首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study directly assessed, for the first time, whether there was a change in brain cell motion-restricted membrane phospholipids in vivo in patients with schizophrenia with mild to moderate negative symptoms, by quantification of the underlying broad resonance signal of cerebral 31-phosphorus magnetic resonance scans. Cerebral 31-phosphorus magnetic resonance spectroscopy was carried out in 16 schizophrenia patients and 16 age- and gender-matched normal controls. Spectra were obtained from 70×70×70 mm3 voxels using an image-selected in vivo spectroscopy pulse sequence. There was no significant difference in the broad resonances between the two groups, with the mean (S.E.) percentage signal being 59.4 (5.6) for the patients and 53.5 (5.9) for the controls. The phosphomonoesters and phosphodiesters narrow signals also did not differ significantly, their ratio being 0.26 (0.01) in the patients and 0.25 (0.01) in the controls. These results appear to be at variance with the changes expected under the membrane phospholipid hypothesis of schizophrenia.  相似文献   

2.
The aim of the study was to examine the association of arachidonic acid-related signal transduction with cerebral metabolism in patients with schizophrenia who have violently and dangerously offended while psychotic. Cerebral 31-phosphorus magnetic resonance spectroscopy was carried out in 11 male patients with schizophrenia who had violently offended (homicide, attempted murder, or wounding with intent to cause grievous bodily harm) while psychotic. Spectra were obtained from 70 x 70 x 70 mm(3) voxels using an image-selected in vivo spectroscopy pulse sequence. Niacin flush testing results were quantified as the volumetric niacin response. There was a strong, and negative, correlation between the volumetric niacin response and the metabolite concentration of inorganic phosphate expressed as a ratio of the total 31-phosphorus signal (p<0.005). Our results suggest that patients with schizophrenia who have violently offended and have poor phospholipid-related signal transduction may have higher levels of cerebral energy metabolism.  相似文献   

3.
There is biochemical evidence to suggest that membrane phospholipid metabolism may be impaired in some patients with schizophrenia. The aim of this study was to test the hypothesis that patients with schizophrenia who have violently offended while psychotic suffer from changes in cerebral phospholipid metabolism. Cerebral 31-phosphorus magnetic resonance spectroscopy was carried out in 15 male patients with schizophrenia who had violently offended (homicide, attempted murder, or wounding with intent to cause grievous bodily harm) while psychotic and in a control group of 13 age-matched healthy male control subjects. Spectra were obtained from 70x70x70mm(3) voxels in the brain using an image-selected in vivo spectroscopy pulse sequence. betaNTP was lower (P < 0.04) and gammaNTP was higher (P < 0.04) in the patient group compared with the normal control group. Our results are suggestive of increased cerebral energy metabolism taking place in the forensic patients.  相似文献   

4.
The phosphomonoester narrow resonance of human in vivo 31-phosphorus neurospectroscopy studies is believed to index the anabolism of cell membrane phospholipids and has therefore been used to study phospholipid anabolism in the brain non-invasively. However, it is an indirect measure of phospholipid metabolism and although it does contain major contributions from phosphocholine, phosphoethanolamine and L-phosphoserine, which are important precursors of membrane phospholipids, many other metabolites, including sugar phosphates, can contribute to this region of the spectrum, and separation of these different peaks is not achieved with the present in vivo methodology. Recently, it has become possible to analyze signal directly from the cell membrane motion-restricted phospholipids by analysis of a broad resonance signal. We therefore hypothesized that there should be a positive correlation between the phosphomonoester narrow resonance and the broad resonance signal if the former does indeed index cell membrane phospholipid anabolism. Cerebral 31-phosphorus magnetic resonance spectroscopy was carried out in 54 human subjects, including normal volunteers and patients with schizophrenia in order to widen the range of phosphomonoester and broad resonance values. Spectra were obtained from 70×70×70 mm3 voxels using an image-selected in vivo spectroscopy pulse sequence. There was a highly significant positive correlation between the phosphomonoester resonances and the broad resonance signals (r=0.404, P<0.005). These results are consistent with the hypothesis that the phosphomonoester narrow resonance does indeed index cell membrane phospholipid anabolism in brain studies.  相似文献   

