首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary A biphasic dependence of the exponential growth rate on the glucose concentration of the medium was observed in batch culture experiments for a strain of S. cerevisiae and one of its petit mutants. The data can be fitted to an equation of the Michaelis-Menten type with two sets of values of the growth parameters; the switch-over occurs at a glucose concentration of 4 mM. Another petit mutant did not show the biphasic character.Regulation of the energy metabolism in relation to the cell cycle is discussed. It is suggested that the observed shift in the growth parameters may be due to a change in the control point of glycolysis from phosphofructokinase to pyruvate kinase at higher glucose concentrations. This could reduce the duration of the G1 phase by permitting a faster synthesis of reserve carbohydrates required as intracellular energy reservoirs for DNA synthesis.Nonstandard Abbreviations Used F6P fructose-6-phosphate - FDP fructose-1,6-diphosphate - G1P glucose-6-phosphate - PEP Phosphoenolpyruvate - PYR pyruvate Enzymes PFK phosphofructokinase (EC 2.7.1.11) - PK phosphoenolpyruvate kinase (EC 2.7.1.40)  相似文献   

3.
A comparison of branchial enzyme profiles indicates that the gills of Periophthalmodon schlosseri would have a greater capacity for energy metabolism through glycolysis than those of Boleophthalmus boddaerti. Indeed, after exposure to hypoxia, or anoxia, there were significant increases in the lactate content in the gills of P. schlosseri. In addition, exposure to hypoxia or anoxia significantly lowered the glycogen level in the gills of this mudskipper. It can be deduced from these results that the glycolytic flux was increased to compensate for the decrease in ATP production through anaerobic glycolysis. Different from P. schlosseri, although there was an increase in lactate production in the gills of B. boddaerti exposed to hypoxia, there was no significant change in the branchial glycogen content, indicating that a reversed Pasteur effect might have occurred under such conditions. In contrast, anoxia induced an accumulation of lactate and a decrease in glycogen in the gills of B. boddaerti. Although lactate production in the gills of these mudskippers during hypoxia was inhibited by iodoacetate, the decreases in branchial glycogen contents could not account for the amounts of lactate formed. The branchial fructose-2,6-bisphosphate contents of these mudskippers exposed to hypoxia or anoxia decreased significantly, leaving phosphofructokinase and glycolytic rate responsive to cellular energy requirements under such conditions. The differences in response in the gills of B. boddaerti and P. schlosseri to hypoxia were possibly related to the distribution of phosphofructokinase between the free and bound states.Abbreviations ADP adenosine diphosphate - ALD aldolase - ALT alanine transaminase - AST aspartate transaminase - ATP adenosine triphosphate - CS citrate synthase - EDTA ethylenediaminetetra-acetic acid - EGTA ethylene glycol tetra-acetic acid - F6P fructose-6-phosphate - F-1,6-P2 fructose-1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate - FBPase fructose-1,6-bisphosphatese - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glutamate dehydrogenase - -GDH -glycerophosphate dehydrogenase - GPase glycogen phosphorylase - HK hexokinase - HOAD 3-hydroxyacyl-CoA dehydrogenase - IDH isocitrate dehydrogenase - IOA iodoacetic acid - LDH lactate dehydrogenase - LO lactate oxidizing activity - MDH malate dehydrogenase - 3-PG 3-phosphoglyceric acid - PEP phosphoenolpyruvate - PEPCK phosphoenolpyruvate carboxykinase - PGI phosphoglucose isomerase - PGK phosphoglycerate kinase - PFK 6-phosphofructo-1-kinase - PIPES piperazine-N, N-bis-(2-ethanesulphonic acid) - PK pyruvate kinase - PMSF phenylmethylsulphonyl fluoride - PR pyrurate reducing activity - SE standard error - SW seawater - TPI triosephosphate isomerase  相似文献   

