首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The critical dark period requirement for flowering of Impatiens balsamina L. cv. Rose, an obligate short day plant, is about 8.5 hours. While GA3 completely substituted for the dark period requirement, Phosfon prolonged it to 9.5 hours. GA3 hastened and Phosfon delayed the initiation of floral buds under all photoperiods. Floral buds opened into flowers only during 8 and 14 hour photoperiods in control and Phosfon-treated plants but during all photoperiods in GA3-treated ones. The delay in floral bud initiation and flowering was correlated with shifting up of the node bearing the first floral bud and flower respectively. While GA3 increased the numher of floral buds and flowers in all photoperiods except 8-hour, Phosfon increased their number in the 14-hour photoperiod only. The number of flowering plants decreased with increasing photoperiod regardless of GA3 and Phosfon application. The effect of Phosfon was completely or partially overcome, depending upon the photoperiod, by simultaneous application of GA3.  相似文献   

2.
Abstact The three plant types ofAmaranthus namely,A. caudatus f.albiflorus, A. caudatus f.caudatus andA. tricolor var.tristis are qualitative short day plants with critical photoperiods 16.0, 15.5 and 15.0 h, respectively. Gibberellins A3, A4+7 and A13 affect extension growth, leaf differentiation and floral induction differently. Thus, in all the three plant types ofAmaranthus, whereas, GA3 and G4+7 enhanced extension growth, GA13 was completely ineffective under both, 24- and 8-h photoperiods. None of the three gibberellins could affect the leaf differentiation. In all the three plant types, flowering was promoted by GA13 and not by other gibberellins tried. GA13 caused promotion was manifested in two manners, firstly by lowering the critical dark period requirement in each inductive cycle, and secondly by shortening the total period taken for the initiation of inflorescence primordia under inductive photoperiods. The floral induction by gibberellins inAmaranthus is contrary to the gibberellin-anthesin concept of Chailakhyan. It is suggested that gibberellins other than GA3 may be playing an important role in floral morphogenesis of short day plants.  相似文献   

3.
Zabka , George G. (State U. Iowa, Iowa City.) Photoperiodism in Amaranthus caudatus. I. A re-examination of the photoperiodic response. Amer. Jour. Bot. 48(1): 21–28. Illus. 1961.—Under the conditions described in this study, Amaranthus caudatus is not subject to inductive short days until it has reached its “sensitive period” or age which is approximately 30 days after the time of germination. Beyond this sensitive period, 2 days are sufficient to initiate inflorescence primordia. Macroscopic identification of this response is possible 2–3 days later, if the plants are retained on short photoperiods. Continued development of the inflorescence is also promoted by short days. This species will also initiate inflorescence primordia on long days of 18 hours duration approximately 60 days beyond germination. Consequently, this is not an obligate short-day plant as previously described. Although A. caudatus will initiate primordia on long days, subsequent normal development of the inflorescence proceeds only under short photoperiods. Plants initiating primordia on long or short photoperiods and then placed on long photoperiods will produce inflorescences which are stubby, generally recurved and spread at the apices. Subsequent flowering and seeding is also delayed. Plants initiating primordia on long days and then placed on short days develop mature inflorescences rapidly but they are divided at the apices and exhibit numerous basal branches.  相似文献   

4.
Gibberellins A3 and A13 cause floral induction inImpatiens balsamina, a qualitative short day plant, under non-inductive 24-h photoperiods (continuous illumination). However, the influence of the two inductive factors,i.e. gibberellins and short days (8-h photoperiods) on the peroxidase enzyme system is different. The total peroxidase activity decreases under both inductive and non-inductive photoperiods, with or without gibberellin treatment. The electrophoretic pattern of isoperoxidases changes only in response to gibberellin treatment. Under 24-h photoperiods, treatment with gibberellins A3 and A13 causes the appearance in the stem of three additional isoenzymes of peroxidase (Rm 0.50, 0.71 and 0.76). These bands do not appear in the leaves, which are non-essential for gibberellin-caused floral induction in this plant. Under 8-h photoperiods also, gibberellins induce the appearance of new isoenzyme bandsi.e. two in the stem (Rm 0.50 and 0.76) and one in the leaves (Rm 0.05). These may be correlated with the synergistic increase in the number of floral buds in these plants in response to simultaneous exposure to two inductive factors.  相似文献   