5.
A novel approach to understanding the pathophysiology of schizophrenia has been the investigation of membrane composition and functional perturbations, referred to as the "Membrane Hypothesis of Schizophrenia." The evidence in support of this hypothesis has been accumulating in findings in patients with schizophrenia of reductions in phospholipids and essential fatty acids various peripheral tissues. Postmortem studies indicate similar reductions in essential fatty acids in the brain. However, the use of magnetic resonance spectroscopy (MRS) has provided an opportunity to examine aspects of membrane biochemistry in vivo in the living brain. MRS is a powerful, albeit complex, noninvasive quantitative imaging tool that offers several advantages over other methods of in vivo biochemical investigations. It has been used extensively in investigating brain biochemistry in schizophrenia. Phosphorus MRS (31P MRS) can provide important information about neuronal membranes, such as levels of phosphomonoesters that reflect the building blocks of neuronal membranes and phosphodiesters that reflect breakdown products. 31P MRS can also provide information about bioenergetics. Studies in patients with chronic schizophrenia as well as at first episode prior to treatment show a variety of alterations in neuronal membrane biochemistry, supportive of the membrane hypothesis of schizophrenia. Below, we will briefly review the principles underlying 31P MRS and findings to date. Magnetic resonance spectroscopy (MRS) is a powerful, albeit complex, imaging tool that permits investigation of brain biochemistry in vivo. It utilizes the magnetic resonance imaging hardware. It offers several advantages over other methods of in vivo biochemical investigations. MRS is noninvasive, there is no radiation exposure, does not require the use of tracer ligands or contrast media. Because of it is relatively benign, repeated measures are possible. It has been used extensively in investigating brain biochemistry in schizophrenia.  相似文献   

6.
Magnetic resonance spectroscopy is one of the most important tools for quantitative analysis of chemical composition and structure, and this non-invasive technique is now being applied in vivo to study biochemical processes in those neuropsychiatric disorders that are part of the phospholipid spectrum. Interpretation of a clinical magnetic resonance spectrum can provide information about membrane phospholipid turnover, cellular energetics, neuronal function, selected neurotransmitter activity and intracellular pH. Cerebral proton and phosphorus magnetic resonance spectroscopy findings are summarized in relation to schizophrenia, dyslexia and chronic fatigue syndrome.  相似文献   

7.
NMR is useful for both 1H-magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). We undertook to combine these two merits of NMR for in vivo characterization of living rat heart in wide bore (9 cm) superconducting magnet under high magnetic field (6.4 Tesla). Spatial resolution of 1H-MRI attained 0.1 mm by spin warp method. Then, depth-selected, EKG-gated 31P-MRS was performed, adjusting the detection area to cover the heart that was identified by the preceding 1H-MRI. Three evidences that 31P-SMR signal chiefly originated from the heart without cross talk of adjacent organs indicated that combination of 1H-MRI and in vivo 31P-MRS under high magnetic field in whole animal is promising for more accurate evaluation of cardiac muscle metabolism.  相似文献   

8.
Muscle fatigue, which is defined as the decline in muscle performance during exercise, may occur at different sites along the pathway from the central nervous system through to the intramuscular contractile machinery. Historically, both impairment of neuromuscular transmission and peripheral alterations within the muscle have been proposed to be involved in the development of fatigue. However, according to the more recent studies, muscle energetics would have a key role in this process. Intramyoplasmic accumulation of inorganic phosphate (P(i)) and limitation in ATP availability are frequently proposed as the causative factors of fatigue development. Although attractive, these hypotheses have been elaborated on the basis of experimental results obtained in vitro and their physiological relevance has never been clearly demonstrated in vivo. In that context, non-invasive methods such as 31-phosphorus magnetic resonance spectroscopy ((31)P MRS) and electromyographic (EMG) recordings have been employed to understand both metabolic and electrical aspects of muscle fatigue under physiological condition. The main results of these studies are reviewed in the present paper.  相似文献   