4.
The effects of cold hypoxia were examined during a time-course at 2 °C on levels of glycolytic metabolites: glycogen, glucose, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, pyruvate, lactate and energetics (ATP, ADP, AMP) of livers from rats and columbian ground squirrels. Responses of adenylate pools reflected the energy imbalance created during cold hypoxia in both rat and ground squirrel liver within minutes of organ isolation. In rat, ATP levels and energy charge values for freshly isolated livers were 2.54 mol·g-1 and 0.70, respectively. Within 5 min of cold hypoxia, ATP levels had dropped well below control values and by 8 h storage, ATP, AMP, and energy charge values were 0.21 mol·g-1, 2.01 mol·g-1, and 0.17, respectively. In columbian ground squirrels the patterns of rapid ATP depletion and AMP accumulation were similar to those found in rat. In rat liver, enzymatic regulatory control of glycolysis appeared to be extremely sensitive to the decline in cellular energy levels. After 8 h cold hypoxia levels of fructose-6-phosphate decreased and fructose-1,6-bisphosphate increased, thus reflecting an activation of glycolysis at the regulatory step catalysed by phospho-fructokinase fructose-1,6-bisphosphatase. Despite an initial increase in flux through glycolysis over the first 2 min (lactate levels increased 3.7 mol·g-1), further flux through the pathway was not permitted even though glycolysis was activated at the phosphofructokinase/fructose-1,6-bisphosphatase locus at 8 h, since supplies of phosphorylated substrate glucose-1-phosphate or glucose-6-phosphate remained low throughout the duration of the 24-h period. Conversely, livers of Columbian ground squirrels exhibited no activation or inactivation of two key glycolytic regulatory loci, phosphofructokinase/fructose-1,6-bisphosphatase and pyruvate kinase/phosphoenolpyruvate carboxykinase and pyruvate carboxylase. Although previous studies have shown similar allosteric sensitivities to adenylates to rat liver phospho-fructokinase, there was no evidence of an activation of the pathway as a result of decreasing high energy adenylate, ATP or increasing AMP levels. The lack of any apparent regulatory control of glycosis during cold hypoxia may be related to hibernator-specific metabolic adaptations that are key to the survival of hypothermia during natural bouts of hibernation.Abbreviations DHAP dihydroxyacetonephosphate - EC energy charge - F1,6P2 fructose-1,6-bisphosphate - F2,6P2 fructose-2,6-bisphosphate - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphatase - G1P glucose-1-phosphate - G6P glucose-6-phosphate - GAP glyceraldehyde-3-phosphate - GAPDH glyceraldehyde-3-phosphate dehydrogenase - L/R lactobionate/raffinose-based solution - MR metabolic rate - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PEPCK & PC phosphoenolpyruvate carboxykinase and pyruvate carboxylase - PFK phosphofructokinase; PK, pyruvate kinase - Q 10 the effect of a 10 °C drop in temperature on reaction rates (generally, Q 10=2–3) - TA total adenylates - UW solution University of Wisconsin solution (L/R-based)  相似文献   

5.
Carbon-14 was incorporated into C-6 of glucose from [1-14C]galactose during gluconeogenesis from dihydroxyacetone in liver cells from fasted rats, proving the existence of a futile cycle between fructose-6-P and fructose-1,6-P2 under the conditions used. Using a steady-state model and assumed values for the rates of aldolase and glucose-6-P isomerase, the rates of phosphofructokinase were estimated, ranging from about 15% to nearly 40% of the net rate of gluconeogenesis. Glucagon depressed the rate of phosphofructokinase by as much as 85% and increased the rate of gluconeogenesis by up to 45%. l-epinephrine in the range from 10 to 100 μm also depressed phosphofructokinase, being nearly as effective as glucagon only at high concentrations. The effect of epinephrine was only partially reversed by 10 μm dl-propranolol. Ethanol (10 mm) depressed phosphofructokinase flux nearly as well as glucagon, but had no significant effect on the rate of gluconeogenesis from dihydroxyacetone.  相似文献   

