ± 0.01 J cm−2). Its virulence to Spodoptera litura larvae was enhanced by 26% [LT50 = 4.5 (4.2–4.8) versus 5.7 (5.2–6.4) days]. Our study highlights for the first time that the Mn2+-cofactored, cytosolic BbSod2 contributes significantly to the virulence and stress tolerance of B. bassiana and reveals possible means to improving field persistence and efficacy of a fungal formulation by manipulating the antioxidant enzymes of a candidate strain.  相似文献   

15.
Hydrogels of carboxymethylcellulose (CMC) with 50 and 90% cross-linking degree (CMC50% and CMC90%, respectively) were prepared and loaded with bovine erythrocyte Cu,Zn-superoxide dismutase (SOD) to obtain two drug delivery systems: SOD-CMC50% and SOD-CMC90%. Resistance of native SOD to inactivation by H2O2 and the effect of applying SOD-CMC hydrogels to open wounds of rats’ back skin were examined and compared to that of SOD trapped into CMC50% and CMC90% hydrogels. Also, the effect of CMC50% and SOD-CMC90% on human fibroblasts proliferation was evaluated at different times. It was found that SOD in the hydrogel was more resistant to H2O2 inactivation than the native enzyme and at the same time it reduced the time necessary for wound healing. Furthermore, the highest cell proliferation value was found for the CMC50% hydrogels, which had a three-dimensional structure suitable for gas and nutrient exchanges and improving cell life conditions. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 12, pp. 1627–1632.  相似文献   

16.
The coding region of copper/zinc-superoxide dismutase (Cu/Zn-SOD) cDNA from sweet potato, Ipomoea batatas (L.) Lam. cv. Tainong 57, was introduced into an expression vector, pET-20b(+). The Cu/Zn-SOD purified by His-tagged technique showed two active forms (dimer and monomer). The amount of proteins of dimer and monomer appeared to be equal, but the activity of dimeric form was seven times higher than that of monomeric form. The enzyme was dissociated into monomer by imidazole buffer above 1.0 M, acidic pH (below 3.0), or SDS (above 1%). The enzyme is quite stable. The enzyme activity is not affected at 85 °C for 20 min, in alkali pH 11.2, or in 0.1 M EDTA and also quite resistant to proteolytic attack. Dimer is more stable than monomer. The thermal inactivation rate constant k dcalculated for the monomer at 85 °C was 0.029 min-1 and the half-life for inactivation was about 28 min. In contrast, there is no significant change of dimer activity after 40 min at 85 °C. The enzyme dimer and monomer retained 83% and 58% of original activity, respectively, after 3 h incubation with trypsin at 37 °C, while those retained 100% and 31% of original activity with chymotrypsin under the same condition. These results suggest subunit interaction might change the enzyme conformation and greatly improve the catalytic activity and stability of the enzyme. It is also possible that the intersubunit contacts stabilize a particular optimal conformation of the protein or the dimeric structure enhances catalytic activity by increasing the electrostatic steering of substrate into the active site.  相似文献   

17.
The over-expressed Cu/Zn-superoxide dismutase (Cu/Zn-SOD) gene has been found in some circumstances phenotypically deleterious and associated with oxidative injury-mediated aberrations while in other studies it was considered neuroprotective. In this work we examine a number of biochemical markers in fetal and adult brain from transgenic (tg) mice expressing the human Cu/Zn-SOD gene, which may determine this dual characteristic. These markers include the polyunsaturated fatty acid (PUFA) profile in discrete phospholipid species, the alpha-tocopherol levels, a marker for lipid anti-oxidant status, and thiobarbituric acid reactive substance (TBARS), a marker for the tissue oxidative status. The PUFA profile in choline- and ethanolamine-phosphoglycerides was similar in tg and nontransgenic (ntg) animals of either fetal or adult brain. Serine-phosphoglycerides, however, showed a marked decrease from 20. 07+/-0.53 to 14.92+/-0.87 wt% and 14.52+/-1.15 wt% in docosahexaenoic acid (DHA; 22:6 n3), in the tg 51 and tg 69 fetal brains, respectively, but not in the comparable adult tissues. The alpha-tocopherol levels were significantly higher in the fetal compared to the adult brain. There were no differences in the anti-oxidant levels between the ntg and tg fetal brains, but there were differences in the adult animals; the tg mice were higher by at least two-fold than the control animals. The basal TBARS in the tg 51 fetal brain was 35% lower than that of ntg mouse and in the presence of Fe(2+), brain slices from the former released less TBARS (57% reduction) into the medium than the latter. These results suggest that higher dosages of Cu/Zn-SOD gene are compatible with increased alpha-tocopherol levels, reduced basal TBARS levels and a DHA deficiency in the fetal, but not the adult, tg brain.  相似文献   

