首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Chung KM  Huang CH  Cheng JH  Tsai CH  Suen CS  Hwang MJ  Chen X 《Biochemistry》2011,50(37):7909-7918
A transmembrane domain (TMD) at the N-terminus of a membrane protein is a signal sequence that targets the protein to the endoplasmic reticulum (ER) membrane. Proline is found more frequently in TM helices compared to water-soluble helices. To investigate the effects of proline on protein translocation and integration in mammalian cells, we made proline substitutions throughout the TMD of dipeptidyl peptidase IV, a type II membrane protease with a single TMD at its N-terminus. The proteins were expressed and their capacities for targeting and integrating into the membrane were measured in both mammalian cells and in vitro translation systems. Three proline substitutions in the central region of the TMD resulted in various defects in membrane targeting and/or integration. The replacement of proline with other amino acids of similar hydrophobicity rescued both the translocation and anchoring defects of all three proline mutants, indicating that conformational change caused by proline is a determining factor. Increasing hydrophobicity of the TMD by replacing other residues with more hydrophobic residues also effectively reversed the translocation and integration defects. Intriguingly, increasing hydrophobicity at the C-terminal end of the TMD rescued much more effectively than it did at the N-terminal end. Thus, the effect of proline on translocation and integration of the TMD is not determined solely by its conformation and hydrophobicity, but also by the location of proline in the TMD, the location of highly hydrophobic residues, and the relative position of the proline to other proline residues in the TMD.  相似文献   

2.
E Schwarz  T Seytter  B Guiard    W Neupert 《The EMBO journal》1993,12(6):2295-2302
Cytochrome b2 contains 2-fold targeting information: an amino-terminal signal for targeting to the mitochondrial matrix, followed by a second cleavable sorting signal that functions in directing the precursor into the mitochondrial intermembrane space. The role of the second sorting sequence was analyzed by replacing one, two or all of the three positively charged amino acid residues which are present at the amino-terminal side of the hydrophobic core by uncharged residues or an acidic residue. With a number of these mutant precursor proteins, processing to the mature form was reduced or completely abolished and at the same time targeting to the matrix space occurred. The accumulation in the matrix depended on a high level of intramitochondrial ATP. At low levels of matrix ATP, the mutant proteins were sorted into the intermembrane space like the wild-type precursors. The results: (i) suggest the existence of one or more matrix components that specifically recognize the second sorting signal and thereby trigger the translocation into the intermembrane space; (ii) indicate that the mutant signals have reduced ability to interact with the recognition component(s) and then embark on the default pathway into the matrix by interacting with mitochondrial hsp70 in conjunction with matrix ATP; (iii) strongly argue against a mechanism by which the hydrophobic segment of the sorting sequence stops translocation in the hydrophobic phase of the inner membrane.  相似文献   

3.
The length and hydrophobicity of the transmembrane domain (TMD) play an important role in the sorting of membrane proteins within the secretory pathway; however, the relative contributions of protein-protein and protein-lipid interactions to this phenomenon are currently not understood. To investigate the mechanism of TMD-dependent sorting, we used the following two C tail-anchored fluorescent proteins (FPs), which differ only in TMD length: FP-17, which is anchored to the endoplasmic reticulum (ER) membrane by 17 uncharged residues, and FP-22, which is driven to the plasma membrane by its 22-residue-long TMD. Before export of FP-22, the two constructs, although freely diffusible, were seen to distribute differently between ER tubules and sheets. Analyses in temperature-blocked cells revealed that FP-17 is excluded from ER exit sites, whereas FP-22 is recruited to them, although it remains freely exchangeable with the surrounding reticulum. Thus, physicochemical features of the TMD influence sorting of membrane proteins both within the ER and at the ER-Golgi boundary by simple receptor-independent mechanisms based on partitioning.  相似文献   

