首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

15N uniformly labeled lac repressor and lac repressor headpiece were prepared. 15N NMR spectra of lac repressor were shown resolution inadequate for detailed study while the data showed that the 15N labeled N-terminal part of the protein is quite suitable for this type of study allowing future investigation of the specific interaction of the lac repressor headpiece with the lac operator. We report here the total assignment of proton 1H and nitrogen 15NH backbone resonances of this headpiece in the free state. Assignments of the 15N resonances of the protein were obtained in a sequential manner using heteronuclear multiple quantum coherence (HMQC), relayed HMQC nuclear Overhauser and relayed HMQC-HOHAHA spectroscopy. More than 80 per cent of residues were assigned by their 15NH(i)-N1H(i+1) and 15NH(i)-N1(i-1) connectivities. Values of the 3JNHα splitting for 39 of the 51 residues of the headpiece were extracted from HMQC and HMQC-J. The observed 15NH(i)-CβH cross peaks and the 3JNHα coupling constants values are in agreement with the three α-helices previously described [Zuiderweg, E.R.P., Scheek, R.M., Boelens, R., van Gunsteren, W.F. and Kaptein, R., Biochimie 67, 707 (1985)]. The 3JNHα coupling constants can be now used for a more confident determination of the lac repressor headpiece. From these values it is shown that the geometry of the ends of the second and third α-helices exhibit deviation from the canonical α-helix structure. On the basis of NOEs and 3JNHα values, the geometry of the turn of the helix-turn-helix motif is discussed.  相似文献   

2.
The solution conformation of uniformly labeled 15N human thioredoxin has been studied by two-dimensional heteronuclear 15N-1H nuclear magnetic resonance spectroscopy. Assignments of the 15N resonances of the protein are obtained in a sequential manner using heteronuclear multiple quantum coherence (HMQC), relayed HMQC-correlated (COSY), and relayed HMQC-nuclear Overhauser (NOESY) spectroscopy. Values of the 3JHN alpha splittings for 87 of the 105 residues of thioredoxin are extracted from a variant of the HMQC-COSY experiment, known as HMQC-J, and analyzed to give accurate 3JHN alpha coupling constants. In addition, long-range C alpha H(i)-15N(i + 1) scaler connectivities are identified by heteronuclear multiple bond correlation (HMBC) spectroscopy. The presence of these three-bond scaler connectivities in predominantly alpha-helical regions correlates well with the secondary structure determined previously from a qualitative analysis of homonuclear nuclear Overhauser data [Forman-Kay, J. D., Clore, G. M., Driscoll, P.C., Wingfield, P. T., Richards, F. M., & Gronenborn, A. M. (1989) Biochemistry 28, 7088-7097], suggesting that this technique may provide additional information for secondary structure determination a priori. The accuracy with which 3JHN alpha coupling constants can be obtained from the HMQC-J experiment permits a more precise delineation of the beginnings and ends of secondary structural elements of human thioredoxin and of irregularities in these elements.  相似文献   

3.
The assignment of the 1H, 15N, 13CO, and 13C resonances of recombinant human interleukin-4 (IL-4), a protein of 133 residues and molecular mass of 15.4 kDa, is presented based on a series of 11 three-dimensional (3D) double- and triple-resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N/13C-labeled IL-4 with an isotope incorporation of greater than 95% for the protein expressed in yeast. Five independent sequential connectivity pathways via one-, two-, and three-bond heteronuclear J couplings are exploited to obtain unambiguous sequential assignments. Specifically, CO(i)-N(i + 1),NH(i + 1) correlations are observed in the HNCO experiment, the C alpha H(i), C alpha (i)-N(i + 1) correlations in the HCA(CO)N experiment, the C alpha(i)-N(i + 1),NH(i + 1) correlations in the HNCA and HN(CO)CA experiments, the C alpha H(i)-N(i + 1),NH(i + 1) correlations in the H(CA)NH and HN(CO)HB experiments, and the C beta H(i)-N(i + 1),NH(i + 1) correlations in the HN(CO)HB experiments. The backbone intraresidue C alpha H(i)-15N(i)-NH(i) correlations are provided by the 15N-edited Hartmann-Hahn (HOHAHA) and H(CA)NH experiments, the C beta H(i)-15N(i)-NH(i) correlations by the 15N-edited HOHAHA and HNHB experiments, the 13C alpha(i)-15N(i)-NH(i) correlations by the HNCA experiment, and the C alpha H(i)-13C alpha(i)-13CO(i) correlations by the HCACO experiment. Aliphatic side-chain spin systems are assigned by 3D 1H-13C-13C-1H correlated (HCCH-COSY) and total correlated (HCCH-TOCSY) spectroscopy. Because of the high resolution afforded by these experiments, as well as the availability of multiple sequential connectivity pathways, ambiguities associated with the limited chemical shift dispersion associated with helical proteins are readily resolved. Further, in the majority of cases (88%), four or more sequential correlations are observed between successive residues. Consequently, the interpretation of these experiments readily lends itself to semiautomated analysis which significantly simplifies and speeds up the assignment process. The assignments presented in this paper provide the essential basis for studies aimed at determining the high-resolution three-dimensional structure of IL-4 in solution.  相似文献   