6.
Summary The course of glycerol biosynthesis, initiated by exposure to –4°C, was monitored in larvae of the goldenrod gall moth,Epiblema scudderiana, and accompanying changes in the levels of intermediates of glycolysis, adenylates, glycogen, glucose, fructose-2,6-bisphosphate, and fermentative end products were characterized. Production of cryoprotectant was initiated within 6 h after a switch from +16° to –4°C, with halfmaximal levels reached in 30 h and maximal content, 450–500 mol/g wet weight, achieved after 4 days. Changes in the levels of intermediates of the synthetic pathway within 2 h at –4°C indicated that the regulatory sites involved glycogen phosphorylase, phosphofructokinase, and glycerol-3-phosphatase. A rapid increase in fructose-2,6-bisphosphate, an activator of phosphofructokinase and inhibitor of fructose-1,6-bisphosphatase, appeared to have a role in maintaining flux in the direction of glycerol biosynthesis. Analysis of metabolite changes as glycerol production slowed suggested that the inhibitory restriction of the regulatory enzymes was slightly out of phase. Inhibition at the glycerol-3-phosphatase locus apparently occurred first and resulted in a build-up of glycolytic intermediates and an overflow accumulation of glucose. Glucose inhibition of phosphorylase, stimulating the conversion of the activea to the inactiveb forms, appears to be the mechanism that shuts off phosphorylase function, counteracting the effects of low temperature that are the basis of the initial enzyme activation. Equivalent experiments carried out under a nitrogen gas atmosphere suggested that the metabolic make-up of the larvae in autumn is one that obligately routes carbohydrate flux through the hexose monophosphate shunt. The consequence of this is that fermentative ATP production during anoxia is linked to the accumulation of large amounts of glycerol as the only means of maintaining redox balance.Abbreviations G6P glucose-6-phosphate - F6P fructose-6-phosphate - F1, 6P fructose-1,6-bisphosphate - F2,6P 2 fructose-2,6-bisphosphate - G3P grycerol-3-phosphate - DHAP dinydroxyacetonephosphate - GAP glyceraldehyde-3-phosphate - PEP phosphoenolpyruvate - PFK phosphofructokinase - FBPase fructose-1,6-bisphosphatase - PK pyruvate kinase  相似文献   

7.
Enterococcus faecalis NCTC 775 was grown anaerobically in chemostat culture with pyruvate as the energy source. At low culture pH values, high in vivo and in vitro activities were found for both pyruvate dehydrogenase and lactate dehydrogenase. At high culture pH values the carbon flux was shifted towards pyruvate formate lyase. Some mechanisms possibly involved in this metabolic switch are discussed. In particular attention is paid to the NADH/NAD ratio (redox potential) and the fructose-1,6-bisphosphate-dependent lactate dehydrogenase activity as possible regulatory factors.Abbreviations PDH pyruvate dehydrogenase complex (EC 1.2.2.2) - PFL pyruvate formate lyase (EC 2.3.1.54) - LDH lactate dehydrogenase (EC 1.1.1.27) - FBP fructose-1,6-bisphosphate - MTT 3-(4,5-dimethyl-thiazoyl-2)-2,5-diphenyltetrazolium bromide - TPP thiamine pyrophosphate  相似文献   

8.
Fructose-1,6-bisphosphatase (FBPase), which is mainly used to supply NADPH, has an important role in increasing L-lysine production by Corynebacterium glutamicum. However, C. glutamicum FBPase is negatively regulated at the metabolic level. Strains that overexpressed Escherichia coli fructose-1,6-bisphosphatase in C. glutamicum were constructed, and the effects of heterologous FBPase on cell growth and L-lysine production during growth on glucose, fructose, and sucrose were evaluated. The heterologous fructose-1,6-bisphosphatase is insensitive to fructose 1-phosphate and fructose 2,6-bisphosphate, whereas the homologous fructose-1,6-bisphosphatase is inhibited by fructose 1-phosphate and fructose 2,6-bisphosphate. The relative enzyme activity of heterologous fructose-1,6-bisphosphatase is 90.8% and 89.1% during supplement with 3 mM fructose 1-phosphate and fructose 2,6-bisphosphate, respectively. Phosphoenolpyruvate is an activator of heterologous fructose-1,6-bisphosphatase, whereas the homologous fructose-1,6-bisphosphatase is very sensitive to phosphoenolpyruvate. Overexpression of the heterologous fbp in wild-type C. glutamicum has no effect on L-lysine production, but fructose-1,6-bisphosphatase activities are increased 9- to 13-fold. Overexpression of the heterologous fructose-1,6-bisphosphatase increases L-lysine production in C. glutamicum lysC T311I by 57.3% on fructose, 48.7% on sucrose, and 43% on glucose. The dry cell weight (DCW) and maximal specific growth rate (μ) are increased by overexpression of heterologous fbp. A “funnel-cask” diagram is first proposed to explain the synergy between precursors supply and NADPH supply. These results lay a definite theoretical foundation for breeding high L-lysine producers via molecular target.  相似文献   