4.
The mitochondrial inner membrane contains a large number of polytopic proteins that are derived from prokaryotic ancestors of mitochondria. Little is known about the intramitochondrial sorting of these proteins. We chose two proteins of known topology as examples to study the pathway of insertion into the inner membrane; Mrs2 and Yta10 are bitopic proteins that expose negatively charged loops of different complexity into the intermembrane space. Here we show that both Mrs2 and Yta10 transiently accumulate as sorting intermediates in the matrix before they integrate into the inner membrane. The sorting pathway of both proteins can be separated into two sequential reactions: (i) import into the matrix and (ii) insertion from the matrix into the inner membrane. The latter process was found to depend on the membrane potential and, in this respect, is similar to the insertion of membrane proteins in bacteria. A comparison of the charge distribution of intermembrane space loops in a variety of mitochondrial inner membrane proteins suggests that this mode of "conservative sorting" might be the typical insertion route for polytopic inner membrane proteins that originated from bacterial ancestors.  相似文献   

5.
Mitochondrial NADH-cytochrome b5 reductase (Mcr1p) is encoded by a single nuclear gene and imported into two different submitochondrial compartments: the outer membrane and the intermembrane space. We now show that the amino-terminal 47 amino acids suffice to target the Mcr1 protein to both destinations. The first 12 residues of this sequence function as a weak matrix-targeting signal; the remaining residues are mostly hydrophobic and serve as an intramitochondrial sorting signal for the outer membrane and the intermembrane space. A double point mutation within the hydrophobic region of the targeting sequence virtually abolishes the ability of the precursor to be inserted into the outer membrane but increases the efficiency of transport into the intermembrane space. Import of Mcr1p into the intermembrane space requires an electrochemical potential across the inner membrane, as well as ATP in the matrix, and is strongly impaired in mitochondria lacking Tom7p or Tim11p, two components of the translocation machineries in the outer and inner mitochondrial membranes, respectively. These results indicate that intramitochondrial sorting of the Mcr1 protein is mediated by specific interactions between the bipartite targeting sequence and components of both mitochondrial translocation systems.  相似文献   

6.
Herrmann JM  Neupert W 《IUBMB life》2003,55(4-5):219-225
The inner membrane of mitochondria harbours a large number of polypeptides, many of which have evolved from proteins of the prokaryotic progenitors of mitochondria. The sorting routes on which these proteins are integrated into the mitochondrial inner membrane reflect their phylogenetic origin: Proteins of eukaryotic descent typically reach their destination following arrest of import at the level of the inner membrane. In contrast, many proteins inherited from the prokaryotic progenitor cell are inserted into the inner membrane in an export step following translocation into the matrix. Recently, three different insertion pathways from the matrix into the inner membrane were identified which show considerable parallels to the protein insertion processes in bacteria and chloroplasts. Two of these pathways depend on the related inner membrane proteins Oxa1 and Cox18. A third route is less well defined and depends on the membrane-associated matrix protein Mba1.  相似文献   

7.
Peroxisomal ascorbate peroxidase (APX) is a carboxyl tail-anchored, type II (N(cytosol)-C(matrix)) integral membrane protein that functions in the regeneration of NAD(+) in glyoxysomes of germinated oilseeds and protection of peroxisomes in other organisms from toxic H(2)O(2). Recently we showed that cottonseed peroxisomal APX was sorted post-translationally from the cytosol to peroxisomes via a novel reticular/circular membranous network that was interpreted to be a subdomain of the endoplasmic reticulum (ER), named peroxisomal ER (pER). Here we report on the molecular signals responsible for sorting peroxisomal APX. Deletions or site-specific substitutions of certain amino acid residues within the hydrophilic C-terminal-most eight-amino acid residues (includes a positively charged domain found in most peroxisomal integral membrane-destined proteins) abolished sorting of peroxisomal APX to peroxisomes via pER. However, the C-terminal tail was not sufficient for sorting chloramphenicol acetyltransferase to peroxisomes via pER, whereas the peptide plus most of the immediately adjacent 21-amino acid transmembrane domain (TMD) of peroxisomal APX was sufficient for sorting. Replacement of the peroxisomal APX TMD with an artificial TMD (devoid of putative sorting sequences) plus the peroxisomal APX C-terminal tail also sorted chloramphenicol acetyltransferase to peroxisomes via pER, indicating that the peroxisomal APX TMD does not possess essential sorting information. Instead, the TMD appears to confer the proper context required for the conserved positively charged domain to function within peroxisomal APX as an overlapping pER sorting signal and a membrane peroxisome targeting signal type 2.  相似文献   

