首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A one-to-one Mg2+:Mn2+ exchange in rat erythrocytes   总被引:1,自引:0,他引:1  
Mg2+ efflux in rat erythrocytes was stimulated by increases in external Na+ concentration following a Michaelian-like function with an apparent dissociation constant (KNa) of 11 +/- 3 mM (mean +/- S.D. of three experiments) and a variable maximal rate ranging from 150 to 1200 mumol (liter (1) cells X h)-1. Na+-stimulated Mg2+ efflux was inhibited by quinidine and by ATP depletion. In the absence of external Na+, Mg2+ efflux was stimulated by increases in external Mn2+ concentration following a Michaelian-like function with an apparent dissociation constant (KMn) of 35 +/- 15 microM (mean +/- S.D. of four experiments) and a variable maximal rate ranging from 350 to 1400 mumol (1 cells X h)-1. Mn2+-stimulated Mg2+ efflux was inhibited by quinidine, by ATP depletion, and by increasing the external Na+ concentration. Quinidine-sensitive (or ATP-dependent) Mg2+ efflux exhibited very similar values when compared with quinidine-sensitive (or ATP-dependent) Mn2+ influx. Mn2+ efflux in rat erythrocytes (loaded with total internal Mn2+ contents of 230-450 mumol/l cells) was stimulated by increases in external Na+ concentration and inhibited by quinidine. In the absence of external Na+, Mn2+ efflux was stimulated by increases in external Mg2+ concentration following a Michaelian-like function with an apparent dissociation constant (KMg) of about 35 +/- 5 microM (mean +/- range of two experiments) and a maximal rate of about 60-100 mumol (1 cells X h)-1. In conclusion, the Na+-stimulated Mg2+ carrier of rat erythrocytes may catalyze a one-to-one and reversible Mn2+:Mg2+ exchange in the absence of external Na+.  相似文献   

3.
Abstract— Mn2+ caused an 8-to 16-fold stimulation of adenylate cyclase activity in homogenates as well as synaptosomcs. isolated synaptic membranes, and slices prepared from rat brain. The stimulation occurred at low concentrations of Mn2+. with a doubling of activity at 50-60μM. and was unaffected by a 60-fold excess of Mg2+. Whether or not Mg2+ was added, inclusion of a low concentration of Mn2+ reduced, but did not prevent the stimulation of adenylate cyclase caused by dopaminc in homogenates of corpus striatum. In contrast, Ca2+. at a concentration that had little effect on basal cyclase activity, completely prevented the stimulation by dopamine. The increase of cyclase activity produced by Mn2+ in brain homogenates was potentiated by F?. Other ions, notably Hg2+. Pb2+. Cu2+ and Zn2+. in order of decreasing potency, inhibited both basal and Mn2--stimulated cyclase activity. It is proposed that the effect of Mn2+ on adenylate cyclase activity may involve only the catalytic subunit of the enzyme, and that the mechanism is different from that by which either dopamine or F? stimulates the enzyme. These results suggest that the effects of low concentrations of Mn2+ and certain other divalent metal ions on adenylate cyclase activity may be involved in their neuropsychiatrie or other toxic effects, and that such ions may also participate in normal physiological mechanisms involving cyclic nucleotides.  相似文献   

4.
The differential scanning microcalorimetry and fluorescence methods, using probes ANS and pyrene, have been employed to study thermotropic behaviour of rat liver microsomes in the presence and absence of Mg2+. Addition of Mg2+ yields three partially reversible phase transitions at 18, 27 and 32 degrees C, respectively. A character of Mg2+-induced rearrangements in a membrane and their relation to a catalytic function of a cytochrome P-450-dependent enzymatic system is discussed.  相似文献   