9.
Carbohydrate metabolism during postharvest ripening in kiwifruit   总被引:15,自引:0,他引:15  
Mature fruit (kiwifruit) of Actinidia deliciosa var. deliciosa (A. Chev.), (C.F.) Liang and Ferguson cv. Haywood (Chinese gooseberry) were harvested and allowed to ripen in the dark at 20° C. Changes were recorded in metabolites, starch and sugars, adenine nucleotides, respiration, and sucrose and glycolytic enzymes during the initiation of starch degradation, net starch-to-sucrose conversion and the respiratory climacteric. The conversion of starch to sucrose was not accompanied by a consistent increase in hexose-phosphates, and UDP-glucose declined. The activity of sucrose phosphate synthase (SPS) measured with saturating substrate rose soon after harvesting and long before net sucrose synthesis commenced. The onset of sugar accumulation correlated with an increase in SPS activity measured with limiting substrates. Throughout ripening, until sucrose accumulation ceased, feeding [14C] glucose led to labelling of sucrose and fructose, providing evidence for a cycle of sucrose synthesis and degradation. It is suggested that activation of SPS, amplified by futile cycles, may regulate the conversion of starch to sugars. The respiratory climacteric was delayed, compared with net starchsugar interconversion, and was accompanied by a general decline of pyruvate and all the glycolytic intermediates except fructose-1,6-bisphosphate. The ATP/ ADP ratio was maintained or even increased. It is argued that the respiratory climacteric cannot be simply a consequence of increased availability of respiratory substrate during starch-sugar conversion, nor can it result from an increased demand for ATP during this process.Abbreviations Frul,6bisP fructose-1,6-bisphosphate - Frul,6Pase fructose-1,6-bisphosphatase - Fru6P fructose-6-phosphate - PEP phosphoenolpyruvate - PFK phosphofructokinase - PFP pyrophosphate: fructose-6-phosphate phosphotransferase - SPS sucrose phosphate synthase - UDPGlc uridine 5'-diphosphoglucose We thank Professor G. Costa, University of Udine and Flavia Succhi, University of Bologna for their help in obtaining the fruit in Italy. E.A.M. was the recipient of a travel grant through the NZ/German Technological Agreement.  相似文献   

10.
The significance of the glycolytic and gluconeogenic conversion of fructose-6-phosphate and fructose-1,6-bisphosphate on sugar metabolism was investigated in maize (Zea mays L.) kernels. Maximum extractable activities of the pyrophosphate (PPi) dependent phosphofructokinase, fructose-1,6-bisphosphatase, and the ATP-dependent phosphofructokinase were measured in normal and four maize genotypes, which accumulate relatively more sugars and less starch, to determine how these enzymes are affected by the genetic lesions. Normal endosperm accumulated more dry matter than the high sugar/low starch genotypes, but protein contents did not differ greatly among the genotypes. Mutation of several starch biosynthetic enzymes had little impact on the activities of PPi-dependent phosphofructokinase, fructose-1,6-bisphosphatase, and ATP-dependent phosphofructokinase, despite the altered capacity of the cell to synthesize starch. The PPi-dependent phosphofructokinase appeared to be more active toward glycolysis in all genotypes studied. Activity of the PPi-dependent phosphofructokinase in shrunken (low sucrose synthase genotype) did not differ from the activity in other genotypes, suggesting that the gluconeogenic production of PPi may not be the primary role of the enzyme. As expected, shrunken kernels contained more sugars and less starch than normal kernels throughout kernel development except at the very early stages. Developmental profiles of normal kernels also showed marked changes in the PPi-dependent phosphofructokinase activity, whereas the level of ATP-dependent phosphofructokinase activity remained relatively steady during kernel development. In addition, the ATP-dependent phosphofructokinase, and not the PPi-dependent phosphofructokinase, appeared to correlate more closely with respiration rate. These findings suggest that glycolysis catalyzed by the ATP-dependent phosphofructokinase may serve primarily to support energy production, and glycolysis catalyzed by the PPi-dependent phosphofructokinase may contribute mainly to generation of biosynthetic intermediates.  相似文献   

