首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
翅多型现象是昆虫非遗传多型性的一种表现,包括不具飞行能力的短翅型或无翅型,以及可以进行长距离迁飞的长翅型或有翅型。翅多型现象常发生在可以携带病原并将其传播给植物宿主的媒介昆虫中,对植物病害的时空分布与暴发有重要影响。本文从翅型分化的遗传规律、诱导因素、分子机制和伴随翅型分化的其他生理表现4个方面,对植物病原主要传播媒介蚜虫和飞虱的翅型分化研究进行综述和梳理。昆虫翅型分化的诱导因素主要包括温度、湿度和光周期等非生物因素以及虫口密度、宿主营养、病毒等生物因素;而其内在的分子机制大多是通过胰岛素/胰岛素样生长因子信号(IIS)通路、c-Jun氨基末端激酶(c-Jun NH 2-terminal kinase,JNK)信号通路、Wingless和嗅觉受体SaveOrco等调控。翅型分化的同时伴随着生理状态的变化,表现为短翅型具有更强的繁殖能力和长翅型含有更丰富的飞行肌结构成分。目前,昆虫翅型分化的研究尚不够完善,有许多需要解答的问题,如找到胰岛素/胰岛素样生长因子信号通路中真正发挥功能的靶基因,JNK如何调控翅型分化以及虫媒病毒影响媒介昆虫翅型的分子机理。本综述可为控制虫媒病原的传播以及其他昆虫翅多型的研究提供参考。  相似文献   

2.
利用石蜡切片的方法,观察并比较了褐飞虱Nilaparvata lugens (Stal)长翅型和短翅型纯系各龄若虫及成虫的翅芽和间接飞行肌的发育情况。发现在4龄的第8h以后间接飞行肌就开始分化,长翅型若虫的间接飞行肌正常发育而短翅型若虫间接飞行肌的发育则被抑制。在5龄初始时方可明显观察到翅芽分化,短翅型若虫前翅芽细胞增殖速度明显慢于长翅型,并且其后翅芽停止发育。本文还比较了长翅型雌、雄性个体之间间接飞行肌的发育情况。  相似文献   

3.
曾杨  朱道弘  赵吕权 《昆虫学报》2012,55(2):241-246
为探讨长颚斗蟋Velarifictorus asperses (Walker)翅型分化的生态学意义, 对室内饲养获得的长翅和短翅型雌成虫飞行肌和卵巢的发育, 以及长、 短翅型雌成虫的生殖力和寿命进行了比较研究。结果表明: 羽化当日, 长翅型雌成虫飞行肌重38.68±9.15 mg, 显著高于短翅型的17.53±4.44 mg (P<0.05); 而二者卵巢重量无显著差异(P>0.05), 分别为4.69±1.04 mg和4.88±0.97 mg。羽化后8 d内, 长翅型雌成虫飞行肌重量增加了48.9%, 短翅型雌成虫飞行肌重量无明显增加; 而短翅型雌成虫卵巢的重量增加至93.5±11.7 mg, 约为长翅型雌成虫的4.5倍。短翅型雌成虫的产卵前期显著短于长翅型, 其早期产卵量及总产卵量亦显著高于长翅型; 而两翅型雌成虫中后期产卵量及寿命无显著差异(P>0.05)。此外, 长翅型雌成虫在羽化后12 d开始发生飞行肌的降解, 飞行肌降解个体的卵巢重量显著高于未降解个体, 与短翅型相似。结果提示, 飞行肌与生殖系统的发育之间存在资源分配的权衡关系(trade-off), 且这种资源分配的差异可能会导致长翅型与短翅型个体在生活史策略上出现分化, 即长翅型个体具有飞行能力, 而短翅型个体则在生殖方面获得更高的收益, 且飞行肌的降解可能是长翅型个体由飞行转向生殖发育的生理信号。  相似文献   

4.
昆虫翅型分化的表型可塑性机制   总被引:1,自引:0,他引:1  
王小艺  杨忠岐  魏可  唐艳龙 《生态学报》2015,35(12):3988-3999
翅多型现象在昆虫中广泛存在,是昆虫在飞行扩散和繁殖能力之间权衡的一种策略,对种群的环境适应性进化具有重要的意义。目前在植食性昆虫中研究较多,有关寄生蜂的翅型分化鲜见报道。综述了昆虫翅型分化的表型可塑性机制。遗传因素和环境因素均对昆虫翅的发育产生影响,基因型对翅型的决定具有显著作用,外界环境条件,包括温度、光周期、食物质量、自身密度、外源激素等因素对昆虫翅的发育也产生重要的调节作用,从而产生翅的非遗传多型性现象。此外,天敌的寄生或捕食作用可能会诱导某些昆虫的翅型产生隔代表型变化。对昆虫产生翅多型现象的生态学意义及其在生物进化过程中的作用进行了讨论,并探讨了寄生性昆虫翅型分化机制在生物防治上的可能应用途径。功能基因组学和表观遗传学的进一步发展可望为彻底揭示昆虫翅型分化机制提供新的机遇和技术手段。  相似文献   