4.
The peptide resonances of the 1H and 15N nuclear magnetic resonance spectra of ferrocytochrome c2 from Rhodobacter capsulatus are sequentially assigned by a combination of 2D 1H-1H and 1H-15N spectroscopy, the latter performed on 15N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show alpha-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two alpha-helices, there are three single 3(10) turns, 70-72, 76-78, and 107-109. In addition alpha H-NHi+1 and alpha H-NHi+2 NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochrome c2 of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c2. The NOE data show that this insertion forms a loop, probably an omega loop. 1H-15N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c2 of R. capsulatus with the highly homologous horse heart cytochrome c [Wand, A. J., Roder, H., & Englander, S. W. (1986) Biochemistry 25, 1107-1114] shows that this helix is less stable in cytochrome c2.  相似文献   

5.
Lambda cro repressor complex with OR3 DNA: 15N NMR observations   总被引:1,自引:0,他引:1  
P Leighton  P Lu 《Biochemistry》1987,26(23):7262-7271
15N NMR studies of the coliphage lambda cro repressor are presented. The protein has been uniformally labeled with 15N, and individual amino acids have been incorporated. Although the four C-terminal residues (63-66) were not located in the original crystallographic studies of the protein [Anderson, W.F., Ohlendorf, D.H., Takeda, Y., & Matthews, B.W. (1981) Nature (London) 290, 754], it has been proposed that the C-terminus is involved in DNA binding [Ohlendorf, D.H., Anderson, W.F., Fisher, R.G., Takeda, Y., & Matthews, B.W. (1982) Nature (London) 298, 718]. These experiments give direct verification of that proposal. [15N]Amide resonances are assigned for residues 56, 62, 63, and 66 in the C-terminus by enzymatic digestion and by 13C-15N double-labeling experiments. 15N[1H] nuclear Overhauser effects show that the C-terminus is mobile on a nanosecond time scale. Exchange experiments using distortionless enhancement via polarization transfer, which is sensitive to proton exchange on the 1/JNH (10 ms) time scale, indicate that the amide protons in the C-terminus are freely accessible to solvent. It is thus a flexible arm in solution. The binding of both specific operator and nonspecific DNA is shown to reduce both the mobility and the degree of solvent exposure of this arm. Two-dimensional 15N-1H correlation experiments using 15N-labeled cro reveal inconsistencies with previously reported 1H NMR assignments for the lysine amides [Weber, P.L., Wemmer, D.E., & Reid, B.R. (1985) Biochemistry 24, 4553]. This result suggests that those assignments require reexamination, illustrating the utility of 15N labeling for obtaining 1H resonance assignments of biomolecules. Furthermore, isomerization of the peptide bond of Pro-59, which has been previously suggested (Weber et al., 1985) and which would significantly affect the properties of the C-terminal arm, is shown to not occur.  相似文献   

6.
A complex between the lac repressor headpiece and a fully symmetric tight-binding 22 bp lac operator was studied by 2D NMR. Several 2D NOE spectra were recorded for the complex in both H2O and 2H2O. Many NOE cross-peaks between the headpiece and DNA could be identified, and changes in the chemical shift of the DNA protons upon complex formation were analyzed. Comparison of these data with those obtained for a complex between the headpiece and a 14 bp half-operator, studied previously [Boelens, R., Scheek, R. M., Lamerichs, R. M. J. N., de Vlieg, J., van Boom, J. H., & Kaptein, R. (1987) in DNA-ligand interactions (Guschlbauer, W., & Saenger, W., Eds.) pp 191-215, Plenum, New York], shows that two headpieces form a specific complex with the 22 bp lac operator in which each headpiece binds in the same way as found for the 14 bp complex. The orientation of the recognition helix in the major groove of DNA in these complexes is opposite with respect to the dyad axis to that found for other repressors.  相似文献   