11.
Summary The involvement of phosphofructokinase (PFK) in glycolytic control was investigated in the marine peanut worm Sipunculus nudus. Different glycolytic rates prevailed at rest and during functional and environmental anaerobiosis: in active animals glycogen depletion was enhanced by a factor of 120; during hypoxic exposure the glycolytic flux increased only slightly. Determination of the mass action ratio (MAR) revealed PFK as a non-equilibrium enzyme in all three physiological situations. Duirng muscular activity the PFK reaction was shifted towards equilibrium; this might account for the observed increase in glycolytic rate under these conditions. PFK was purified from the body wall muscle of S. nudus. The enzyme was inhibited by physiological ATP concentrations and an acidic pH; adenosine monophosphate (AMP), inorganic phosphate (Pi), and fructose-2,6-bisphosphate (F-2,6-P2) served as activators. PFK activity, determined under simulated cellular conditions of rest and muscular work, agreed well with the glycolytic flux in the respective situations. However, under hypoxia PFK activity surpassed the glycolytic rate, indicating that PFK may not be rate-limiting under these conditions. The results suggest that glycolytic rate in S. nudus is mainly regulated by PFK during rest and activity. Under hypoxic conditions the regulatory function of PFK is less pronounced.Abbreviations ATP, ADP, AMP adenosine tri-, di-, monophosphate - DTT dithiothreitol - EDTA ethylene diaminetetra-acetic acid - F-6-P fructose-6-phosphate - F-1,6-P2 fructose-1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate; bwm, body wall muscle; fresh mass, total body weight - G-6-P glucose-6-phosphate - H enthalpy change - K a activation constant - K eq equilibrium constant - K i inhibition constant - K m Michaelis constant - MAR mass action ratio - NMR nuclear magnetic resonance - PFK phosphofructokinase - Pi inorganic phosphate - PLA phospho-l-arginine - SD standard deviation - TRIS, TRIS (hydroxymethyl) aminomethane - TRA triethanolamine hydrochloride - V max maximal velocity  相似文献   

12.
J. N. Pierre  O. Queiroz 《Planta》1979,144(2):143-151
Glycolysis shows different patterns of operation and different control steps, depending on whether the level of Crassulacean acid metabolism (CAM) is low or high in the leaves of Kalanchoe blossfeldiana v.Poelln., when subjected to appropriate photoperiodic treatments: at a low level of CAM operation all the enzymes of glycolysis and phosphoenol pyruvate (PEP) carboxylase present a 12 h rhythm of capacity, resulting from the superposition of two 24h rhythms out of phase; phosphofructokinase appears to be the main regulation step; attainment of high CAM level involves (1) an increase in the peak of capacity occurring during the night of all the glycolytic enzymes, thus achieving an over-all 24h rhythm, in strict allometric coherence with the increase in PEP carboxylase capacity, (2) the establishment of different phase relationships between the rhythms of enzyme capacity, and (3) the control of three enzymic steps (phosphofructokinase, the group 3-P-glyceraldehyde dehydrogenase — 3-P-glycerate kinase, and PEP carboxylase). Results show that the hypothesis of allosteric regulation of phosphofructokinase (by PEP) and PEP carboxylase (by malate and glucose-6-P) cannot provide a complete explanation for the temporal organization of glycolysis and that changes in the phase relationships between the rhythms of enzyme capacity along the pathway and a strict correlation between the level of PEP carboxylase capacity and the levels of capacity of the glycolytic enzymes are important components of the regulation of glycolysis in relation to CAM.Abbreviations CAM crassulacean acid metabolism - F-6-P fructose-6-phosphate - F-bi-P fructose-1,6 biphosphate - G-3-PDH 3-phosphoglyceraldehyde dehydrogenase (NAD), EC 1.2.1.12 - G-6-P glucose-6-phosphate - GSH reduced glutathion - GDH glycerolphosphate dehydrogenase, EC 1.1.1.8 - PEP phosphoenol pyruvate - PEPC PEP carboxylase, EC 4.1.1.31 - PFK phosphofructokinase, EC 2.7.1.11 - 2-PGA 2-phosphoglycerate - 3-PGA 3-phosphoglycerate - PGM phosphoglycerate phosphomutase, EC 5.4.2.1 - T.P. triose phosphates - TPI triose phosphate isomerase, EC 5.3.1.1  相似文献   