5.
沙蟋翅多型性的调控机理   总被引:1,自引:0,他引:1  
沙蟋Gryllus firmus Zera&Denno成虫的后翅有长翅和短翅2种类型,是翅多型性机理研究的极佳模式昆虫。长翅成虫从第5日龄开始迁飞,而短翅成虫的主要特点是繁殖。除了翅的表型差异外,长翅成虫的飞行肌发达,呈褐色;卵巢幼小,直到飞行停止后(大约在10d以后)才开始发育。而短翅成虫的飞行肌退化并呈乳白色;卵巢在第4日龄就发育成熟,表现为卵巢硕大。对翅多型性机理的深入研究,将有利于了解沙蟋迁飞和扩散的内在机理,为准确地预测预报该虫的发生提供重要的理论和实际依据。文章概述沙蟋翅多型性与外界环境的相互关系,以及体内生化代谢和内分泌激素等的变化对该虫迁飞和生殖的影响和作用,进而探讨翅多型的遗传机制和进化意义等问题。  相似文献   

6.
昆虫翅多型现象的控制机理   总被引:1,自引:0,他引:1  
昆虫翅多型现象是指相同性别的昆虫,在翅长等方面具有二种或更多种不同类型的个体。例如,重要的水稻害虫褐飞虱(Nilaparvata luens)具长翅型、短翅型两种类型;而世界性的害虫蚜虫类,则出现有翅型和无翅型两种类型。  相似文献   

7.
吴红军  赵吕权  曾杨  朱道弘 《生态学报》2014,34(11):2963-2970
前期研究表明,在食物充足的条件下,翅二型丽斗蟋雌成虫长、短翅型间存在着资源投入和收益的权衡关系(trade-off);而雄成虫长短翅型间不存在此类权衡关系。在自然条件下,昆虫可能遭受食物缺乏的胁迫,因而进一步就食物胁迫对丽斗蟋飞行肌和繁殖发育的影响进行了研究。结果表明,在食物胁迫的条件下,长翅雌虫仍维持飞行肌的发育,但繁殖发育受到显著的抑制;而短翅雌虫飞行肌显著降解,繁殖发育亦维持在较高水平。说明即使是营养缺乏时,其雌成虫长、短翅型也依然存在资源配置的差异,具飞行肌和繁殖发育的权衡关系。长翅雄虫飞行肌的重量与食物充足组并无显著差异,但精巢的干重显著降低;而短翅雄虫在食物胁迫条件下飞行肌显著降解,但其精巢重量与食物充足组并无显著差异。可以认为,丽斗蟋雄虫的长、短翅型间也存在飞行肌和繁殖发育的权衡关系。  相似文献   

8.
张魁艳  安淑文  杨定 《昆虫知识》2006,43(2):274-278
介绍了双翅目昆虫翅退化的5种主要类型,即短翅型、狭翅型、小翅型、弱翅型和无翅型;及翅退化双翅目昆虫的一些特殊生境诸如高原、海洋、地表以下之类。同时就双翅目昆虫翅退化的原因和机理进行了讨论。  相似文献   