18.
We have employed differential scanning calorimetry (DSC) to investigate the thermally induced unfolding of native Cu,Zn-superoxide dismutase (SOD), the apoprotein derived from native SOD, and the zinc-substituted derivatives of the apoprotein. We observe two overlapping melting transitions for native bovine SOD with heat capacity maxima at temperatures (Tm) of 89 and 96 degrees C when a scanning rate of 0.82 deg/min is employed. By contrast, the dithionite-reduced native SOD (which contains Cu+ rather than Cu2+) exhibits only a single transition at 96 degrees C. Significantly, we find that the concentration of O2 present in native SOD samples influences the relative magnitudes of the 89 and 96 degrees C peaks. Specifically, the lower temperature transition becomes less pronounced as the concentration of O2 in the sample decreases. On the basis of these observations, we propose that the lower temperature peak corresponds to the melting of the oxidized native protein, while the higher temperature peak reflects the melting of the reduced native protein, which forms spontaneously during the heating process. Our interpretation profoundly differs from that of Lepock et al. [Lepock, J.R., Arnold, L.D., Torrie, B.H., Andrews, B., & Kruuv, J. (1985) Arch. Biochem. Biophys. 241, 243-251], who have proposed that the low-temperature transition corresponds to the reduced form of the protein. We present evidence that suggests that their experiments were complicated by the presence of potassium ferrocyanide, which, in addition to reducing the cupric center, also perturbs the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
在分析一株球孢白僵菌TDNA插入突变体T12的Tagging序列的基础上,根据与其具有高度同源性的一条金龟子绿僵菌EST序列(编号为AJ273226)设计简并引物,用YADE法从球孢白僵菌中扩增出该EST的同源序列及其延伸序列。序列分析表明,该片段与粗糙脉孢霉的羧基转运蛋白JEN1具有高度同源性,由此确定该序列为球孢白僵菌羧基转运蛋白JEN1基因的部分序列。然后利用YADE法延伸扩增该序列的上、下游序列,获得球孢白僵菌羧基转运蛋白JEN1的全长DNA序列,命名为GBbJEN1。利用3′RACE扩增出球孢白僵菌羧基转运蛋白JEN1的cDNA序列,命名为BbJEN1。BbJEN1全长1656bp,编码514个氨基酸的蛋白。推测蛋白分子量为55975.37Da,等电点9.32。氨基酸序列与金龟子绿僵菌、粗糙脉孢霉和酿酒酵母羧基转运蛋白JEN1的同源性分别为77%、66%和30%。序列分析表明,GBbJEN1含有2个内含子。Southern杂交表明,GBbJEN1基因在球孢白僵菌基因组中为单拷贝。利用RTPCR法对BbJEN1的表达特性进行了分析,结果发现BbJEN1基因的转录受蟑螂壳、蝉蜕等昆虫体壁的诱导,受葡萄糖的抑制。进一步利用YADE法获得了长为977bp的GBbJEN1上游序列,其中含有可能的葡萄糖抑制调控序列和压力反应元件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号