7.
The assignments of individual magnetic resonances of backbone nuclei of a larger protein, ribonuclease H from Escherichia coli, which consists of 155 amino acid residues and has a molecular mass of 17.6 kDa are presented. To remove the problem of degenerate chemical shifts, which is inevitable in proteins of this size, three-dimensional NMR was applied. The strategy for the sequential assignment was, first, resonance peaks of amides were classified into 15 amino acid types by 1H-15N HMQC experiments with samples in which specific amino acids were labeled with 15N. Second, the amide 1H-15N peaks were connected along the amino acid sequence by tracing intraresidue and sequential NOE cross peaks. In order to obtain unambiguous NOE connectivities, four types of heteronuclear 3D NMR techniques, 1H-15N-1H 3D NOESY-HMQC, 1H-15N-1H 3D TOCSY-HMQC, 13C-1H-1H 3D HMQC-NOESY, and 13C-1H-1H 3D HMQC-TOCSY, were applied to proteins uniformly labeled either with 15N or with 13C. This method gave a systematic way to assign backbone nuclei (N, NH, C alpha H, and C alpha) of larger proteins. Results of the sequential assignments and identification of secondary structure elements that were revealed by NOE cross peaks among backbone protons are reported.  相似文献   

8.
The backbone 1H and 15N resonances of unligated staphylococcal nuclease H124L (recombinant protein produced in Escherichia coli whose sequence is identical to the nuclease produced by the V8 strain of Staphylococcus aureus) have been assigned by three-dimensional (3D) 1H-15N NOESY-HMQC NMR spectroscopy at 14.1 tesla. The protein sample used in this study was labeled uniformly with 15N to a level greater than 95% by growing the E. coli host on a medium containing [99% 15N]ammonium sulfate as the sole nitrogen source. The assignments include 82% of the backbone 1HN and 1H alpha resonances as well as the 15N resonances of non-proline residues. Secondary structural elements (alpha-helices, beta-sheets, reverse turns, and loops) were determined by analysis of patterns of NOE connectivities present in the 3D spectrum.  相似文献   

