首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously we have shown in a mouse model of bronchial asthma that thrombomodulin can convert immunogenic conventional dendritic cells into tolerogenic dendritic cells while inducing its own expression on their cell surface. Thrombomodulin+ dendritic cells are tolerogenic while thrombomodulin dendritic cells are pro-inflammatory and immunogenic. Here we hypothesized that thrombomodulin treatment of dendritic cells would modulate inflammatory gene expression. Murine bone marrow-derived dendritic cells were treated with soluble thrombomodulin and expression of surface markers was determined. Treatment with thrombomodulin reduces the expression of maturation markers and increases the expression of TM on the DC surface. Thrombomodulin treated and control dendritic cells were sorted into thrombomodulin+ and thrombomodulin dendritic cells before their mRNA was analyzed by microarray. mRNAs encoding pro-inflammatory genes and dendritic cells maturation markers were reduced while expression of cell cycle genes were increased in thrombomodulin-treated and thrombomodulin+ dendritic cells compared to control dendritic cells and thrombomodulin dendritic cells. Thrombomodulin-treated and thrombomodulin+ dendritic cells had higher expression of 15-lipoxygenase suggesting increased synthesis of lipoxins. Thrombomodulin+ dendritic cells produced more lipoxins than thrombomodulin dendritic cells, as measured by ELISA, confirming that this pathway was upregulated. There was more phosphorylation of several cell cycle kinases in thrombomodulin+ dendritic cells while phosphorylation of kinases involved with pro-inflammatory cytokine signaling was reduced. Cultures of thrombomodulin+ dendritic cells contained more cells actively dividing than those of thrombomodulin dendritic cells. Production of IL-10 is increased in thrombomodulin+ dendritic cells. Antagonism of IL-10 with a neutralizing antibody inhibited the effects of thrombomodulin treatment of dendritic cells suggesting a mechanistic role for IL-10. The surface of thrombomodulin+ dendritic cells supported activation of protein C and procarboxypeptidase B2 in a thrombomodulin-dependent manner. Thus thrombomodulin treatment increases the number of thrombomodulin+ dendritic cells, which have significantly altered gene expression compared to thrombomodulin dendritic cells in key immune function pathways.  相似文献   

2.
Earlier we reported that atherosclerotic lesions of apoE-deficient mice contained cells which stained positively with anti-S-100 antibody and that cells exhibiting the ultrastructural features of dendritic cells were present in the aortic lesions. These observations suggested that dendritic cells might be involved in mouse atherosclerosis. By employing DEC-205 and MIDC-8 antibodies specific for dendritic cells, the present study has established that dendritic cells indeed accumulate in atherosclerotic lesions of apoE-deficient mice. Finding dendritic cells infiltrating atherosclerotic lesions in apoE-deficient mice offers the possibility of investigating the migratory routes of dendritic cells and their involvement in T-cell activation.  相似文献   

3.
Dendritic cells are the professional antigen presenting cells of innate immunity and key players in maintaining the balance of immune responses. Studies with dendritic cells are mainly limited by their low numbers in vivo and their difficult maintenance in vitro. We differentiated bone marrow cells from transgenic mice expressing an inducible SV40 large T-antigen into dendritic cells. When immortalized by dexamethasone and doxycycline, these cells were stable in long-term culture. In the absence of dexamethasone and doxycycline (de-induction), dendritic cells displayed properties of primary cells, characterized by expression of classical dendritic cell surface markers CD11c, CD11b, MHCII, CD40 and CD86. Furthermore, de-induced lipopolysaccharide activated dendritic cells secreted IL-1β, IL-6, TNFα and IL-12. De-induced, Ovalbumin-loaded dendritic cells polarize CD4+ T cells into Th1, Th17 and Th2 cells, indicating their correct antigen presenting property. Consistent with intratracheal application of Ovalbumin-loaded primary dendritic cells into mice, the application of de-induced dendritic cells resulted in recruitment of lymphocytes to the lungs. In summary, we successfully expanded dendritic cells using conditional immortalization. The generated dendritic cells demonstrate the characteristic immunophenotype of primary dendritic cells and will facilitate further studies on immunomodulatory properties of dendritic cells.  相似文献   

