首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
BACKGROUND: The unique discriminative ability of immunofluorescent probes can be severely compromised when probe emission competes against naturally occurring, intrinsically fluorescent substances (autofluorophores). Luminescence microscopes that operate in the time-domain can selectively resolve probes with long fluorescence lifetimes (tau > 100 micros) against short-lived fluorescence to deliver greatly improved signal-to-noise ratio (SNR). A novel time-gated luminescence microscope design is reported that employs an ultraviolet (UV) light emitting diode (LED) to excite fluorescence from a europium chelate immunoconjugate with a long fluorescence lifetime. METHODS: A commercial Zeiss epifluorescence microscope was adapted for TGL operation by fitting with a time-gated image-intensified CCD camera and a high-power (100 mW) UV LED. Capture of the luminescence was delayed for a precise interval following excitation so that autofluorescence was suppressed. Giardia cysts were labeled in situ with antibody conjugated to a europium chelate (BHHST) with a fluorescence lifetime >500 micros. RESULTS: BHHST-labeled Giardia cysts emit at 617 nm when excited in the UV and were difficult to locate within the matrix of fluorescent algae using conventional fluorescence microscopy, and the SNR of probe to autofluorescent background was 0.51:1. However in time-gated luminescence mode with a gate-delay of 5 mus, the SNR was improved to 12.8:1, a 25-fold improvement. CONCLUSION: In comparison to xenon flashlamps, UV LEDs are inexpensive, easily powered, and extinguish quickly. Furthermore, the spiked emission of the LED enabled removal of spectral filters from the microscope to significantly improve efficiency of fluorescence excitation and capture.  相似文献   

2.
波长选择在荧光光谱仪和显微镜等光学应用中发挥了至关重要的作用。声光可调谐滤波器(AOTF)作为一种电光器件可实现多光源入射波长、功率的同时调制。在声光可调谐滤波器中,压电换能器结合于二氧化碲或石英晶体产生高频声波,改变晶体折射率形成周期性分布。该现象在晶体中生成衍射光栅,使以布拉格角正交入射的光束被高效衍射至一阶光束。当改变施加到晶体的信号频率时将改变折射率变化周期,因此,衍射光的波长随之改变。同时,衍射光强度由施加到晶体的信号振幅决定。本文从声光可调谐滤波器原理和特点出发,总结了声光可调谐滤波器在细胞生物学研究系统中的应用模型。得益于作用时间短、波长分辨率高、无振动部件等特性,声光可调谐滤波器提升了多波长光源功率调制能力,使细胞计数系统具备了细胞高光谱成像能力。所以不仅限于传统细胞生物学研究,包含声光可调谐滤波器件的系统还将在多参数高内涵成像分析、扫描荧光显微术、药物毒理研究等领域成为有力的研究工具。  相似文献   

3.
Recent advances in thin film optical coating technology significantly improve the filters available for fluorescence spectroscopy. Bandpass and long- and shortpass filters with very sharply defined edges can provide from 10(-5) to 10(-6) blocking within 10-15 nm of the transmission region and are ideal for use as excitation and emission filters. A variety of nonpolarizing dichroic beamsplitters for use in epi-illumination configurations or in multiple emission configurations provides optimum longpass, shortpass, band reflection, or bandpass spectral control. These dichroics, used with high-performance bandpass, longpass, or shortpass filters, form matched sets that optimize the signal-to-noise ratio and system efficiency for fluorescence spectroscopic systems in single or multiple dye applications. Specially designed dichroic beamsplitters are used to reduce excitation filter overheating. Other dichroic beamsplitters efficiently separate two planes of polarization in a narrow wavelength band. Rejection band filters can be used to measure the fluorescent dye Indo 1 with very low emission signals.  相似文献   