9.
The assignment of the aliphatic 1H and 13C resonances of IL-1 beta, a protein of 153 residues and molecular mass 17.4 kDa, is presented by use of a number of novel three-dimensional (3D) heteronuclear NMR experiments which rely on large heteronuclear one-bond J couplings to transfer magnetization and establish through-bond connectivities. These 3D NMR experiments circumvent problems traditionally associated with the application of conventional 2D 1H-1H correlation experiments to proteins of this size, in particular the extensive chemical shift overlap which precludes the interpretation of the spectra and the reduced sensitivity arising from 1H line widths that are often significantly larger than the 1H-1H J couplings. The assignment proceeds in two stages. In the first step the 13C alpha chemical shifts are correlated with the NH and 15N chemical shifts by a 3D triple-resonance NH-15N-13C alpha (HNCA) correlation experiment which reveals both intraresidue NH(i)-15N(i)-13C alpha (i) and some weaker interresidue NH(i)-15N(i)-C alpha (i-1) correlations, the former via intraresidue one-bond 1JNC alpha and the latter via interresidue two-bond 2JNC alpha couplings. As the NH, 15N, and C alpha H chemical shifts had previously been sequentially assigned by 3D 1H Hartmann-Hahn 15N-1H multiple quantum coherence (3D HOHAHA-HMQC) and 3D heteronuclear 1H nuclear Overhauser 15N-1H multiple quantum coherence (3D NOESY-HMQC) spectroscopy [Driscoll, P.C., Clore, G.M., Marion, D., Wingfield, P.T., & Gronenborn, A.M. (1990) Biochemistry 29, 3542-3556], the 3D triple-resonance HNCA correlation experiment permits the sequence-specific assignments of 13C alpha chemical shifts in a straightforward manner. The second step involves the identification of side-chain spin systems by 3D 1H-13C-13C-1H correlated (HCCH-COSY) and 3D 1H-13C-13C-1H total correlated (HCCH-TOCSY) spectroscopy, the latter making use of isotropic mixing of 13C magnetization to obtain relayed connectivities along the side chains. Extensive cross-checks are provided in the assignment procedure by examination of the connectivities between 1H resonances at all the corresponding 13C shifts of the directly bonded 13C nuclei. In this manner, we were able to obtain complete 1H and 13C side-chain assignments for all residues, with the exception of 4 (out of a total of 15) lysine residues for which partial assignments were obtained. The 3D heteronuclear correlation experiments described are highly sensitive, and the required set of three 3D spectra was recorded in only 1 week of measurement time on a single uniformly 15N/13C-labeled 1.7 mM sample of interleukin-1 beta.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
A A Yee  J D O'Neil 《Biochemistry》1992,31(12):3135-3143
An alamethicin, secreted by the fungus Trichoderma viride and containing a glutamine at position 18 instead of the usual glutamic acid, has been uniformly labeled with 15N and purified by HPLC. The extent of 15N incorporation at individual backbone and side-chain sites was found to vary from 85% to 92%, as measured by spin-echo difference spectroscopy. The proton NMR spectrum of the peptide dissolved in methanol was assigned using correlation spectroscopies and nuclear Overhauser enhancements (NOE) measured in the rotating frame. The 15N resonances were assigned by the 2D 1H-15N correlation via heteronuclear multiple-quantum coherence experiment. NOEs and 3JNHC alpha H coupling constants strongly suggest that, in methanol, from Aib-3 to Gly-11, the peptide adopts a predominantly helical conformation, in agreement with previous 1H NMR studies [Esposito, G., Carver, J.A, Boyd, J., & Campbell, I.D. (1987) Biochemistry 26, 1043-1050; Banerjee, U., Tsui, F.-P., Balasubramanian, T.N., Marshall, G.R., & Chan, S I. (1983) J. Mol. Biol. 165, 757-775]. The conformation of the carboxyl terminus (12-20) is less well determined, partly because the amino acid composition reduces the number of NOEs and coupling constants which can be determined by 1H NMR spectroscopy. The 3JNHC alpha H in the C-terminus suggest the possibility of conformational averaging at Leu-12, Val-15, and Gln-19, an interpretation which is supported by a recent molecular dynamics simulation of the peptide [Fraternalli, F. (1990) Biopolymers 30, 1083-1099].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Proton exchange in lac repressor headpiece was studied by COSY and 2D NOE spectroscopy. The exchange rates of amide protons, stabilized by the hydrogen bonds of the three alpha-helices of the headpiece, could be determined quantitatively. The exchange rates in these helices showed repetitive patterns of about three to four residues. A correlation with the position of the amide proton in the interior or the exterior of the alpha-helix of the protein was found. The exchange data strongly support the validity of the three-dimensional structure, as determined recently (Kaptein, R. et al., J. Mol. Biol. 182, 179-182 (1985)).  相似文献   

12.
1H and 15N NMR study of human lysozyme.   总被引:1,自引:0,他引:1  
The 15N signal assignment of human lysozyme was carried out by using 1H-1H and 1H-15N two dimensional experiments. To solve the severe overlap problem of the NH signals, uniform labeling of the protein with 15N was introduced. The uniformly 15N labeled protein was prepared using a high-expression system of Saccharomyces cerevisiae. From the analyses of 1H and 15N NMR spectra, all of the backbone 15N signals of the molecule were assigned to each specific residue in the amino acid sequence. Recently published proton signal assignments [Redfield & Dobson (1990) Biochemistry, 29, 7201-7214] were confirmed by these complementary data. In addition, assignments were extended to side chain 15NH2 groups of asparagine and glutamine. Elements of secondary structure were deduced from the pattern of sequential and medium-range NOE connectivities. Two beta-sheets and four alpha-helices could be identified in the protein, which were in good agreement with those determined by X-ray crystallography. The interaction between human lysozyme and its inhibitor N-acetyl-chitotriose was investigated by 15N-1H HMQC spectra. Most of the 15N-NH cross-peaks in the spectra were separated well enough to be followed during the titration experiment. Residues whose NH proton signals decrease in intensity upon complex formation, are located mainly around subsites B, C, and D. Local conformational changes were observed around the fourth helix adjacent to the cleft of human lysozyme.  相似文献   

13.
A complex between the headpiece amino-terminal residues 1-56 of lac repressor (HP56) and an 11-bp lac operator fragment was studied by 1H NMR. The sequence specific assignment of the exchangeable and non-exchangeable protons has been accomplished. Several protons have favourable chemical shifts in the complex, therefore new intraprotein NOEs could be found that had not been unambigously identified in the free protein. By comparison, most of these intraprotein NOEs are also present in the spectra of the free headpiece but some are different. Furthermore, several new proteins DNA NOEs could be identified. The NOE between the side-chain amide protons of Gln18 and C5H of C7 confirms the specific contact between these residues which was proposed from genetic experiments [Ebright, R. M. (1985) J. Biomol. Struct. & Dyn. 3, 281-297]. The implications of the new data for the interaction between the lac repressor headpiece and its operator are discussed.  相似文献   