9.
安志芳  于居龙  彭娟  张超  刘向东 《昆虫学报》2014,57(11):1306-1314
【目的】为了明确光周期和遗传因子在稻飞虱翅型分化中的作用, 研究了3种稻飞虱(褐飞虱Nilaparvata lugens、白背飞虱Sogatella furcifera和灰飞虱Laodelphax striatellus)翅型纯系或近纯系在不同光照时数下的翅型分化比率。【方法】以经过5~45代连续翅型筛选后的褐飞虱、白背飞虱和灰飞虱的长翅型和短翅型纯系或近纯系为材料, 在室内分别测定了其在长光照(16和20 h)、短光照(4~12 h)和正常光照(14 h) 3类光周期条件下饲养后, 雌、雄成虫中长翅和短翅个体出现的比率及存活率。【结果】白背飞虱和灰飞虱的长翅型纯系M♂×M♀或短翅型纯系B♂×B♀在不同光周期下的翅型比率均无显著差异(P>0.05)。褐飞虱短翅型近纯系B♂×B♀的雌虫短翅率和成虫总短翅率在不同光周期下也无显著差异(P>0.05), 但雄虫短翅率在正常光照14 h和短光照4 h下显著高于长光照20 h下的(P<0.05)。当褐飞虱短翅型达到纯系后, 其后代翅型在6~16 h光照条件下无显著差异。褐飞虱长翅型近纯系M♂×M♀的后代虽有短翅个体出现, 但是雌虫和雄虫的各自短翅率在不同光周期下无显著差异(P>0.05), 仅总体短翅率在12 h光照条件下的显著高于16 h下的(P<0.05)。褐飞虱长、短翅型杂交筛选品系M♂×B♀的雌虫短翅率随光照时数的延长而升高; 灰飞虱杂交筛选品系M♂×B♀的短翅雄虫随光照时数的缩短而增多(P<0.05), 但当筛选代次达到45代时, 这种趋势不再显著。3种稻飞虱长翅型和短翅型纯系或近纯系若虫的存活率会稍低于长、短翅型杂交后代的存活率, 但长、短翅型品系的存活率在6~16 h光照条件下差异不显著(P>0.05)。【结论】稻飞虱翅型分化对光周期的反应受飞虱本身遗传背景的影响, 翅型纯系后代个体的翅型分化对光周期变化不敏感。  相似文献   

10.
王娟  朱道弘  曾杨 《生态学报》2014,34(22):6606-6612
曲脉姬蟋Modicogryllus confirmatus Walker具有明显的翅二型现象。为探究环境及遗传如何影响曲脉姬蟋亚热带种群的翅型分化,对饲养于不同光周期、温度和密度条件下若虫羽化后的翅型比进行了调查,并对长、短翅型蟋蟀进行了3代遗传筛选和杂交试验,研究了光周期、温度、种群密度和遗传对曲脉姬蟋广西种群翅型分化的影响。结果表明:光周期和种群密度对曲脉姬蟋的翅型分化均无影响,而温度对其翅型分化具有调控作用。正常范围内的温度变化(25℃、30℃)对其翅型分化无显著影响,而35℃的极高温则显著降低曲脉姬蟋的长翅率,说明其翅型分化并不是对季节变化的适应,而高温胁迫可引起短翅化。对不同翅型进行了3代筛选,结果表明,往短翅型选拔会引起雌、雄虫的短翅率都明显下降,而往长翅型选拔时,雌、雄虫的短翅率均维持在极低水平;不同亲本组合的后代间的长翅率有差异,说明曲脉姬蟋的翅型分化可能受多基因调控。  相似文献   

11.
12.
Juvenile hormone titers and reproductive characteristics were measured in adult wing and flight-muscle morphs of the wing-polymorphic cricket, Gryllus firmus, during the first week of adulthood. This species has three morphs: one flight capable morph with fully-developed wings and fully-developed flight muscles [LW(F)], one flightless morph with fully-developed wings and histolyzed (non-functional) flight muscles [LW(H)], and another flightless morph with underdeveloped (short) wings and underdeveloped flight muscles (SW). Both flightless morphs [LW(H) and SW] had larger ovaries which contained a greater number of postvitellogenic eggs compared with the flight capable [LW(F)] morph. The juvenile hormone titer was significantly higher in SW compared with LW(F) females on days 3-7 of adulthood. On these days, the JH titer also was significantly higher in the other flightless morph, LW(H), compared with flight-capable [LW(F)] females as determined by one statistical test, but did not differ significantly by another test. The JH titer was positively correlated with ovarian mass or terminal oocyte length, but not with the number of post-vitellogenic eggs. This study is the first direct comparison of juvenile hormone titers in adult wing morphs of a wing-polymorphic insect. Results indicate that an elevated juvenile hormone titer may be at least partly responsible for one of the most distinctive features of wing-polymorphic species, the increased early fecundity of flightless females.  相似文献   