4.
The diffusion of antibiotics in endocarditis vegetation bacterial masses has not been described, although it may influence the efficacy of antibiotic therapy in endocarditis. The objective of this work was to assess the diffusion of ofloxacin in experimental endocarditis vegetation bacterial masses using synchrotron-radiation UV fluorescence microspectroscopy. Streptococcal endocarditis was induced in 5 rabbits. Three animals received an unique i.v. injection of 150 mg/kg ofloxacin, and 2 control rabbits were left untreated. Two fluorescence microscopes were coupled to a synchrotron beam for excitation at 275 nm. A spectral microscope collected fluorescence spectra between 285 and 550 nm. A second, full field microscope was used with bandpass filters at 510-560 nm. Spectra of ofloxacin-treated vegetations presented higher fluorescence between 390 and 540 nm than control. Full field imaging showed that ofloxacin increased fluorescence between 510 and 560 nm. Ofloxacin diffused into vegetation bacterial masses, although it accumulated in their immediate neighborhood. Fluorescence images additionally suggested an ofloxacin concentration gradient between the vegetation peripheral and central areas. In conclusion, ofloxacin diffuses into vegetation bacterial masses, but it accumulates in their immediate neighborhood. Synchrotron radiation UV fluorescence microscopy is a new tool for assessment of antibiotic diffusion in the endocarditis vegetation bacterial masses.  相似文献   

5.
The diffusion of antibiotics in endocarditis vegetation bacterial masses has not been described, although it may influence the efficacy of antibiotic therapy in endocarditis. The objective of this work was to assess the diffusion of ofloxacin in experimental endocarditis vegetation bacterial masses using synchrotron-radiation UV fluorescence microspectroscopy. Streptococcal endocarditis was induced in 5 rabbits. Three animals received an unique IV injection of 150 mg/kg ofloxacin, and 2 control rabbits were left untreated. Two fluorescence microscopes were coupled to a synchrotron beam for excitation at 275 nm. A spectral microscope collected fluorescence spectra between 285 and 550 nm. A second, full field microscope was used with bandpass filters at 510–560 nm. Spectra of ofloxacin-treated vegetations presented higher fluorescence between 390 and 540 nm than control. Full field imaging showed that ofloxacin increased fluorescence between 510 and 560 nm. Ofloxacin diffused into vegetation bacterial masses, although it accumulated in their immediate neighborhood. Fluorescence images additionally suggested an ofloxacin concentration gradient between the vegetation peripheral and central areas. In conclusion, ofloxacin diffuses into vegetation bacterial masses, but it accumulates in their immediate neighborhood. Synchrotron radiation UV fluorescence microscopy is a new tool for assessment of antibiotic diffusion in the endocarditis vegetation bacterial masses.  相似文献   

6.
BACKGROUND: Flow cytometers, which are commercially available, do not necessarily meet all demands of actual biomedical research. This is the case for the investigation of mechanisms involved in cell volume regulation, which requires electrical volume measurement and ratiometric multichannel fluorescence analysis for the simultaneous assessment of different physiologic parameters (intracellular pH and the intracellular concentration of calcium ions, etc). METHODS AND RESULTS: We describe the construction of a new nonsorting flow cytometer designed for the simultaneous acquisition of seven parameters including fluorescence signals, forward and perpendicular light scatter, cell volume according to the electrical Coulter principle, and flow cytometric imaging. The instrument is equipped with three different light sources. A tunable argon-ion laser generates efficient excitation of the most standard fluorescent probes in the visible spectral range, and an arc lamp provides the means for ultraviolet excitation at low cost. Because of the spatial filtering by the excitation and detection optics, two independent sets of dual fluorescence measurements can be performed, a prerequisite for flexible ratiometric fluorescence analysis. A flow video microscope integrated into the optical system optionally generates either brightfield or phase images of selected flowing particles. Only particles whose individual datasets meet predefined gating conditions are imaged in real time. To avoid smear effects, the motion of the object to be imaged (speed approximately 8 m/s) is frozen on the target of a CCD camera by flash illumination. For this purpose, a high radiance gas discharge lamp with 25-mJ electric pulse energy provides an illumination time of 18 ns (full width half maximum). Test results obtained from latex spheres and cells are shown. CONCLUSIONS: Test results indicate that our instrument can perform Coulter measurements in combination with flexible optical analysis. Moreover, integration of an adapted video microscope into a flow cytometer is an approach to overcome the gap between flow and image cytometry.  相似文献   