5.
6.
7.
8.
The environmental control of flowering and sex expression has been studied under controlled environment conditions in three populations of the sedge Carex flava L. A dual floral induction requirement was demonstrated in all populations. Low temperature (< 12°C) was obligatory for, and short photoperiods strongly enhanced, primary induction and inflorescence initiation. Stem elongation and inflorescence development were promoted by long photoperiods, although most plants developed stunted flower stems also under short day (SD) conditions. Growth vigour, abundance of flowering and primary induction requirements varied widely among the populations, with critical exposure times for full flowering varying from less than 9 to about 12 weeks in SD at 9°C, and from about 9 to more than 15 weeks in long days (LD). Sex expression in the normally male terminal spike was shifted towards femaleness by marginal or incomplete primary induction. Primary induction in LD resulted in a complete change to entirely female inflorescences, whereas marginal induction in SD resulted in a similar sex reversal in some plants. The results are discussed in relation to environmental and hormonal factors known to modify sex expression in flowering plants and the significance of the results to Carex systematics and classification.  相似文献   

9.
The capacity of individual branches to store water and fix carbon can have profound effects on inflorescence size and architecture, thus on floral display, pollination, and fecundity. Mixed regression was used to investigate the relation between branch length, a proxy for plant resources, and floral display of Fouquieria splendens (ocotillo), a woody, candelabraform shrub of wide distribution in arid North America. Long branches produced three times as many flowers as short branches, regardless of overall plant size. Long branches also had more complex panicles with more cymes and cyme types than short branches; thus, branch length also influenced inflorescence architecture. Within panicles, increasing the number of cymes by one unit added about two flowers, whereas increasing the number of cyme types by one unit added about 21 flowers. Because flower production is mediated by branch length, and because most plants have branches of various lengths, the floral display of individual plants necessarily encompasses a wide range of inflorescence size and structure.  相似文献   

10.
We are characterizing a suiteof Pisum sativum mutants that alter inflorescence architecture to construct a model for the genetic regulation of inflorescence development in a plant with a compound raceme. Such a model, when compared with those created forAntirrhinum majus andArabidopsis thaliana, both of which have simple racemes, should provide insight into the evolution of the development of inflorescence architecture. The highly conserved nature of cloned genes that regulate reproductive development in plants and the morphological similarities among our mutants and those identified inA. majus andA. thaliana enhance the probability that a developmental genetics approach will be fruitful. Here we describe sixP. sativum mutants that affect morphologically and architecturally distinct aspects of the inflorescence, and we analyze interactions among these genes. Both vegetative and inflorescence growth of the primary axis is affected byUNIFOLIA TA, which is necessary for the function ofDETERMINATE (DET).DET maintains indeterminacy in the first-order axis. In its absence, the meristem differentiates as a stub covered with epidermal hairs.DET interacts withVEGETATIVE1 (VEG1).VEG1 appears essential for second-order inflorescence (I2) development.veg1 mutants fail to flower or differentiate the I2 meristem into a rudimentary stub,det veg1 double mutants produce true terminal flowers with no stubs, indicating that two genes must be eliminated for terminal flower formation inP. sativum, whereas elimination of a single gene accomplishes this inA. thaliana andA. majus. NEPTUNE also affects I2 development by limiting to two the number of flowers produced prior to stub formation. Its role is independent ofDET, as indicated by the additive nature of the double mutantdet nep. UNI, BROC, and PIM all play roles in assigning floral meristem identity to the third-order branch.pim mutants continue to produce inflorescence branches, resulting in a highly complex architecture and aberrant flowers.uni mutants initiate a whorl of sepals, but floral organogenesis is aberrant beyond that developmental point, and the double mutantuni pim lacks identifiable floral organs. A wild-type phenotype is observed inbroc plants, butbroc enhancesthe pim phenotype in the double mutant, producing inflorescences that resemble broccoli. Collectively these genes ensure that only the third-order meristem, not higher- or lower-order meristems, generates floral organs, thus precisely regulating the overall architecture of the plant. Gene symbols used in this article: For clarity a common symbolization is used for genes of all species discussed in this article. Genes are symbolized with italicized capital letters. Mutant alleles are represented by lowercase, italicized letters. In both cases, the number immediately following the gene symbol differentiates among genes with the same symbol. If there are multiple alleles, a hyphen followed by a number is used to distinguish alleles. Protein products are represented by capital letters without italics.  相似文献   