9.
We used in vivo phosphorus magnetic resonance spectroscopy (31P-MRS) to study the effect of CoQ10 on the efficiency of brain and skeletal muscle mitochondrial respiration in ten patients with mitochondrial cytopathies. Before CoQ, brain [PCr] was remarkably lower in patients than in controls, while [Pi] and [ADP] were higher. Brain cytosolic free [Mg2+] and delta G of ATP hydrolysis were also abnormal in all patients. MRS also revealed abnormal mitochondrial function in the skeletal muscles of all patients, as shown by a decreased rate of PCr recovery from exercise. After six-months of treatment with CoQ (150 mg/day), all brain MRS-measurable variables as well as the rate of muscle mitochondrial respiration were remarkably improved in all patients. These in vivo findings show that treatment with CoQ in patients with mitochondrial cytopathies improves mitochondrial respiration in both brain and skeletal muscles, and are consistent with Lenaz's view that increased CoQ concentration in the mitochondrial membrane increases the efficiency of oxidative phosphorylation independently of enzyme deficit.  相似文献   

10.
The broad background resonance observed in the in vivo 31P NMR spectra of adult murine heads was investigated in terms of phosphorus atoms in bone and membrane phospholipids. The broad background resonance was found to be weak in a juvenile and increase with advance of age. Fractionation of adult gerbil heads showed that the broad signal was derived from bone and membrane, of which myelin is the major component. The two origins of the broad background resonance exhibited considerably different line shapes in spectra, which enabled us to extract the membrane component from an intact murine head spectrum (sequential subtraction method). By the use of this method, the development of membrane in gerbil brain at various age grades could be estimated. The membrane component was shown to be suppressed in a mutant mouse, jimpy, which has a deficiency in myelin formation ability. Furthermore, the value of T1 of the membrane component was estimated to be 0.9 sec, which was in good agreement with previously reported values for excised brain.  相似文献   

11.
Using nuclear magnetic resonance spectroscopy, we establish that the N-terminal domain of the yeast vacuolar R-SNARE Nyv1p adopts a longin-like fold similar to those of Sec22b and Ykt6p. Nyv1p is sorted to the limiting membrane of the vacuole via the adaptor protein (AP)3 adaptin pathway, and we show that its longin domain is sufficient to direct transport to this location. In contrast, we found that the longin domains of Sec22p and Ykt6p were not sufficient to direct their localization. A YXX phi-like adaptin-dependent sorting signal (Y31GTI34) unique to the longin domain of Nyv1p mediates interactions with the AP3 complex in vivo and in vitro. We show that amino acid substitutions to Y31GTI34 (Y31Q;I34Q) resulted in mislocalization of Nyv1p as well as reduced binding of the mutant protein to the AP3 complex. Although the sorting of Nyv1p to the limiting membrane of the vacuole is dependent upon the Y31GTI34 motif, and Y31 in particular, our findings with structure-based amino acid substitutions in the mu chain (Apm3p) of yeast AP3 suggest a mechanistically distinct role for this subunit in the recognition of YXX phi-like sorting signals.  相似文献   

12.

Purpose

The dopamine hypothesis suggests that excessive dopamine release results in the symptoms of schizophrenia. The purpose of this study was to elucidate the dopaminergic and noradrenergic neurons using 3-T neuromelanin magnetic resonance imaging (MRI) in patients with schizophrenia and healthy control subjects.