7.
We have investigated the energy landscape of the bacterial photosynthetic peripheral light-harvesting complex LH2 of purple bacterium Rhodopseudomonas acidophila by monitoring sequences of fluorescence spectra of single LH2 assemblies, at room temperature, with different excitation intensities as well as at elevated temperatures, utilizing a confocal microscope. The fluorescence peak wavelength of individual LH2 complexes was found to abruptly move between quasi-stable levels differing by up to 30 nm. These spectral shifts either to the blue or to the red were accompanied by a broadening and decrease of the intensity of the fluorescence spectrum. The frequency and size of these fluorescence peak movements were found to increase linearly with excitation intensity. Using the modified Redfield theory, changes in the realization of the static disorder accounted for the observed changes in spectral shape and intensity. Long lifetimes of the quasi-stable states suggest large free energy barriers between the different realizations.  相似文献   

8.
We have investigated the energy landscape of the bacterial photosynthetic peripheral light-harvesting complex LH2 of purple bacterium Rhodopseudomonas acidophila by monitoring sequences of fluorescence spectra of single LH2 assemblies, at room temperature, with different excitation intensities as well as at elevated temperatures, utilizing a confocal microscope. The fluorescence peak wavelength of individual LH2 complexes was found to abruptly move between long-lived quasi-stable levels differing by up to 30 nm. The frequency and size of these fluorescence peak movements were found to increase linearly with the excitation intensity. These spectral shifts either to the blue or to the red were accompanied by a broadening and decrease of the intensity of the fluorescence spectrum. The probability for a particle to undergo significant spectral shift in either direction was found to be roughly the same. Using the modified Redfield theory, the observed changes in spectral shape and intensity were accounted for by changes in the realization of the static disorder. Long lifetimes of the quasi-stable states suggest large energetic barriers between the states characterized by different emission spectra.  相似文献   

9.
A microscope-based flow cytophotometer   总被引:5,自引:0,他引:5  
By means of a new flow chamber, a standard fluorescence microscope with Epi illumination and 100 W mercury arc excitation has been turned into a flow cytophotometer combining high resolution and sensitivity with simplicity of operation. In the flow chamber, cells are passed in a narrow stream through the microscope focus carried by a laminar flow of water running on the open surface of a cover glass which is coupled to the oil immersion microscope objective. Two spectral components of the fluorescence, for example, resulting from specific staining of two different cellular constituents with different dyes, can be measured simultaneously in separate channels so as to produce three-dimensional histograms. The scattered light of the cells is detected in dark field by a second microscope situated opposite the primary objective. Scattered light detection is integrating with regard to scattering angle from 0 degree to 90 degrees. Hence, diffraction pattern effects are eliminated and the light scatter signal is approximately proportional to cell dry weight. The Epi illumination, which implies that excitation and fluorescence collection are parfocal, greatly simplifies instrument adjustment, which is further facilitated by the fact that the cell stream can be viewed at high magnification. Cell measuring time is about 3 microseconds which implies a measuring rate of 3 x 10(3) cells/s at 1% coincidence rate. Sensitivity is sufficient for measuring the DNA content of bacteria (that is, approximately 5 x 10(-15) g/cell) with a coefficient of variance (CV) of about 6%. CV less than 1% is achieved for DNA histograms of mammalian cells. A 5 W argon laser as excitation source facilitates slit scan analysis and increases the sensitivity and measuring rate by one to two orders of magnitude.  相似文献   