8.
Oxa1p, a nuclear-encoded protein of the mitochondrial inner membrane with five predicted transmembrane (TM) segments is synthesized as a precursor (pOxa1p) with an N-terminal presequence. It becomes imported in a process requiring the membrane potential, matrix ATP, mt-Hsp70 and the mitochondrial processing peptidase (MPP). After processing, the negatively charged N-terminus of Oxa1p (approximately 90 amino acid residues) is translocated back across the inner membrane into the intermembrane space and thereby attains its native N(out)-C(in) orientation. This export event is dependent on the membrane potential. Chimeric preproteins containing N-terminal stretches of increasing lengths of Oxa1p fused on mouse dehydrofolate reductase (DHFR) were imported into isolated mitochondria. In each case, their DHFR moieties crossed the inner membrane into the matrix. Thus Oxa1p apparently does not contain a stop transfer signal. Instead the TM segments are inserted into the membrane from the matrix side in a pairwise fashion. The sorting pathway of pOxa1p is suggested to combine the pathways of general import into the matrix with a bacterial-type export process. We postulate that at least two different sorting pathways exist in mitochondria for polytopic inner membrane proteins, the evolutionarily novel pathway for members of the ADP/ATP carrier family and a conserved Oxa1p-type pathway.  相似文献   

9.
Mitochondrial carrier proteins are embedded in the inner mitochondrial membrane and ensure the transport of many important metabolites. The ADP/ATP carrier imports ADP into the mitochondrial matrix in exchange for ATP after synthesis. It is the most studied mitochondrial carrier and its structure was the first to be unraveled at high resolution. The structure reveals six transmembrane helices forming a tightly closed bundle toward the matrix and a funnel-shaped cavity opening toward the intermembrane space. The cavity ends in a narrow pit 10A from the matrix. The analysis of residues located in the cavity hints at the mechanism of binding of adenine nucleotides. Additionally, the presence of conserved proline residues in three sharply kinked helices suggests a translocation mechanism.  相似文献   

10.
The yeast Golgi membrane protein Rer1p is required for the retrieval of various endoplasmic reticulum (ER) membrane proteins such as Sec12p and Sec71p to the ER. We demonstrate here that the transmembrane domain (TMD) of Sec71p, a type-III membrane protein, contains an ER localization signal, which is required for physical recognition by Rer1p. The Sec71TMD-GFP fusion protein is efficiently retrieved to the ER by Rer1p. The structural feature of this TMD signal turns out to be the spatial location of polar residues flanking the highly hydrophobic core sequence but not the whole length of the TMD. On the Rer1p side, Tyr152 residue in the 4th TMD is important for the recognition of Sec12p but not Sec71p, suggesting that Rer1p interacts with its ligands at least in two modes. Sec71TMD-GFP expressed in the Deltarer1 mutant cells is mislocalized from the ER to the lumen of vacuoles via the multivesicular body (MVB) sorting pathway. In this case, not only the presence of polar residues in the Sec71TMD but also the length of the TMD is critical for the MVB sorting. Thus, the Rer1p-dependent ER retrieval and the MVB sorting in late endosomes both watch polar residues in the TMD but in a different manner.  相似文献   

11.
Mitochondria are made up of two membrane systems that subdivide this organelle into two aqueous subcompartments: the matrix, which is enclosed by the inner membrane, and the intermembrane space, which is located between the inner and the outer membrane. Protein import into mitochondria is a complex reaction, as every protein has to be routed to its specific destination within the organelle. In the past few years, studies with mitochondria of Neurospora crassa and Saccharomyces cerevisiae have led to the identification of four distinct translocation machineries that are conserved among eukaryotes. These translocases, in a concerted fashion, mediate import and sorting of proteins into the mitochondrial subcompartments.  相似文献   