Methods

We prospectively examined 52 patients with schizophrenia (M: F = 27∶25, mean age, 35 years) and age- and sex-matched healthy controls. Using a 3T MRI unit, we obtained oblique T1-weighted axial images perpendicular to the brainstem. We measured the signal intensity and area for the substantia nigra (SNc), midbrain tegmentum, locus ceruleus (LC), and pons. We then calculated the contrast ratios (CR) for the SNc (CRSN) and LC (CRLC), which were compared between patients and healthy controls using unpaired t-tests.

Results

The SNc and LC were readily identified in both patients and healthy controls as areas with high signal intensities in the posterior part of the cerebral peduncle and in the upper pontine tegmentum. The CRSN values in patients were significantly higher than those in healthy controls (10.89±2.37 vs. 9.6±2.36, p<0.01). We observed no difference in the CRLC values between the patients and healthy controls (14.21±3.5 vs. 13.44±3.37, p = 0.25). Furthermore, there was no difference in area of the SNc and LC between schizophrenia patients and controls.

Conclusions

Neuromelanin MRI might reveal increased signal intensity in the SNc of patients with schizophrenia. Our results indicate the presence of excessive dopamine products in the SNc of these patients.  相似文献   

13.
A system consisting of isolated rat hepatocytes immobilized in agarose threads continuously perifused with oxygenated Krebs-Henseleit (KH) solution has been found to maintain cell viability with excellent metabolic activity for more than 6 h. The hepatocytes were monitored by phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy at 4.7 Tesla, by measurement of oxygen consumption and by the leakage of lactate dehydrogenase (LD) and alanine aminotransferase (ALT). The data obtained were comparable to those found for an isolated perfused whole liver in vitro. The effects of allyl alcohol (AA), ethanol, and 4-acetaminophenol (AP) were examined. A solution of 225 microM AA perifused for 90 min caused the disappearance of the beta-phosphate resonance of adenosine triphosphate (ATP) in the 31P-NMR spectra, a 7-fold increase in LD leakage and a 70% reduction in oxygen consumption. Ethanol (1.0 M) perifused for 90 min reduced the beta-ATP signal intensity ratio by 20%, the phosphomonoester (PME) signal by 50% and inorganic phosphate (Pi) by 33% (P less than 0.05). AP (10 mM) caused only mild liver-cell damage. The results demonstrate that perifused immobilized hepatocytes can be used as a liver model to assess the effects of a wide range of chemicals and other xenobiotics by NMR spectroscopy.  相似文献   

14.
Increases in choline containing metabolites have been associated with a number of disorders, including malignant cell growth. In this study, high resolution magic angle spinning (1)H nuclear magnetic resonance spectroscopy was employed to monitor metabolite changes during cell transfection, and an increase in phosphocholine was detected. This increase appears to be correlated with cell membrane disruption associated with the insertion of plasmid DNA into cells, since the level of phosphocholine in mock transfected cells was comparable to that of control cells. These data suggest choline containing metabolite changes detected in vivo using magnetic resonance spectroscopy relate to cell membrane disruption.  相似文献   

15.
Time-resolved 31-phosphorus nuclear magnetic resonance spectroscopy (31P-MRS) of the biceps femoris muscles was performed during exercise and recovery in six healthy sedentary male subjects (maximal oxygen uptake; 46.6 +/- 1.7 (SEM) ml.kg-1.min-1), 5 male sprinters (56.2 +/- 2.5), and 5 male long-distance runners (73.6 +/- 2.2). Each performed 4 min of knee flexion exercises at absolute values of 1.63 W and 4.90 W, followed by 5 min of recovery in a prone position in a 2.1 T superconducting magnet with a 67 cm bore. 31P-MRS spectra were recorded every 12.8 s during the rest-exercise-recovery sequence. Computer-aided contour analysis and pixel imaging of phosphocreatine peaks (PCr) and inorganic phosphate (Pi) were performed. The work loads in the present study were selected as mild exercise (1.63 W) and heavy exercise (4.90 W), corresponding to 18-23% and 54-70% of maximal exercise intensity. Long-distance runners showed a significantly smaller decrement in PCr and less acidification at a given exercise intensity compared to those shown by sedentary subjects. The transient responses of PCr and Pi during recovery were characterized by first-order kinetics. After exercise, the recovery rates of PCr and Pi were significantly faster in long-distance runners than in sedentary subjects (P < 0.05). Since it is postulated that PCr resynthesis is controlled by aerobic metabolism and mitochondrial creatine kinase, it is suggested that the faster PCr and Pi recovery rates and decreased acidification seen in long-distance runners during and after exercise might be attributed to their greater capacity for aerobic metabolism.  相似文献   