10.
Spectral imaging approaches provide new possibilities for measuring and discriminating fluorescent molecules in living cells and tissues. These approaches often employ tunable filters and robust image processing algorithms to identify many fluorescent labels in a single image set. Here, we present results from a novel spectral imaging technology that scans the fluorescence excitation spectrum, demonstrating that excitation‐scanning hyperspectral image data can discriminate among tissue types and estimate the molecular composition of tissues. This approach allows fast, accurate quantification of many fluorescent species from multivariate image data without the need of exogenous labels or dyes. We evaluated the ability of the excitation‐scanning approach to identify endogenous fluorescence signatures in multiple unlabeled tissue types. Signatures were screened using multi‐pass principal component analysis. Endmember extraction techniques revealed conserved autofluorescent signatures across multiple tissue types. We further examined the ability to detect known molecular signatures by constructing spectral libraries of common endogenous fluorophores and applying multiple spectral analysis techniques on test images from lung, liver and kidney. Spectral deconvolution revealed structure‐specific morphologic contrast generated from pure molecule signatures. These results demonstrate that excitation‐scanning spectral imaging, coupled with spectral imaging processing techniques, provides an approach for discriminating among tissue types and assessing the molecular composition of tissues. Additionally, excitation scanning offers the ability to rapidly screen molecular markers across a range of tissues without using fluorescent labels. This approach lays the groundwork for translation of excitation‐scanning technologies to clinical imaging platforms.  相似文献   

11.
The optical properties of marine phytoplankton were examined by measuring the absorption spectra and fluorescence excitation spectra of chlorophyll a for natural marine particles collected on glass fiber filters. Samples were collected at different depths from stations in temperate waters of the Southern California Bight and in polar waters of the Scotia and Ross Seas. At all stations, phytoplankton fluorescence excitation and absorption spectra changed systematically with depth and vertical stability of the water columns. In samples from deeper waters, both absorption and chlorophyll a fluorescence excitation spectra showed enhancement in the blue-to-green portion of the spectrum (470-560 nm) relative to that at 440 nm. Since similar changes in absorption and excitation were induced by incubating sea water samples at different light intensities, the changes in optical properties can be attributed to photoadaptation of the phytoplankton. The data indicate that in the natural populations studied, shade adaptation caused increases in the concentration of photosynthetic accessory pigments relative to chlorophyll a. These changes in cellular pigment composition were detectable within less than 1 day. Comparisons of absorption spectra with fluorescence excitation spectra indicate an apparent increase in the efficiency of sensitization of chlorophyll a fluorescence in the blue and green spectral regions for low light populations.  相似文献   

12.
《Biophysical journal》2020,118(1):36-43
To conduct rapid microscope observations with the excitation spectral measurement for photosynthetic organisms, a wavelength-dispersive line-focus microscope was developed. In the developed system, fluorescence signals at multiple positions on a sample excited with different wavelengths can be detected as a two-dimensional image on the EMCCD camera at the same time. Using the developed system, one can obtain excitation spectra at every pixel over the excitation wavelength range from 635 to 695 nm, which covers the full range of the Qy bands of both chlorophyll-a and chlorophyll-b. Recording the reference laser spectra at the same time ensures robust measurement against the moderate spectral fluctuation in the excitation laser. Using an objective lens with a numerical aperture of 0.9, the lateral and axial resolutions of 0.56 and 1.08 μm, respectively, were achieved. The theoretically limited and experimentally estimated spectral resolutions of the excitation spectral measurement were 0.86 and 1.3 nm, respectively. The validity of the system was demonstrated by measuring fluorescent beads and single cells of a model alga, Chlamydomonas reinhardtii. Intrachloroplast inhomogeneity in the relative intensity of the chlorophyll-b band could be visualized in Chlamydomonas cells. The inhomogeneity reflects the intrachloroplast variation in the local peripheral antenna size.  相似文献   

13.
A newly developed microscope using acousto-optic tunable filters (AOTFs) was used to generate in vivo hemoglobin saturation (SO2) and oxygen tension (PO2) maps in the cerebral cortex of mice. SO2 maps were generated from the spectral analysis of reflected absorbance images collected at different wavelengths, and PO2 maps were generated from the phosphorescence lifetimes of an injected palladium-porphyrin compound using a frequency-domain measurement. As the inspiratory O2 was stepped from hypoxia (10% O2), through normoxia (21% O2), to hyperoxia (60% O2), measured SO2 and PO2 levels rose accordingly and predictably throughout. A plot of SO2 versus PO2 in different arterial and venous regions of the pial vessels conformed to the sigmoidal shape of the oxygen-hemoglobin dissociation curve, providing further validation of the two mapping procedures. The study demonstrates the versatility of the AOTF microscope for in vivo physiologic investigation, allowing for the generation of nearly simultaneous SO2 and PO2 maps in the cerebral cortex, and the frequency-domain detection of phosphorescence lifetimes. This class of study opens up exciting new possibilities for investigating the dynamics of hemoglobin and O2 binding during functional activation of neuronal tissues.  相似文献   