13.
Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells   总被引:7,自引:0,他引:7  
Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system—NADP—thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.Abbreviations DTNB dithiolbis(2-nitrobenzoic acid) - FBPase fructose-1,6-bisphosphatase - FTR terredoxin-thioredoxin, reductase - NADP-MDH NADP-malate dehydrogenase - NTR NADP-thioredoxin reductase - SDS sodium-dodecyl sulfate  相似文献   

14.
The primary catabolic pathways in the fungi Penicillium notatum and P. duponti, and Mucor rouxii and M. miehei were examined by measuring the relative rate of 14CO2 production from different carbon atoms of specifically labelled glucose. It was found that these organisms dissimilate glucose predominantly via the Embden--Meyerhof pathway in conjunction with the tricarboxylic acid cycle and to a lesser extent by the pentose phosphate pathway. Phosphofructokinase (EC 2.7.1.11) activity could not be detected initially in Penicillium species because of the interference from mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) and NADH oxidase (EC 1.6.99.3). A combination of differential centrifuging and a heat treatment of Penicillium cell-free extracts in the presence of fructose-6-phosphate removed the interfering enzymes. The kinetic characteristics of phosphofructokinase from P. notatum and M. rouxii are described. The enzyme presents highly cooperative kinetics for fructose-6-phosphate. The kinetics for ATP show no cooperativity and inhibition by excess ATP is observed. The addition of AMP activated the P. notatum enzyme, relieving ATP inhibition; slight inhibition by AMP was observed with the M. rouxii enzyme. In contrast M. rouxii pyruvate kinase (EC 2.7.1.40) is activated 50-fold by fructose-1,6-diphosphate whereas pyruvate kinase from P. notatum and P. duponti were unaffected by fructose-1,6-diphosphate.  相似文献   

15.
Escherichia coli Frag1 was grown under various nutrient limitations in chemostat culture at a fixed temperature, dilution rate and pH both in the presence and the absence of a high concentration of ammonium ions by using either ammonium chloride or dl-alanine as the sole nitrogen source. The presence of high concentrations of ammonium ions in the extracellular fluids of potassium-limited cultures of E. coli Frag1 caused an increase of the specific rate of oxygen consumption of these cultures. In contrast, under phosphate-, sulphate- or magnesium-limited growth conditions no such increase could be observed. The presence of high concentrations of ammonium ions in potassium-limited cultures of E. coli Frag5, a mutant strain of E. coli Frag1 which lacks the high affinity potassium uptake system (Kdp), did not increase the specific rate of oxygen consumption.These results indicate that ammonium ions, very similar to potassium ions both in charge and size, are transported via the K dp leading to a futile cycle of ammonium ions and ammonia molecules (plus protons) across the cytoplasmic membrane. Both the uptake of ammonium ions and the extrusion of protons would increase the energy requirement of the cells and therefore increase their specific rate of oxygen consumption. The involvement of a (methyl)ammonium transport system in this futile cycle could be excluded.  相似文献   