11.
Xerophyta humilis is a monocotyledonous resurrection plant found in arid and semi-arid summer rainfall areas of Southern Africa, which undergoes desiccation to survive periods of extreme drought. In order for X. humilis to thrive in their natural habitat, correct timing of the floral transition, coincident with wet periods of sufficient duration, is essential. In this study, the environmental cues involved in the regulation of the floral transition in X. humilis were analysed. No single parameter tested was sufficient to induce flowering, but it was found that flowering was promoted by a combination of a cool period experienced while plants were hydrated, followed by transfer to long-day photoperiods of relatively high light intensity. Plants retained competence to flower if desiccated during exposure to cold, but no flowering occurred if dried prior to this exposure. These data suggest that exposure to cold temperature facilitates vernalisation and subsequent exposure to high light and long days are inductive for floral initiation in X. humilis.  相似文献   

12.
The developmental anatomy of Mirabilis jalapa was investigated during the first 90 days of growth. The primary thickening meristem (PTM) initially differentiates in the pericycle at the top of the cotyledonary node 18 days after germination, then basipetally in the pericycle through the hypocotyl. The PTM differentiates acropetally into the stem and in the pericycle of the primaiy root, commencing 22 days after germination. Endodermis is easily identifiable in hypocotyls as well as in primary roots because of Casparian thickenings in its cells. It has not been definitely identified in stems. There are three rings of primary vascular bundles in the stem. The PTM differentiates as segments of cambium in a layer of cells (probably in the pericycle) on an arc between vascular bundles of the outer bundle ring. Later, arcs of PTM differentiate externally to the phloem of each bundle. Each arc forms a connection between original segments of PTM lying on either side of each vascular bundle. Thus, the PTM becomes a continuous cylinder. The PTM differentiates in the pericycle outside vascular tissue in the hypocotyl and root. Differentiation of the PTM and the mode of secondary thickening is similar in plants exposed to short (8-hr) and to long (18-hr) photoperiods, but some differences were observed. The PTM differentiates closer to the stem apex in all plants over 18 clays of age growing vegetatively under long photoperiods. That is, the diffuse lateral meristem, in whose cells the PTM differentiates in young intemodes, is shorter in nearly all investigated plants growing in long photoperiods. The hypocotyl and base of the primary root of 40-day-old plants in short photoperiods were more enlarged than those of the same age plants in long photoperiods; but, at the end of 64 days, the hypocotyl and primaiy root base were larger in plants growing under short photoperiods. Thirty-four days after seed germination, flower initiation occurs in plants exposed to short photoperiods. One hundred fifty days after seed germination, flowers differentiate on plants exposed to long photoperiods.  相似文献   

13.
Higher plant shoot meristems are multicellular structures that are the site of postembryonic organogenesis. Analysis of chimeric plants has indicated that cells in different regions of the meristem can interact with each other so that their activities are coordinated during developmental processes. Correlations have not been demonstrated between events at a molecular level and the interactions observed at a phenotypic level in chimeras. Two recent papers(1,2) address this problem by reporting that expression of the floricaula gene in one region of chimeric snapdragon meristems is sufficient to promote the transition from inflorescence to floral development and to induce the expression of the downstream organ identity genes deficiens and plena throughout the meristem.  相似文献   

14.
The development of the shoot can be divided into a series of distinct developmental phases based on leaf character-istics and inflorescence architecture. The relationship between phase length, defined by the number of organs produced, and the timing of the floral induction (V3-I1 transition) is relatively ill defined. Characterization of the serrate mutant (CS3257; Arabidopsis Biological Research Center) revealed defects in both vegetative and inflores-cence phase lengths, the timing of phase transitions, leaf number, the leaf initiation rate, and phyllotaxy. The timing of floral induction, however, is the same as in wild-type in extended short days as well as in short days, whereas the flowering time response to photoperiod is unaffected. SERRATE is shown to be required for the development of early juvenile leaves (V1) and to promote late juvenile leaf development (V2), while suppressing adult leaf (V3) and inflorescence development (I1 and I2). The se mutation supports the hypothesis that the timing of floral induction is independent of vegetative and inflorescence phase lengths. The role of SERRATE in the regulation of phase length and leaf identity is discussed.  相似文献   

15.
Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.