14.
The fusion of lipid bilayers can be visualized under the fluorescence microscope, but the process is very fast and requires special techniques for its study. It is reported here that vesicle fusion is susceptible to analysis by microspectrofluorometry and that for the first time, the entire fusion process has been captured. In the case of giant (>10- micro m diameter) bilayer vesicles having a high density of opposite charge, fusion proceeds through stages of adhesion, flattening, hemifusion, elimination of the intervening septum, and uptake of excess membrane to generate a spherical product very rapidly. These investigations became possible with a fluorescence microscope that was modified for recording of images simultaneously with the collection of fluorescence emission spectra from many (>100) positions along the fusion axis. Positively-charged vesicles, composed of O-ethylphosphatidylcholine and dioleoylphosphatidylcholine, were labeled with a carbocyanine fluorophore. Negatively-charged vesicles, composed of dioleoylphosphatidylglycerol and dioleoylphosphatidylcholine, were labeled with a rhodamine fluorophore that is a resonance energy transfer acceptor from the carbocyanine fluorophore. An electrophoretic chamber allowed selection of pairs of vesicles to be brought into contact and examined. Spectral changes along the axis of fusion were captured at high speed (a few ms/frame) by operating a sensitive digital camera in the virtual-chip mode, a software/hardware procedure that permits rapid readout of selected regions of interest and by pixel binning along the spectral direction. Simultaneously, color images were collected at video rates (30 frame/s). Comparison of the spectra and images revealed that vesicle fusion typically passes through a hemifusion stage and that the time from vesicle contact to fusion is <10 ms. Fluorescence spectra are well suited to rapid collection in the virtual-chip mode because spectra (in contrast to images) are accurately characterized with a relatively small number of points and interfering signals can be removed by judicious choice of barrier filters. The system should be especially well-suited to phenomena exhibiting rapid fluorescence change along an axis; under optimal conditions, it is possible to obtain sets of spectra (wavelength range of approximately 150 nm) at >100 positions along a line at rates >1000 frames/s with a spectral resolution of approximately 10 nm and spatial resolution at the limit of the light microscope ( approximately 0.2 micro m).  相似文献   

15.
Intracellular calcium handling plays an important role in cardiac electrophysiology. Using two fluorescent indicators, we developed an optical mapping system that is capable of measuring calcium transients and action potentials at 256 recording sites simultaneously from the intact guinea pig heart. On the basis of in vitro measurements of dye excitation and emission spectra, excitation and emission filters at 515 +/- 5 and >695 nm, respectively, were used to measure action potentials with di-4-ANEPPS, and excitation and emission filters at 365 +/- 25 and 485 +/- 5 nm, respectively, were used to measure calcium transients with indo 1. The percent error due to spectral overlap was small when action potentials were measured (1.7 +/- 1.0%, n = 3) and negligible when calcium transients were measured (0%, n = 3). Recordings of calcium transients, action potentials, and isochrone maps of depolarization time and the time of calcium transient onset indicated negligible error due to fluorescence emission overlap. These data demonstrate that the error due to spectral overlap of indo 1 and di-4-ANEPPS is sufficiently small, such that optical mapping techniques can be used to measure calcium transients and action potentials simultaneously in the intact heart.  相似文献   