16.
John Kobza  Gerald E. Edwards 《Planta》1987,171(4):549-559
The photosynthetic induction response was studied in whole leaves of wheat (Triticum aestivum L.) following 5-min, 30-min and 10-h dark periods. After the 5-min dark treatment there was a rapid burst in the rate of photosynthesis upon illumination (half of maximum after 30s), followed by a slight decrease after 1.5 more min and then a gradual rise to the maximum rate. During this initial burst in photosynthesis, there was a rapid rise in the level of 3-phosphoglycerate (PGA) and a high PGA/triose-phosphate (triose-P) ratio was obtained. In addition, after the 5-min dark treatment, ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39), ribulose-5-phosphate kinase (EC 2.7.1.19) and chloroplastic fructose-1,6-bisphosphatase (EC 3.1.3.11) maintained a relatively high state of activation, and maximum activation occurred within 1 min of illumination. The results indicate there is a high capacity for CO2 fixation in the cycle upon illumination but attaining maximum rates requires an increase in the ribulose-1,5-bisphosphate (RuBP) pool (adjustment in triose-P utilization for carbohydrate synthesis versus RuBP synthesis). With both the 30-min and 10-h dark pretreatments there was only a slight rise in photosynthesis upon illumination, followed by a lag, then a gradual increase to steady-state (half-maximum rate after 6 min). In contrast to the 5-min dark treatment, the level of PGA was low and actually decreased initially, whereas the level of RuBP increased and was high during induction, indicating that Rubisco is limiting. This regulation via the carboxylase was not reflected in the initial extractable activity, which reached a maximum by 1 min after illumination. The light activation of chloroplastic fructose-1,6-bisphosphatase in leaves darkened for 30 min and 10 h prior to illumination was relatively slow (reaching a maximum after 8 min). However, this was not considered to limit carbon flux through the carbon-fixation cycle during induction since RuBP was not limiting. When photosynthesis approached the maximum steady-state rate, a high PGA/triose-P ratio and a high PGA/RuBP ratio were obtained. This may allow a high rate of photosynthesis by producing a favorable mass-action ratio for the reductive phase (the conversion of PGA to triose phosphate) while stimulating starch and sucrose synthesis.Abbreviations Chl chlorophyll - FBP fructose-1,6-bisphosphate - FBPase fructose-1,6-bisphosphatase - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - PGA 3-phosphoglycerate - Pi inoganic phosphate - Rubisco RuBP carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - Ru5P ribulose-5-phosphate - triose-P triose phosphates (dihydroxyacetone phosphate+glyceraldehyde-3-phosphate)  相似文献   

17.
Summary The effects of environmental anoxia (24 h at 7°C in N2/CO bubbled water) on the maximal activities, selected kinetic properties, and isoelectric points of phosphofructokinase and pyruvate kinase were measured in eight tissues of the goldfish,Carassius auratus, in order to evaluate the role of possible covalent modification of enzymes in glycolytic rate control and metabolic depression during facultative anaerobiosis. Both enzymes showed modified kinetic properties as a result of anoxia in liver, kidney, brain, spleen, gill, and heart. Effects of anoxia on properties of pyruvate kinase included reducedV max, increased S0.5 for phosphoenolpyruvate, increasedK a for fructose-1,6-bisphosphate, and strongly reduced I50 for alanine; all these effects are consistent with an anoxia-induced phosphorylation of pyruvate kinase to produce a less active enzyme form. Anoxia-induced alterations in phosphofructokinase kinetics included tissue-specific changes in S0.5 for fructose-6-phosphate, Hill coefficient,K a values for fructose-2,6-bisphosphate, AMP, and NH 4 + , and I50 values for ATP and citrate, the direction of changes being generally consistent with the production of a less active enzyme form in the anoxic tissue. Enzymes from aerobic versus anoxic skeletal muscle (both red and white) did not differ in kinetic properties but anoxic enzyme forms had significantly different pI values than the corresponding aerobic forms. Enzyme phosphorylation-dephosphorylation as the basis of the anoxia-induced changes in the kinetic properties of PFK and PK was further tested in liver: treatment of the aerobic forms of both enzymes with cAMP dependent protein kinase altered enzyme kinetic properties to those typical of the anoxic enzymes while alkaline phosphatase treatment of the anoxic enzyme forms had the opposite effect. The data provide strong evidence that coordinated glycolytic rate control, as part of an overall metabolic rate depression during anoxia, is mediated via anoxia-induced covalent modification of regulatory enzymes.Abbreviations cAMP cyclic 35 adenosine monophosphate - F16P 2 fructose-1,6-bisphosphate - F26P 2 fructose-2,6-bisphosphate - F6P fructose-6-phosphate - PEP phosphoenolpyruvate - PFK phosphofructokinase (E.C. 2.7.1.11) - PK pyruvate kinase (E.C. 2.7.1.40) - PMSF phenylmethylsulfonyl fluoride  相似文献   