13.
麦长管蚜虫龄鉴别特征   总被引:1,自引:0,他引:1  
【目的】为明确麦长管蚜Sitobion avenae (Fabricius)虫龄鉴别特征, 达到快速鉴别的目的。【方法】在成像观察的基础上, 测定无翅型和有翅型个体不同虫龄的体长、 体宽、 头壳宽、 触角长、 腹管长和后足胫节长6项指标。【结果】麦长管蚜不同翅型个体的体长、 体宽、 头壳宽、 触角长、 腹管长和后足胫节长在虫龄间均存在显著差异, 其中体长、 体宽、 头壳宽和触角长在相邻虫龄之间重叠程度大, 后足胫节长的重叠百分比极小或无重叠; 除有翅型个体4龄若蚜和成蚜之间存在13.93%的重叠外, 腹管长在不同翅型的其他相邻虫龄之间重叠百分比均极小或无重叠, 说明后足胫节长和腹管长可作为虫龄鉴定的主要特征。翅、 触角和尾片的其他外部形态特征在虫龄间也存在一定差异: 3-4龄有翅型若蚜和成蚜虫个体前胸的膨大程度及其翅的长度明显大于同一龄期的无翅型个体, 可用于蚜虫翅型的分辨以及3-4龄有翅若蚜和成蚜的鉴别; 麦长管蚜1和2龄若蚜触角均为5节, 3-4龄若蚜和成蚜的触角均为6节; 同时, 除了成蚜具有完整的尾片外, 1-4龄若蚜尾片均不发达, 说明触角的节数和尾片的发达程度可作为麦长管蚜不同龄期形态鉴别的辅助特征。【结论】以腹管和后足胫节作为麦长管蚜虫龄鉴别的主要特征, 配合其他辅助特征, 如翅的大小、 触角的节数以及尾片的发达程度等, 可达到快速鉴别不同翅型不同龄期蚜虫的目的。  相似文献   

14.
Derek A. Roff 《Oecologia》1984,63(1):30-37
Summary The widespread occurrence of wing polymorphisms in insects suggests that the possession of wings and ability to fly adversely affect components of the insect's life characteristics that contribute to its Darwinian fitness. This hypothesis was tested by an analysis of the differences in life history parameters of the macropterous and micropterous morphs of the two cricket species G. firmus and A. fasciatus. In both species there were no differences in development time or adult survival between the two morphs. Significant differences in head width were not consistent between the two species but in both sexes of G. firmus and females of A. fasciatus (insufficient males for analysis) long-winged individuals weighed more than short-winged individuals with the same head width. In both species egg production is delayed in macropterous females. The cumulative fecundity of the micropterous morph is greater than the macropterous morph in both species but only in G. firmus is the difference statistically significant. A. fasciatus frequently loose their wings but no such loss has been observed in G. firmus. There is a significant increase in egg production after the loss of the wings. These results are in accord with those of Tanaka (1976) for the cricket, Pteronemobius taprobanensis.Breeding experiments indicate that in G. firmus the wing polymorphism is under genetic control. The decrease in fecundity is sufficiently large that genotypes producing only macropterous offspring could only persist in highly unstable environments where continuous dispersal was imperative for survival. However, the reproductive cost of a genotype producing a small percentage of macropterous individuals is slight. The fitness that accrues to a genotype producing a few dispersing offspring is likely to offset the small reproductive cost and hence wing polymorphisms should be favoured.  相似文献   

15.
The role of juvenile hormone (JH) and juvenile hormone esterase (JHE) in regulating wing morph determination was studied in the cricket Modicogryllus confirmatus. JHE activities were significantly higher in nascent long-winged (LW) vs short-winged (SW) crickets during the latter half but not during the first half of the last stadium. The magnitude and direction of the activity differences were similar to those previously documented between wing morphs of the cricket, Gryllus rubens. In contrast, activities of general esterase, an enzyme or group of enzymes with no demonstrated role in regulating the JH titer in insects, showed no or only minor differences between morphs. The magnitude and direction of the JHE activity variation is consistent with a regulatory role for this enzyme in some aspect of wing dimorphism. However, the timing of the differences (exclusively during the last half of the last stadium) argue against a role in regulating wing length development per se. Single or multiple applications of juvenile hormone-III to nascent LW individuals during the first few days of the last stadium significantly redirected development from long to short wings. Multiple applications of acetone, by itself, also increased the production of short-winged adults. For most treatments, all individuals with shortened wings also had undeveloped flight muscles. These data suggest that JH may play a role in wing morph determination in M. confirmatus but that it affects a different aspect of the polymorphism from JHE.  相似文献   