16.
The widely used fluorescent probe 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) serves as a pH-sensitive indicator in classical microscopy. Characteristics of BCECF were studied and a way of employing the probe in a confocal laser scanning microscope equipped with an argon laser at 488 nm was developed, based on the fact that the emission fluorescence spectra are pH-dependent with spectral maximum shift from 518 to 529 nm. Optical filters for the dual-emission ratio method were set to 506 and 529 nm. pH values measured inside a single cell of Saccharomyces cerevisiae were similar to those obtained with other pH estimation methods.  相似文献   

17.
Two-photon fluorescence excitation spectra of the peripheral light-harvesting complex LH2 from the purple photosynthetic bacterium Chromatium minutissimum were examined within the expected spectral range of the optically forbidden S1 singlet state of carotenoids. LH2 preparations isolated from wild-type and carotenoid-depleted cells were used. 100-fs laser pulses in the range of 1300-1490 nm with an energy of 7-9 mW (corresponding to one-photon absorption between 650 and 745 nm) were used for two-photon fluorescence excitation. It was shown that two-photon fluorescence excitation spectra of LH2 complex from wild and carotenoid-depleted cells are very similar to each other and to the two-photon fluorescence excitation spectrum of bacteriochlorophyll a in acetone. It was concluded that direct two-photon excitation of bacteriochlorophyll a determines the fluorescence of both samples within the 650-745 nm spectral range.  相似文献   

18.
An improved method for deconvoluting complex spectral maps from bidimensional fluorescence monitoring is presented, relying on a combination of principal component analysis (PCA) and feedforward artificial neural networks (ANN). With the aim of reducing ANN complexity, spectral maps are first subjected to PCA, and the scores of the retained principal components are subsequently used as ANN input vector. The method is presented using the case study of an extractive membrane biofilm reactor, where fluorescence maps of a membrane-attached biofilm were analysed, which were collected under different reactor operating conditions. During ANN training, the spectral information is associated with process performance indicators. Originally, 231 excitation/emission pairs per fluorescence map were used as ANN input vector. Using PCA, each fluorescence map could be represented by a maximum of six principal components, thereby catching 99.5% of its variance. As a result, the dimension of the ANN input vector and hence the complexity of the artificial neural network was significantly reduced, and ANN training speed was increased. Correlations between principal components and ANN predicted process performance parameters were good with correlation coefficients in the order of 0.7 or higher.  相似文献   

19.
采用时间分辨荧光光谱测试系统,研究了超高产杂交水稻(Oryza sativa L.)两优培九(P9)和对照汕优63(SH 63)类囊体膜的荧光光谱特性和时间特性.以脉宽为120 ps,重复率为4MHz,波长为514 nm的Ar+激光分别激发P9和SH 63水稻类囊体膜荧光.通过对其超快荧光的时间特性和光谱特性比较研究发现:无论是在灌浆期还是在扬花期,P9水稻类囊体膜中光系统I激发能传递的速度比光系统Ⅱ的快;P9和SH 63两种水稻类囊体膜在灌浆期的激发能传递速度都比扬花期的快;两种水稻类囊体膜的光谱特性还给出,在从扬花期到灌浆期这一生长发育过程中,SH 63水稻类囊体膜的色素成分和结合状态发生了变化,而P9却没有出现这种变化.  相似文献   

20.
This paper continues previous work on the analysis of nucleic acid-terbium complexes in the solid state. The fluorescence excitation and emission spectra of the RNA-terbium(III) complex is reported. The fluorescence excitation and emission spectra of both the RNA-terbium(III) and DNA-terbium(III) complexes as trapped on millipore filters is reported. One hundred percent of the DNA combined with terbium was trapped on millipore filters. Deoxyribonucleic acid was recovered from DNA-terbium(III) complexes trapped on millipore filters using SDS-extraction. Energy transfer was shown to occur from the bases in nucleic acids to the terbium ion, whereas the actual binding of terbium to nucleic acids was due to phosphate groups. The relative fluorescence of homopolyribonucleotide-terbium complexes showed that the guanine moiety was responsible for most of the observed fluorescence. Binding studies showed an equal affinity of radioactive terbium for all the homopolyribonucleotides. The fluorescence of solid-state DNA and RNA terbium complexes was used to measure picomole quantities of DNA or RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号