18.
S. Boag  A. R. Portis Jr. 《Planta》1985,165(3):416-423
The levels of stromal photosynthetic intermediates were measured in isolated intact spinach (Spinacia oleracea L.) chloroplasts exposed to reduced osmotic potentials. Stressed chloroplasts showed slower rates of metabolite accumulation upon illumination than controls. Relative to other metabolites sedoheptulose-1,7-bisphosphate (SBP) and fructose-1,6-bisphosphate (FBP) accumulated in the stroma in the stressed treatments. Under these conditions 3-phosphoglycerate (3-PGA) efflux to the medium was restricted. Chloroplasts previously incubated with [32P]KH2PO4 and [32P]dihydroxyacetone phosphate ([32P]DAP) in the dark were characterized by very high FBP and SBP levels prior to illumination. Metabolism of these pools upon illumination increased with increasing pH of the medium but was consistently inhibited in osmotically stressed chloroplasts. The responses of stromal FBP and SBP pools under hypertonic conditions are discussed in terms of both inhibited light activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) and sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37), and likely increases in stromal ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) active-site concentrations.Abbreviations and symbols DAP dihydroxyacetone phosphate - FBP fructose-1,6-bisphosphate - PGA 3-phosphoglycerate - RuBP ribulose-1,5-bisphosphate - SBP sedoheptulose-1,7-bisphosphate - s osmotic potential  相似文献   

19.
Net photosynthesis (CER), assimilate-export rate, sucrose-phosphate-synthase (EC 2.4.1.14) activity, fructose-2,6-bisphosphate content, and 6-phosphofructo-2-kinase (EC 2.7.1.105) activity were monitored in leaves of soybean (Glycine max (L.) Merr.) plants during a 12:12 h day-night cycle, and in plants transferred, at regular intervals throughout the diurnal cycle, to an illuminated chamber for 3 h. In the control plants, assimilate-export rate decreased progressively during the day whereas in transferred plants, a strongly rhythmic fluctuation in both CER and export rate was observed over the 24-h test period. Two maxima during the 24-h period for both processes were observed: one when plants were transferred during the middle of the normal light period, and a second when plants were transferred during the middle of the normal dark period. Overall, the results indicated that export rate was correlated positively with photosynthetic rate and sucrose-phosphate-synthase activity, and correlated negatively with fructose-2,6-bisphosphate levels, and that coarse control and fine control of the sucrose-formation pathway are coordinated during the diurnal cycle. Diurnal changes in sucrose-phosphate-synthase activity were not associated with changes in regulatory properties (phosphate inhibition) or substrate affinities. The biochemical basis for the diurnal rhythm in sucrose-phosphate-synthase activity in the soybean leaf thus appears to involve changes in the amount of the enzyme or a post-translational modification that affects only the maximum velocity.Abbreviations FBPase fructose-1,6-bisphosphatase - SPS sucrose-phosphate synthase - F26BPase fructose-2,6-bisphosphatase - PGI glucose-6-phosphate isomerase - F6P fructose-6-phosphate - F26BP fructose-2,6-bisphosphate - G6P glucose-6-phosphate - CER net carbon exchange rate - Pi inorganic phosphate - DHAP dihydroxyacetone phosphate - PGA glycerate 3-phosphate - F6P,2-kinase 6-phosphofructo-2-kinase Cooperative investigations of the U.S. Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh. Paper No. 10503 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601  相似文献   

20.
Tagatose-1,6-diphosphate was an effective substitute for fructose-1,6-diphosphate in the activation of lactate dehydrogenase (EC 1.1.1.27) from Streptococcus cremoris AM2. The Km for pyruvate, Vmax and 0.5 values (activator concentration at half-maximal velocity) were similar with each activator. Of the other sugar phosphates and glycolytic intermediates tested only glucose-1,6-diphosphate activated the enzyme although the 0.5 value was 200 times that for the ketohexose diphosphates. Lactate dehydrogenases from several other organisms belonging to the Lactobacillaceae were equally stimulated by fructose-1,6-diphosphate and tagatose-1,6-diphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号