Mutations in a single auxin importer gene uncover broad and unexpected effects in nearly all aspects of the development of shoots, inflorescences, and flowers.  相似文献   

16.
Kawanabe T  Fujimoto R 《Plant science》2011,181(4):496-503
Arabidopsis thaliana is a quantitative long-day plant with the timing of the floral transition being regulated by both endogenous signals and multiple environmental factors. fwa is a late-flowering mutant, and this phenotype is due to ectopic FWA expression caused by hypomethylation at the FWA locus. The floral transition results in the activation of the floral development process, the key regulators being the floral meristem identity genes, AP1 (APETALA1) and LFY (LEAFY). In this study, we describe inflorescence abnormalities in plants overexpressing the Arabidopsis lyrata FT (AlFT) and A. thaliana FWA (AtFWA) genes simultaneously. The inflorescence abnormality phenotype was present in only a proportion of plants. All plants overexpressing both AlFT and AtFWA flowered earlier than fwa, suggesting that the inflorescence abnormality and earlier flowering time are caused independently. The inflorescence abnormality phenotype was similar to that of the double mutant of ap1 and lfy, and AP1 and LFY genes were down-regulated in the abnormal inflorescences. From these results, we suggest that not only does ectopic AtFWA expression inhibit AtFT/AlFT function to delay flowering but that overexpression of AtFWA and AlFT together inhibits AP1 and LFY function to produce abnormal inflorescences.  相似文献   

17.
The effect of leaf shape variation on plant-herbivore interactions has primarily been studied from the perspective of host seeking behavior. Yet for leaf shape to affect plant-herbivore coevolution, there must be reciprocal effects of leaf shape variation on herbivore consumption and performance. We investigated whether alternative leaf morphs affected the performance of three generalist insect herbivores by taking advantage of a genetic polymorphism and developmental plasticity in leaf shape in the Ivyleaf morning glory, Ipomoea hederacea. Across four experiments, we found variable support for an effect of leaf shape genotype on insects. For cabbage loopers (Trichoplusia ni) and corn earworms (Helicoverpa zea) we found opposing, non-significant trends: T. ni gained more biomass on lobed genotypes, while H. zea gained more biomass on heart-shaped genotypes. For army beetworms (Spodoptera exigua), the effects of leaf shape genotype differed depending on the age of the plants and photoperiod of growing conditions. Caterpillars feeding on tissue from older plants (95 days) grown under long day photoperiods had significantly greater consumption, dry biomass, and digestive efficiency on lobed genotypes. In contrast, there were no significant differences between heart-shaped and lobed genotypes for caterpillars feeding on tissue from younger plants (50 days) grown under short day photoperiods. For plants grown under short days, we found that S. exigua consumed significantly less leaf area when feeding on mature leaves than juvenile leaves, regardless of leaf shape genotype. Taken together, our results suggest that the effects of leaf shape variation on insect performance are likely to vary between insect species, growth conditions of the plant, and the developmental stage and age of leaves sampled. Handling editor: May Berenbaum.  相似文献   

18.
19.
This paper deals with the effect of 100 mg/1 each of GA3 TIBA and IAA singly and in combination with each other on stem elongation, development of lateral branches and floral bud initiation in Impatiens balsamina plants exposed to 8-, 16- and 24-h photoperiods. GA3 enhances stem elongation, the enhancing effect decreasing with IAA as well as with TIBA during 8-h but increasing during 16- and 24-h photoperiods. It decreases the number of lateral branches, the decrease being greatest during 16-, less during 8- and the least during 24-h photoperiods. The time taken for floral buds to initiate with and length of branches during 16-h photoperiods. During 8-h photoperiods, IAA delays the initiation of floral buds, while GA3 hastens it when used together with TIBA or IAA or both. GA3 increases the number of floral buds on the main axis but decreases it on lateral branches, while TIBA decreases the number on the main axis but increases it on lateral branches. IAA reduces the number of floral buds on the main axis only when used alone, but on both the main axis as well as on lateral branches when used together with GA3 and TIBA. Floral buds were not produced on lateral branches when plants were treated with GA3, TIBA and IAA all together. GA3 and TIBA induced floral buds even under non-inductive photoperiods, the number of buds and reproductive nodes being less in TIBA- than in GA3-treated plants during 24-h photoperiods. The time taken for floral buds to initiate with GA3 and TIBA during noninductive photoperiods is much longer than that during 8-h inductive photoperiods with or without GA3 or TIBA application. IAA completely inhibits the GA3- and TIBA-caused induction during 24-h, but only delays it and reduces the number of reproductive nodes and floral buds during 16-h photoperiods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号