16.
Recent research in autism spectrum disorder (ASD) has aroused interest in anterior cingulate cortex and in the neurometabolite glutamate. We report two studies of pregenual anterior cingulate cortex (pACC) in pediatric ASD. First, we acquired in vivo single-voxel proton magnetic resonance spectroscopy ((1)H MRS) in 8 children with ASD and 10 typically developing controls who were well matched for age, but with fewer males and higher IQ. In the ASD group in midline pACC, we found mean 17.7% elevation of glutamate + glutamine (Glx) (p<0.05) and 21.2% (p<0.001) decrement in creatine + phosphocreatine (Cr). We then performed a larger (26 subjects with ASD, 16 controls) follow-up study in samples now matched for age, gender, and IQ using proton magnetic resonance spectroscopic imaging ((1)H MRSI). Higher spatial resolution enabled bilateral pACC acquisition. Significant effects were restricted to right pACC where Glx (9.5%, p<0.05), Cr (6.7%, p<0.05), and N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (10.2%, p<0.01) in the ASD sample were elevated above control. These two independent studies suggest hyperglutamatergia and other neurometabolic abnormalities in pACC in ASD, with possible right-lateralization. The hyperglutamatergic state may reflect an imbalance of excitation over inhibition in the brain as proposed in recent neurodevelopmental models of ASD.  相似文献   

17.
Transgenic mice are increasingly used to probe genetic aspects of cardiovascular pathophysiology. However, the small size and rapid rates of murine hearts make noninvasive, physiological in vivo studies of cardiac bioenergetics and contractility difficult. The aim of this report was to develop an integrated, noninvasive means of studying in vivo murine cardiac metabolism, morphology, and function under physiological conditions by adapting and modifying noninvasive cardiac magnetic resonance imaging (MRI) with image-guided (31)P magnetic resonance spectroscopy techniques used in humans to mice. Using spatially localized, noninvasive (31)P nuclear magnetic resonance spectroscopy and MRI at 4.7 T, we observe mean murine in vivo myocardial phosphocreatine-to-ATP ratios of 2.0 +/- 0.2 and left ventricular ejection fractions of 65 +/- 7% at physiological heart rates ( approximately 600 beats/min). These values in the smallest species studied to date are similar to those reported in normal humans. Although these observations do not confirm a degree of metabolic scaling with body size proposed by prior predictions, they do suggest that mice can serve, at least at this level, as a model for human cardiovascular physiology. Thus it is now possible to noninvasively study in vivo myocardial bioenergetics, morphology, and contractile function in mice under physiological conditions.  相似文献   