5.
6.
Purified calcineurin phosphatase is converted upon incubation in millimolar Ni2+ or Mn2+ to an active form by association with these metal activators. The bound metal ion is not dissociable from calcineurin by dialysis or gel filtration, but can be released upon prolonged incubation of the enzyme with Ca2+/calmodulin or chelating agents (Pallen, C.J., and Wang, J.H. (1986) J. Biol. Chem. 261, 16115-16120). The present study has been undertaken to test the possibility that calcineurin in brain may contain tightly bound Ni2+ or Mn2+. A monoclonal antibody (VA1) immunoaffinity matrix was prepared and shown to affect specific precipitation of calcineurin from crude bovine brain extract. Using [3H]-, [63Ni2+]-, and [54Mn2+]calcineurin added to the extract as radioactive tracer, it was found that up to 80% of the calcineurin could be immunoprecipitated, and that more than 50% of the originally bound metal ions could be detected in the immunoprecipitate. When samples of calcineurin immunoprecipitated from brain extracts were analyzed by atomic absorption spectroscopy, Ni2+ and Mn2+ were not detected, whereas, Zn2+, a constitutive metal of calcineurin (King, M. M., and Huang, C. Y. (1984) J. Biol. Chem. 259, 8847-8856) was found in the expected amount. The result suggests that calcineurin in brain does not contain tightly associated Ni2+ or Mn2+.  相似文献   

7.
Intravenous injection of MnSO4 with 54Mn (0,33 mg/100 g) into rats showed that Mn2+ ions are transferred into intracellular organites and specially into mitochondria. The mitochondrial clearance curve of 54Mn has been analyzed. It is appeared that three compartments participate in the distribution of Mn2+. The third compartment is the most important.  相似文献   

8.
The metal-sugar distances in two metallized forms of concanavalin A have been compared by 19F magnetic resonance techniques. Using relaxation times measured at two different frequencies we have shown that the distance between the Mn2+ ion and the bound sugar in concanavalin A containing only Mn2+ is essentially identical to that found in concanavalin A containing both Mn2+ and Ca2+. Our results rule out the possibility that Mn2+ activates concanavalin A by binding at the Ca2+ site (S2) and would suggest that Mn2+ alone can induce an active saccharide binding conformation by binding at the transition metal site (S1).  相似文献   

9.
The effects of physiological concentrations of K+ on Mn2+ accumulation were compared in rat glial cells and neurons in culture. Increasing the K+ concentration in growth medium increased significantly the Mn2+ level of the cultivated cells, with glial cells more affected than neurons. Ethanol markedly increased the Mn2+ accumulation within glia but not within neurons while ouabaïn caused inhibition of Mn2+ uptake with neurons and glial cells. A modulation of the total protein synthesis by Mn2+ and ethanol level in the growth medium was observed with glial cells. These data suggest that the mechanisms involved in Mn2+ accumulation in glial cells are different from those present in neurons. Moreover, the results are consistent with the hypothesis that Mn2+ plays a regulatory role in glial cell metabolism.  相似文献   

10.
The cytosolic fraction of insulin-treated adipocytes exhibits a 2-fold increase in protein kinase activity when Kemptide is used as a substrate. The detection of insulin-stimulated kinase activity is critically dependent on the presence of phosphatase inhibitors such as fluoride and vanadate in the cell homogenization buffer. The cytosolic protein kinase activity exhibits high sensitivity (ED50 = 2 X 10(-10) M) and a rapid response (maximal after 2 min) to insulin. Kinetic analyses of the cytosolic kinase indicate that insulin increases the Vmax of Kemptide phosphorylation and ATP utilization without affecting the affinities of this enzyme toward the substrate or nucleotide. Upon chromatography on anion-exchange and gel filtration columns, the insulin-stimulated cytosolic kinase activity is resolved from the cAMP-dependent protein kinase and migrates as a single peak with an apparent Mr = 50,000-60,000. The partially purified kinase preferentially utilizes histones, Kemptide, multifunctional calmodulin-dependent protein kinase substrate peptide, ATP citrate-lyase, and acetyl-coenzyme A carboxylase as substrates but does not catalyze phosphorylation of ribosomal protein S6, casein, phosvitin, phosphorylase b, glycogen synthase, inhibitor II, and substrate peptides for casein kinase II, protein kinase C, and cGMP-dependent protein kinase. Phosphoamino acid analyses of the 32P-labeled substrates reveal that the insulin-stimulated cytosolic kinase is primarily serine-specific. The insulin-activated cytosolic kinase prefers Mn2+ to Mg2+ and is independent of Ca2+. Unlike ribosomal protein S6 kinase and protease-activated kinase II, the insulin-sensitive cytosolic kinase is fluoride-insensitive. Taken together, these results indicate that a novel cytosolic protein kinase activity is activated by insulin.  相似文献   