14.
G D Henry  B D Sykes 《Biochemistry》1992,31(23):5284-5297
The major coat protein of the filamentous coliphage M13 is a 50-residue integral membrane protein. Detergent-solubilized M13 coat protein is a promising candidate for structure determination by nuclear magnetic resonance methods as the protein can be prepared in large quantities and the protein-containing micelle is reasonably small. Under the conditions of our experiments, SDS-bound coat protein exists as a dimer with an apparent molecular weight of 27,000. Broad lines and poor resolution in the 1H spectrum have led us to adopt an 15N-directed approach, in which the coat protein was labeled both uniformly with 15N and selectively with [alpha-15N]alanine, -glycine, -valine, -leucine, -isoleucine, phenylalanine, -lysine, -tyrosine, and -methionine. Nitrogen resonances were assigned as far as possible using carboxypeptidase digestion, double-labeling, and an independent knowledge of the amide proton exchange rates determined from neighboring assigned 13C-labeled carbonyl carbons. 1H/15N heteronuclear multiple quantum coherence (HMQC) spectroscopy of both uniform and site-selectively-labeled proteins subsequently correlated amide nitrogen with amide proton chemical shifts, and the assignments were completed sequentially from homonuclear NOESY and HMQC-NOESY spectra. The most slowly exchanging amide protons were shown to occur in a continuous stretch extending from methionine-28 to phenylalanine-42. This sequence includes most of the resonances of the hydrophobic core, although it is shifted toward the C-terminal end of the protein. Strong NH to NH (i,i+1) nuclear Overhauser enhancements are a feature of the coat protein, which appears to be largely helical. Between 20 and 25 residues give rise to 2 juxtaposed resonances which can be seen clearly in the HMQC spectrum of uniform 15N-labeled coat protein. These residues are concentrated in a region extending from the beginning of the membrane-spanning sequence through to the disordered region near the C-terminus. We propose that dodecyl sulfate-bound M13 coat protein consists of two independent domains, an N-terminal helix which is in a state of moderately fast dynamic flux and a long, stable, C-terminal membrane-spanning helix, which undergoes extensive interactions with a second monomer. Amide 1H chemical shifts are consistent with this picture; in addition, a marked periodicity is observed at the C-terminal end of the molecule.  相似文献   

15.
NMR study of the interaction between the lac repressor and the lac operator   总被引:1,自引:0,他引:1  
Binding of the lac repressor headpiece, the N-terminal region of the lac repressor, to the lac operator of Escherichia coli was studied by 1H-NMR spectroscopy. Two DNA fragments, of 51 base pairs and 62 base pairs, containing the lac operator region, were investigated. The signals of their hydrogen-bonded imino protons were well resolved in the 500-MHz NMR spectra. The spectra of the free lac operator DNA are similar to those obtained from ring-current-shift calculations for a B-DNA structure. Complex formation with the headpiece led to small but nevertheless characteristic changes in the spectra. The fact that very few imino resonances shifted upon addition of headpiece, as well as the variety in direction and size of these chemical shifts, indicate the formation of a specific complex between the lac repressor and the lac operator. The observed changes in the resonance positions exclude the intercalation of tyrosine residues of the headpiece between adjacent base pairs of the lac operator as well as the formation of a cruciform structure. They rather reflect a small conformational transition in the DNA itself, caused for example by an alteration in the tilt of a few base pairs or a shift of the keto-enol tautomeric equilibrium of the bases towards the enolic form.  相似文献   

16.
Sequence-specific 15N and 1H assignments for the trp holorepressor from Escherichia coli are reported. The trp repressor consists of two identical 107-residue subunits which are highly helical in the crystal state [Schevitz, R., Otwinowski, Z., Joachimiak, A., Lawson, C. L. & Sigler, P. B. (1985) Nature 317, 782-786]. The high helical content and the relatively large size of the protein (Mr = 25,000) make it difficult to assign even the main-chain resonances by conventional homonuclear two-dimensional NMR methods. However, we have now assigned the main-chain resonances of 94% of the residues by using three-dimensional 15N/1H heteronuclear experiments on a sample of protein uniformly labelled with 15N. The additional resolution obtained by spreading out the signals into three dimensions proved indispensable in making these assignments. In particular, we have been able to resolve signals from residues in the N-terminal region of the A helix for the first time in solution. The observed NOE results confirm that the repressor is highly helical in solution, and contains no extended chain conformations.  相似文献   