18.
Cast immobilization is associated with decreases in muscle contractile area, specific force, and functional ability. The pathophysiological processes underlying the loss of specific force production as well as the role of metabolic alterations are not well understood. The aim of this study was to quantify changes in the resting energy-rich phosphate content and specific force production after immobilization. (31)P-magnetic resonance spectroscopy, three-dimensional magnetic resonance imaging, and isometric strength testing were performed in healthy subjects and patients with an ankle fracture after 7 wk of immobilization and during rehabilitation. Muscle biopsies were obtained in a subset of patients. After immobilization, there was a significant decrease in the specific plantar flexor torque and a significant increase in the inorganic phosphate (P(i)) concentration (P < 0.001) and the P(i)-to-phosphocreatine (PCr) ratio (P < 0.001). No significant change in the PCr content or basal pH was noted. During rehabilitation, both the P(i) content and the P(i)-to-PCr ratio decreased and specific torque increased, approaching control values after 10 wk of rehabilitation. Regression analysis showed an inverse relationship between the in vivo P(i) concentration and specific torque (r = 0.65, P < 0.01). In vitro force mechanics performed on skinned human muscle fibers demonstrated that varying the P(i) levels within the ranges observed across individuals in vivo (4-10 mM) changed force production by approximately 16%. In summary, our findings clearly depict a change in the resting energy-rich phosphate content of skeletal muscle with immobilization, which may negatively impact its force generation.  相似文献   

19.
The first application of phosphorous 31 (31P) and proton (1H) nuclear magnetic resonance (NMR) spectroscopy to the analysis of the metabolic profiles of skin flaps in a rat model and of human skin grafts is presented. Resonances of adenosine triphosphate (ATP), phosphocreatine (PCr), and inorganic phosphate (Pi) were identified in 31P nuclear magnetic resonance spectra. Resonances of phosphocreatine, creatine (Cr), and lactate (Lac) were identified in 1H nuclear magnetic resonance spectra. The most significant finding was the substantial presence of phosphocreatine as the major high-energy phosphometabolite in mammalian skin, a finding which heretofore has not been widely recognized. An energy shuttle between phosphocreatine and ATP is operative in skin to buffer the fall in ATP during ischemic (anaerobic) insult. Inability to replenish exhausted phosphocreatine reserves predictively correlates with eventual flap necrosis. We have defined and analyzed temporal fluxes in the phosphocreatine-creatine and phosphocreatine plus creatine-lactate ratios by proton nuclear magnetic resonance. Both are sensitive, accurate, and unambiguous early prognostic indices of eventual flap outcome. These findings support the concept that the fate of a flap may be established as early as 3 hours after elevation and have laid the groundwork for development and application of noninvasive in vivo nuclear magnetic resonance spectroscopy to the study of skin flaps in animals and humans.  相似文献   

20.
Chronic administration of capsiate is known to accelerate whole-body basal energy metabolism, but the consequences in exercising skeletal muscle remain very poorly documented. In order to clarify this issue, the effect of 2-week daily administration of either vehicle (control) or purified capsiate (at 10- or 100-mg/kg body weight) on skeletal muscle function and energetics were investigated throughout a multidisciplinary approach combining in vivo and in vitro measurements in mice. Mechanical performance and energy metabolism were assessed strictly non-invasively in contracting gastrocnemius muscle using magnetic resonance (MR) imaging and 31-phosphorus MR spectroscopy (31P-MRS). Regardless of the dose, capsiate treatments markedly disturbed basal bioenergetics in vivo including intracellular pH alkalosis and decreased phosphocreatine content. Besides, capsiate administration did affect neither mitochondrial uncoupling protein-3 gene expression nor both basal and maximal oxygen consumption in isolated saponin-permeabilized fibers, but decreased by about twofold the K m of mitochondrial respiration for ADP. During a standardized in vivo fatiguing protocol (6-min of repeated maximal isometric contractions electrically induced at a frequency of 1.7 Hz), both capsiate treatments reduced oxidative cost of contraction by 30-40%, whereas force-generating capacity and fatigability were not changed. Moreover, the rate of phosphocreatine resynthesis during the post-electrostimulation recovery period remained unaffected by capsiate. Both capsiate treatments further promoted muscle mass gain, and the higher dose also reduced body weight gain and abdominal fat content. These findings demonstrate that, in addition to its anti-obesity effect, capsiate supplementation improves oxidative metabolism in exercising muscle, which strengthen this compound as a natural compound for improving health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号