11.
The Ca(2+)-ATPase activity of rat brain microsomes was studied in streptozotocin (STZ)-induced diabetes. Male rats, 200-250 g, were rendered diabetic by injection of STZ (45 mg kg(-1) body weight) via the teil vein. Brain tissues were collected at 1, 4 and 10 weeks after diabetes was induced for determination of Ca(2+)-ATPase activity, lipid peroxidation and tissue calcium levels. Diabetic rats had significantly elevated blood glucose levels compared to controls. Blood glucose levels were 92.92 +/- 1.22 mg dl(-1) (mean +/- SEM) for the control group, 362.50 +/- 9.61 mg dl(-1) at 1 week and >500 mg dl(-1) at 4, 8 and 10 weeks for the diabetics. Enzyme activities were significantly decreased at 1, 4, 8 and 10 weeks of diabetes relative to the control group (p < 0.001). Ca(2+)-ATPase activity was 0.084 +/- 0.008 U l(-1), 0.029 +/- 0.005 U l(-1), 0.029 +/- 0.006 U l(-1), 0.033 +/- 0.003 U l(-1) and 0.058 +/- 0.006 U l(-1) (mean +/- SEM) at control, 1, 4, 8 and 10 week of diabetes respectively. The change in calcium levels in diabetic rat brain at 8 and 10 weeks of diabetes was significantly higher than that of the control group (p < 0.05). On the other hand lipid peroxidation measured as TBARS (thiobarbituric acid reactive substances) was significantly higher at 8 and 10 weeks of diabetes (p < 0.05). The increase in lipid peroxidation observed in diabetic rat brain may be partly responsible for the decrease in calcium ATPase activity.  相似文献   

12.
The effects of three divalent metal cations (Mn2+, Co2+, and Cu2+) on high-voltage-activated (HVA) Ca2+ currents were studied in acutely dissociated pyramidal neurons of rat piriform cortex using the patch-clamp technique. Cu2+, Mn2+, and Co2+ blocked HVA currents conducted by Ba2+ ( IBa) with IC50 of approximately 920 nM, approximately 58 micro M, and approximately 65 micro M, respectively. Additionally, after application of non-saturating concentrations of the three cations, residual currents activated with substantially slower kinetics than control IBa. As a consequence, the current fraction abolished by the blocking cations typically displayed, in its early phase, an unusually fast-decaying transient. The latter phenomenon turned out to be a subtraction artifact, since none of the pharmacological components (L-, N-, P/Q-, and R-type) that constitute the total HVA currents under study showed a similarly fast early decay: hence, the slow activation kinetics of residual currents was not due to the preferential inhibition of a fast-activating/inactivating component, but rather to a true slowing effect of the blocker cations. The percent IBa-amplitude inhibition caused by Mn2+, Co2+, and Cu2+ was voltage-independent over the whole potential range explored (up to +30 mV), hence the slowing of IBa activation kinetics was not due to a mechanism of voltage- and time-dependent relief from block. Moreover, Mn2+, Co2+, and Cu2+ significantly reduced I(Ba) deactivation speed upon repolarization, which also is not compatible with a depolarization-dependent unblocking mechanism. The above results show that 1) Cu2+ is a particularly potent HVA Ca2+-channel blocker in rat palaeocortical neurons; and 2) Mn2+, Co2+, and Cu2+, besides exerting a blocking action on HVA Ca2+-channels, also modify Ca2+-current activation and deactivation kinetics, most probably by directly interfering with channel-state transitions.  相似文献   