17.
The complex formation of the N-terminal domain (headpiece) of the Escherichia coli lac repressor and a synthetic 14-base-pair lac operator fragment has been investigated by 1H NMR. Titration shifts in the imino-proton region of the DNA spectrum and in the aromatic region of the headpiece spectrum are examined in detail and interpreted where possible. The assignment of the resonances in the complex follows in part from the titration data and is completed by nuclear Overhauser measurements. The shift of the His-29 C-2 resonance has been used to assess the binding strength of the complex. Evidence is presented for the presence of a high-affinity site on the lac operator fragment (KD less than or equal to 2 X 10(-5) M), which shows features in common with one of the specific binding sites on the complete lac operator, and for the presence of a second, nonspecific binding site with lower affinity. The influence of this second site on the interpretation of the binding data is discussed.  相似文献   

18.
The sequential resonance assignment of the 1H and 15N NMR spectra of the DNA binding protein Ner from phage Mu is presented. This is carried out by using a combination of 1H-1H and 1H-15N two-dimensional experiments. The availability of completely labeled 15N protein enabled us to record a variety of relayed heteronuclear multiple quantum coherence experiments, thereby enabling the correlation of proton-proton through-space and through-bond connectivities with the chemical shift of the directly bonded 15N atom. These heteronuclear experiments were crucial for the sequential assignment as the proton chemical shift dispersion of the Ner protein is limited and substantial overlap precluded unambiguous assignment of the homonuclear spectra in several cases. From a qualitative interpretation of the NOE data involving the NH, C alpha H, and C beta H protons, it is shown that Ner is composed of five helices extending from residues 11 to 22, 27 to 34, 38 to 45, 50 to 60, and 63 to 73.  相似文献   

19.
P L Weber  D E Wemmer  B R Reid 《Biochemistry》1985,24(17):4553-4562
The cro repressor protein from bacteriophage lambda has been studied in solution by two-dimensional nuclear magnetic resonance spectroscopy (2D NMR). Following the approach of Wüthrich and co-workers [Wüthrich, K., Wider, G., Wagner, G., & Braun, W. (1982) J. Mol. Biol. 155, 311-319], individual spin systems were identified by J-correlated spectroscopy (COSY) supplemented, where necessary, by relayed coherence transfer spectroscopy (RELAY). Nuclear Overhauser effect spectroscopy (NOESY) was used to obtain sequence-specific assignments. From the two-dimensional spectra, the peptide backbone resonances (NH and C alpha H) for 65 of the 66 amino acids were assigned, as well as most of the side chain resonances. The chemical shifts for the assigned protons are reported at 35 degrees C in 10 mM potassium phosphate, pH 6.8, and in 10 mM potassium phosphate, pH 4.6, 0.2 M KCl, and 0.1 mM EDTA. Small shifts were observed for some resonances upon addition of salt, but no major changes in the spectrum were seen, indicating that no global structural change occurs between these ionic strengths. NOE patterns characteristic of alpha-helices, beta-strands, and turns are seen in various regions of the primary sequence. From the location of these regions the secondary structure of cro in solution appears to be virtually identical with the crystal structure [Anderson, W. F., Ohlendorf, D. H., Takeda, Y., & Matthews, B. W. (1981) Nature (London) 290, 754-758]. Missing assignments include the Pro-59 resonances and the peripheral protons of the eight lysine, the three arginine, and three of the five isoleucine residues.  相似文献   

20.
R E Klevit  G P Drobny 《Biochemistry》1986,25(23):7770-7773
Sequence-specific assignments of the NH, C alpha H, and C beta H resonances in the NMR spectrum of the histidine-containing protein (HPr) from Escherichia coli are complete [Klevit, R. E., Drobny, G. P., & Waygood, E. B. (1986) Biochemistry (first paper of three in this issue)]. In addition, the C gamma H3 resonances of valyl, threonyl, and isoleucyl residues have been assigned by two-dimensional relayed coherence transfer (RELAY) experiments. In order to rigorously assign the resonances from longer side chains such as leucines, long-range transfer experiments have been applied to HPr. Coherence transfers via isotropic mixing within large spin systems were accomplished by multiple pulse trains applied during the mixing time of a two-dimensional experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号