16.
Phenotypic characters may covary negatively because they are in a trade-off or positively because they contribute to a single function. Genetic correlations can be used to test the validity and generality of these functional relationships by indicating the level of genetic integration and checking the conditions under which they are expressed. Phenotypic correlations indicate that there is a widespread trade-off between flight capability and early fecundity in insects. Different wing morphs (long and short wing) are thought to have a suite of reproductive and flight capability traits. In a half-sib mating experiment, we estimated phenotypic relationships between two flight-capability-related characters (flight muscle condition, wing morph) and two components of early fecundity (number of eggs in the ovaries, number of eggs laid), as well as genetic correlations relating wing morph and both components of fecundity in the wing-dimorphic cricket, Gryllus firmus. The number of eggs in the ovaries and the number of eggs laid were negatively correlated phenotypically and genetically with wing length morph (i.e., long wings associated with low fecundity). Both fecundity characters differed between wing morphs, but only if flight muscle was present and not histolyzed. The phenotypic and genetic correlations between fecundity characters were not significant. This suggests that the phenotypic relationship between ovary development and eggs laid is complex, they are not genetically integrated, and they may evolve independently. However, both early fecundity characters are functionally and genetically integrated within the trade-off to a similar degree. Finally, the trade-off affects early fecundity of both wing morphs suggesting that the functional relationship depends on flight muscle size. Received: 1 December 1998 / Accepted: 20 May 1999  相似文献   

17.
Spring and summer morphs of Lycaena phlaeas daimio Seitz. are characterized by a wing colour of red and reddish brown, respectively.When newly ecdysed pupae destined to be summer or intermediate morphs (90 or 10%) by larval exposure to long days (long-day pupae) were decapitated or decerebrated, more than half of the operated pupae developed into intermediate and spring morphs (48 and 7%). But, in pupae destined to be spring, intermediate, or summer morphs (72, 22 or 4%) (short-day pupae) these operations did not produce any significant changes in the seasonal morph.Brains excised from newly ecdysed long-day pupae were transplanted into the abdomen of decapitated short-day pupae of the same age. The implants changed most recipients into summer and intermediate morphs (46 and 36%). However, when the brains of short-day pupae were used, no significant changes occurred in the seasonal morph.When long-day or short-day pupae were treated with 20-hydroxyecdysone just after pupation, they produced more reddish wings than those of the untreated or saline-treated controls. When the application was followed by chilling, already known to induce the reddish morph, the effects of both treatments are cumulative so that more reddish adults developed.The results indicate that the brain of long-day pupae secretes a factor causing the wing to be brownish. In the absence (or low titre) of the factor, most short-day pupae develop into spring or intermediate morphs. Furthermore, ecdysteroids make the wing more reddish, when applied to newly ecdysed pupae.  相似文献   

18.
A short‐winged morph was recently discovered in the migratory locust, Locusta migratoria. It is different from the normal, long‐winged morph not only in forewing length but also in hind femur length, displaying a dimorphism. To understand the significance of this dimorphism, other morphological characters were compared between the two morphs, and the time of differentiation of wing‐pad length was investigated. Wing weights were heavier in the long‐winged morph than in the short‐winged morph. This result showed that the short‐winged morph is not formed by a failure of wing expansion. No obvious morph‐specific differences were observed in wing venation, but wing allometry studies indicated that the distal areas of the fore‐ and hindwings were disproportionally reduced in the short‐winged morph compared to the long‐winged morph. The morphological differentiation of the wing pad between the two morphs was observed at the penultimate nymphal stage. The flight muscle was well developed in the two morphs, and no sign of flight muscle histolysis was detected in either morph after adult emergence. An analysis of adult body dimensions suggested that the density‐dependent phase shifts known for the long‐winged morph of this locust were also exhibited by the short‐winged morph, demonstrating that these shifts are not specific to the migratory long‐winged morph.  相似文献   

19.
SUMMARY Many taxa of winged insects have independently lost the ability to fly and often possess reduced wings. Species exhibiting natural variation in wing morphology provide opportunities to investigate the genetics and developmental processes underlying the evolution of alternative wing morphs. Although many wing dimorphic species of beetles are known, the underlying mechanisms of variation are not well understood in this insect order. Here, we examine wing development of wild type and natural wingless morphs of the two-spot ladybird beetle, Adalia bipunctata . We show that both pairs of wings are distally truncated in the wingless adults. A laboratory population of the wingless morph displays heritable variation in the degree of wing truncation, reflecting reduced growth of the larval wing discs. The coexistence of variable wingless morphs supports the idea that typical monomorphic wingless insects may be the result of a gradual evolution of wing loss. Gene expression patterns in wing discs suggest that the conserved gene network controlling wing development in wild-type Adalia is disrupted in the dorsoventral patterning pathway in the wingless morphs. Previous research on several species of ant has revealed that the anteroposterior wing patterning pathway is disrupted in wingless workers. Future investigations should confirm whether interruptions in both taxa are limited to the patterning pathways found thus far, or whether there are also shared interruption points. Nevertheless, our results highlight that diverse mechanisms of development are likely to underlie the evolution of wingless insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号