12.
Most mitochondrial proteins are synthesized in the cytosol, imported into mitochondria, and sorted to one of the four mitochondrial subcompartments. Here we identified a new inner membrane protein, Tim40, that mediates sorting of small Tim proteins to the intermembrane space. Tim40 is essential for yeast cell growth, and its function in vivo requires six conserved Cys residues but not anchoring of the protein to the inner membrane by its N-terminal hydrophobic segment. Depletion of Tim40 impairs the import of small Tim proteins into mitochondria both in vivo and in vitro. In wild-type mitochondria, Tim40 forms a translocation intermediate with small Tim proteins prior to their assembly in the intermembrane space in vitro. These results suggest the essential role of Tim40 in sorting/assembly of small Tim proteins.  相似文献   

13.
The sorting of an individual transmembrane (TM) segment of multi-spanning membrane proteins by the TIM23 complex in the mitochondrial inner membrane is poorly understood. Using the Mgm1 fusion approach, we attempted to assess the membrane insertion of individual TM segments of Mdl1p and Mdl2p, mitochondrial ABC transporters. Although these transporters share high sequence similarity, our results show that their membrane sorting patterns differ and that specific residues in TM domains strongly influence membrane insertion or translocation. These data imply that TIM23-mediated membrane insertion highly depends on the TM domain sequence context.  相似文献   

14.
Most mitochondrial proteins are synthesized in the cytosol and imported into one of the four mitochondrial compartments: outer membrane, intermembrane space, inner membrane, and matrix. Each compartment contains protein complexes that interact with precursor proteins and promote their transport. These translocase complexes do not act as independent units but cooperate with each other and further membrane complexes in a dynamic manner. We propose that a regulated coupling of translocases is important for the coordination of preprotein translocation and efficient sorting to intramitochondrial compartments.  相似文献   

15.
Heterologous expression in yeast of mCYP11A1 fusions with different topogenic signals of yeast mitochondrial proteins for artificial channeling to different translocases of the inner membrane was used to gain insight in the mechanism of its topogenesis in mitochondria. To ensure insertion of the CYP11A1 domain into the inner mitochondrial membrane during the process of translocation, topogenic sequences containing transmembrane segments of Bcs1p(1-83), DLD(1-72), and full-sized AAC protein were used when constructing modified forms of CYP11A1, and the Su9(1-112) addressing signal was included to stimulate membrane insertion of CYP11A1 after its translocation to the matrix. Alternatively, to promote slippage of the hybrid molecules into the matrix, the hybrid of mCYP11A1 with the precursor of steroidogenic mitochondria matrix protein adrenodoxin (preAd) was designed. The extra sequences used for intramitochondrial sorting of CYP11A1 apparently ensured predicted topology of hybrid molecules in yeast mitochondria. All of the addressing sequences, containing transmembrane domains, provided effective insertion of the hybrid proteins AAC-mCYP11A1, Bcs1p(1-83)-mCYP11A1, DLD(1-72)-mCYP11A1 and Su9(1-116)-mCYP11A1 into the inner membrane. preAd-mCYP11A1 hybrid molecules were shown to be translocated across the inner membrane and tightly associated with the membrane on its matrix side but not membrane inserted. Measuring specific activities of hybrid proteins in the mitochondrial fractions upon addition of Ad and AdR showed that the hybrids predetermined for cotranslocational insertion of CYP11A1 into the inner membrane were more active in the reaction of cholesterol side-chain cleavage than those destined for insertion on the matrix side of the IM, the Ad-mCYP11A1 hybrid demonstrating only residual enzyme activity. The data obtained reinforce the proposal that complete transfer of the polypeptide chain into the matrix is not a necessary stage in its topogenesis, but rather persistent interaction of the polypeptide chain with the membrane during the process of translocation is of importance for heme binding, folding and membrane insertion.  相似文献   

16.
The pathway by which cytochromes c1 and b2 reach the mitochondrial intermembrane space has been controversial. According to the "conservative sorting" hypothesis, these proteins are first imported across both outer and inner membranes into the matrix, and then are retranslocated across the inner membrane. Our data argue against this model: import intermediates of cytochromes c1 and b2 were found only outside the inner membrane; maturation of these proteins was independent of the matrix-localized hsp60 chaperone; and dihydrofolate reductase linked to the presequence of either cytochrome was imported to the intermembrane space in the absence of ATP. We conclude that cytochromes c1 and b2 are sorted by a mechanism in which translocation through the inner membrane is arrested by a "stop-transfer" signal in the presequence. The arrested intermediates may be associated with a proteinaceous channel in the inner membrane.  相似文献   