13.
In a previous communication we reported that glucose deprivation from KHRB medium resulted in a marked stimulation of Ca2+ uptake by brain tissue, suggesting a relationship between glucose and Ca2+ homeostasis in brain tissue [17]. Experiments were carried out to investigate the significance of glucose in Ca2+ transport in brain cells. The replacement of glucose with either D-methylglucoside or 2-deoxyglucose, non-metabolizable analogues of glucose, resulted in stimulation of Ca2+ uptake just as by glucose deprivation. These data show that glucose metabolism rather than glucose transfer was necessary to stimulate Ca2+ uptake in brain tissue. Inhibition of glucose metabolism with either NaF, NaCN, or iodoacetate resulted in stimulation of Ca2+ uptake similar to that produced by glucose deprivation. These results lend further support for the concept that glucose metabolism is essential for Ca2+ homeostasis in brain. Anoxia promotes glucose metabolism through glycolytic pathway to keep up with the demand for ATP by cellular processes (the Pasteur effect). Incubation of brain slices under nitrogen gas did not alter Ca2+ uptake by brain tissue, as did glucose deprivation and the inhibitors of glucose metabolism. We conclude that glucose metabolism resulting in the synthesis of ATP is essential for Ca2+ homeostasis in brain. Verapamil and nifedipine which block voltage-gated Ca2+ channels, did not alter Ca2+ uptake stimulated by glucose deprivation, indicating that glucose deprivation-enhanced Ca2+ uptake was not mediated by Ca2+ channels. Tetrodotoxin which specifically blocks Na+ channels, abolished Ca2+ uptake enhanced by glucose deprivation, but had no effect on Ca2+ uptake in presence of glucose (controls). These results suggest that stimulation of Ca2+ uptake by glucose deprivation may be related to Na+ transfer via Na-Ca exchange in brain.  相似文献   

14.
A rise of Na(+)-Ca2+ exchange during ontogenic development was found in the rat brain which parallels brain maturation. Nerve endings are the main structure which contributes to the rise of the exchange activity.  相似文献   

15.
Rats with experimental hypoparathyrosis showed an increase in the content of Ca2+ in liver and brain mitochondria, discovered by fluorescent testing with chlorotetracycline. That increase correlated with the degree of hypofunction of the parathyroid glands.  相似文献   

16.
The catalytic activity of guanylate cyclase (GCase) coupled to atrial natriuretic peptide (ANP) receptor depends on the metal co-factor, Mn2+ or Mg2+. ATP synergistically stimulates the ANP-stimulated GCase in the presence of Mg2+. We have now shown the ATP regulation of the ANP-stimulated GCase in the presence of Mn2+ in rat lung membranes. ANP stimulated the GCase 2.1-fold compared to the control. ATP enhanced both the basal (basal-GCase) and the ANP-stimulated GCase maximally 1.7- and 2.3- fold compared to the control, respectively, at a concentration of 0.1 mM. The stimulation by ATP was smaller in the presence of Mn2+ than in the presence of Mg2+. The addition of inorganic phosphate to the reaction mixture altered the GCase activities in the presence of Mn2+ with or without ANP and/or ATP. In the presence of 10 mM phosphate, ATP dose-dependently stimulated the basal GCase 5-fold compared to the control at a concentration of 1 mM and augmented the ANP-stimulated GCase, which was 4.2-fold compared to the basal-GCase, 5.5-fold compared to the control at a concentration of 0.5 mM. Protein phosphatase inhibitors, okadaic acid (100 nM), H8 (1 M) and staurosporin (1 M), did not alter the activity. Orthovanadate (1 mM), an inorganic phosphate analogue, significantly stimulated both the basal-GCase and the ANP-stimulated GCase, which were inhibited by ATP. It was assumed that phosphate and orthovanadate might interact with the GCase to regulate the activity in the opposite manner. This was the first report that inorganic phosphate and orthovanadate affected the ATP-regulation of the ANP-stimulated GCase in the presence of Mn2+.  相似文献   

17.
Manganese in the oxygen-evolving complex is a physiological electron donor to Photosystem II. PS II depleted of manganese may oxidize exogenous reductants including benzidine and Mn2+. Using flash photolysis with electron spin resonance detection, we examined the room-temperature reaction kinetics of these reductants with Yz +, the tyrosine radical formed in PS II membranes under illumination. Kinetics were measured with membranes that did or did not contain the 33 kDa extrinsic polypeptide of PS II, whose presence had no effect on the reaction kinetics with either reductant. The rate of Yz + reduction by benzidine was a linear function of benzidine concentration. The rate of Yz + reduction by Mn2+ at pH 6 increased linearly at low Mn2+ concentrations and reached a maximum at the Mn2+ concentrations equal to several times the reaction center concentration. The rate was inhibited by K+, Ca2+ and Mg2+. These data are described by a model in which negative charge on the membrane causes a local increase in the cation concentration. The rate of Yz + reduction at pH 7.5 was biphasic with a fast 400 s phase that suggests binding of Mn2+ near Yz + at a site that may be one of the native manganese binding sites.Abbreviations PS II Photosystem II - YD tyrosine residue in Photosystem II that gives rise to the stable Signal II EPR spectrum - Yz tyrosine residue in Photosystem II that mediates electron transfer between the reaction center chlorophyll and the site of water oxidation - ESR electron spin resonance - DPC diphenylcarbazide - DCIP dichlorophenolindophenol  相似文献   