17.
F U Hartl  J Ostermann  B Guiard  W Neupert 《Cell》1987,51(6):1027-1037
We investigated the import and sorting pathways of cytochrome b2 and cytochrome c1, which are functionally located in the intermembrane space of mitochondria. Both proteins are synthesized on cytoplasmic ribosomes as larger precursors and are processed in mitochondria in two steps upon import. The precursors are first translocated across both mitochondrial membranes via contact sites into the matrix. Processing by the matrix peptidase leads to intermediate-sized forms, which are subsequently redirected across the inner membrane. The second proteolytic processing occurs in the intermembrane space. We conclude that the hydrophobic stretches in the presequences of the intermediate-sized forms do not stop transfer across the inner membrane, but rather act as transport signals to direct export from the matrix into the intermembrane space.  相似文献   

18.
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long‐standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence‐carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.  相似文献   

19.
Lee YJ  Kim DH  Kim YW  Hwang I 《The Plant cell》2001,13(10):2175-2190
Certain small outer envelope membrane proteins of chloroplasts are encoded by the nuclear genome without a cleavable N-terminal transit peptide. We investigated in vivo the targeting mechanism of AtOEP7, an Arabidopsis homolog of the small outer envelope membrane protein. AtOEP7 was expressed as a fusion protein with the green fluorescent protein (GFP) either transiently in protoplasts or stably in transgenic plants. In either case, fluorescence microscopy of transformed cells and protein gel blot analysis of fractionated proteins confirmed that the AtOEP7:GFP fusion protein was targeted to the chloroplast outer envelope membrane. In vivo targeting experiments revealed that two regions, the transmembrane domain (TMD) and its C-terminal neighboring seven-amino acid region, were necessary and sufficient for targeting to the chloroplast outer membrane. Substitution of aspartic acid or lysine residues with glycine residues or scrambling of the amino acid sequence of the seven-amino acid region caused mistargeting to the plasma membrane. Although the amino acid sequence of the TMD is not important for targeting, amino acid residues with large side chains inhibited targeting to the chloroplasts and resulted in the formation of large aggregates in the protoplasts. In addition, introduction of a proline residue within the TMD resulted in inhibition of targeting. Finally, a fusion protein, AtOEP7:NLS:GFP, was targeted efficiently to the chloroplast envelope membranes despite the presence of a nuclear localization signal. On the basis of these results, we conclude that the seven-amino acid region and the TMD are determinants for targeting to the chloroplast outer envelope membrane. The seven-amino acid region plays a critical role in AtOEP7 evading the endomembrane system and entering the chloroplast pathway, and the TMD plays critical roles in migration to the chloroplasts and/or subsequent insertion into the membrane.  相似文献   

20.
Overlapping mechanisms that function simultaneously in the intracellular sorting of mammalian membrane proteins often confound delineation of individual sorting pathways. By analyzing sorting in the evolutionarily simpler organism Toxoplasma gondii, we demonstrate a role for transmembrane domain (TMD) length in modulating the signal-dependent segregation of membrane proteins to distinct intracellular organelles. The dense granule localization of the single pass transmembrane protein GRA4 could be completely rerouted to the Golgi and cell surface simply by replacement of its TMD with that from either vesicular stomatitis virus G or the low density lipoprotein (LDL) receptor. Mutational and biochemical analyses suggested that this effect was not caused by any specific sequence motif or strength of membrane association of the GRA4 TMD. Instead, a property imparted by the vesicular stomatitis virus G or LDL receptor TMDs, both of which are longer than the GRA4 TMD, appeared to be a decisive factor. Indeed, shortening the LDL receptor TMD to a length similar to that of GRA4 resulted in dense granule localization, whereas lengthening the GRA4 TMD resulted in rerouting to the Golgi. From these data, we conclude that although the TMD may not necessarily be a sole determinant in membrane protein sorting, its properties can markedly modulate the utilization of more conventional signal-mediated sorting pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号