18.
Developmental changes in intracellular Ca2+ stores in brain was studied by examining: (1) IP3- and cADPR-induced increase in [Ca2+]i in synaptosomes; (2) Ca(2+)-ATPase activity and ATP-dependent 45Ca2+ uptake into Ca2+ store in ER microsomes; (3) TG-induced inhibition of Ca(2+)-ATPase activity and ATP-dependent 45Ca2+ uptake into Ca2+ store in ER microsomes; and (4) gene expression of Ca(2+)-ATPase pump in neurons obtained from brains of the new-born and the 3-week-old rats. IP3 (EC50 310 +/- 8 nM, 200% maximum increase in [Ca2+]i) and cADPR (EC50 25 +/- 3 nM, greater than 170% maximum increase in [Ca2+]i) both were potent agonist of Ca2+ release from internal stores in synaptosomes obtained from the 3-week-old rats. However, IP3 (EC50 250 +/- 10 nM, 175 maximum increase in [Ca2+]i) was a potent, but cADPR (EC50 300 +/- 20 nM, 75% maximum increase) was a poor agonist of Ca2+ release from intracellular stores in synaptosomes obtained from the new-born rats. [3H]IP3, [32P]cADPR and [3H]Ry binding in the new-born samples were significantly less than that in the 3-week-old samples. [3H]Ry binding to its receptor was more sensitive to cADPR in microsomes from the 3-week-old rats than those from the new-born rats. Microsomes from the new-born rats exhibited TG-sensitive (IC50 30 +/- 4 nM) and TG-insensitive forms of Ca(2+)-ATPase, while microsomes from the 3-week-old rats exhibited only the TG-sensitive form of Ca(2+)-ATPase (5 +/- 1 nM IC50). Microsomes from the 3-week-old rats were more sensitive to TG but less sensitive to IP3, while microsomes from the new-born rats were more sensitive to IP3 but less sensitive to TG. The lower TG sensitivity of the new-born Ca2+ store may be because they poorly express a 45 amino acid C-terminal tail of Ca(2+)-ATPase that contains the TG regulatory sites. This site is adequately expressed in the older brain. This suggests that: (1) the new-born brain contains fully operational IP3 pathway but poorly developed cADPR pathway, while the older brain contains both IP3 and cADPR pathways; and (2) a developmental switch occurs in the new-born Ca(2+)-ATPase as a function of maturity.  相似文献   

19.
Na+-K+-activated ATPase in rat brain development   总被引:3,自引:5,他引:3  
  相似文献   

20.
Based on electrophysiological studies, Ca(2+)-activated K(+) channels and voltage-gated Ca(2+) channels appear to be located in close proximity in neurons. Such colocalization would ensure selective and rapid activation of K(+) channels by local increases in the cytosolic calcium concentration. The nature of the apparent coupling is not known. In the present study we report a direct coassembly of big conductance Ca(2+)-activated K(+) channels (BK) and L-type voltage-gated Ca(2+) channels in rat brain. Saturation immunoprecipitation studies were performed on membranes labeled for BK channels and precipitated with antibodies against alpha(1C) and alpha(1D) L-type Ca(2+) channels. To confirm the specificity of the interaction, precipitation experiments were carried out also in reverse order. Also, additive precipitation was performed because alpha(1C) and alpha(1D) L-type Ca(2+) channels always refer to separate ion channel complexes. Finally, immunochemical studies showed a distinct but overlapping expression pattern of the two types of ion channels investigated. BK and L-type Ca(2+) channels were colocalized in various compartments throughout the rat brain. Taken together, these results demonstrate a direct coassembly of BK channels and L-type Ca(2+) channels in certain areas of the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号