4.
目的:对比培养大鼠骨髓来源的未成熟树突状细胞与成熟树突状细胞,并从形态学、表型及功能检测等多方面进行对比研究,为后续的实验做出基础研究。方法:大鼠脱臼法处死后取两侧胫骨、股骨,PBS冲洗骨髓腔收集骨髓细胞,经GM-CSF和IL-4刺激培养六天后,对比研究经LPS刺激组与未经LPS刺激培养组细胞状况。结果:①成熟树突状细胞悬浮生长,集落分散,扫描电镜下见其突起数目明显多于未成熟树突状细胞。②成熟树突状细胞高表达表面标记分子CD80、CD86、MHCⅡ,而未成熟树突状细胞均低表达。③成熟树突状细胞培养基上清中IL-12水平高,而未成熟树突状细胞培养基上清中IL-12水平低。④成熟树突状细胞具有强的刺激T细胞增殖能力,而未成熟树突状细胞基本不具有诱导T细胞增殖能力。结论:未成熟状态的树突状细胞具备致耐受原性,可抑制T细胞的应答,而成熟状态的树突状细胞由于获得了免疫刺激潜能从而会对炎性刺激做出反应。  相似文献   

5.
Until now it was thought that the retrovirus mouse mammary tumor virus preferentially infects B cells, which thereafter proliferate and differentiate due to superantigen-mediated T cell help. We describe in this study that dendritic cells are infectable at levels comparable to B cells in the first days after virus injection. Moreover, IgM knockout mice have chronically deleted superantigen-reactive T cells after MMTV injection, indicating that superantigen presentation by dendritic cells is sufficient for T cell deletion. In both subsets initially only few cells were infected, but there was an exponential increase in numbers of infected B cells due to superantigen-mediated T cell help, explaining that at the peak of the response infection is almost exclusively found in B cells. The level of infection in vivo was below 1 in 1000 dendritic cells or B cells. Infection levels in freshly isolated dendritic cells from spleen, Langerhans cells from skin, or bone marrow-derived dendritic cells were compared in an in vitro infection assay. Immature dendritic cells such as Langerhans cells or bone marrow-derived dendritic cells were infected 10- to 30-fold more efficiently than mature splenic dendritic cells. Bone marrow-derived dendritic cells carrying an endogenous mouse mammary tumor virus superantigen were highly efficient at inducing a superantigen response in vivo. These results highlight the importance of professional APC and efficient T cell priming for the establishment of a persistent infection by mouse mammary tumor virus.  相似文献   

6.
The porcine reproductive and respiratory syndrome Virus (PRRSV) is an infectious disease that causes abortions and respiratory disorders in swine. In this study, the interaction between PRRSV and porcine dendritic cells generated from CD14(+) monocytes in the presence of GM-CSF and IL-4 was examined. As a result, it was shown that immature and mature dendritic cells can be productively infected with PRRSV. When the expression of surface MHC molecules on infected dendritic cells was determined, MHC classes I and II were found to be downregulated when compared with uninfected dendritic cells. With the exception of the IL-4 and IFN-gamma cytokines, the induction of the IL-10, IL-12, and TNF-alpha cytokines all increased in dendritic cells infected with PRRSV. A mixed lymphocyte reaction showed that peripheral blood mononuclear cells cocultured with PRRSVinfected dendritic cells were less stimulated than peripheral blood mononuclear cells cocultured with dendritic cells treated with PBS, LPS, or UV-inactivated PRRSV. Therefore, these results suggest that PRRSV would appear to modulate the immune stimulatory function of porcine dendritic cells.  相似文献   

7.

Background

Abnormal immune responses are believed to be highly relevant in the pathogenesis of chronic obstructive pulmonary disease (COPD). Dendritic cells provide a critical checkpoint for immunity by their capacity to both induce and suppress immunity. Although evident that cigarette smoke, the primary cause of COPD, significantly influences dendritic cell functions, little is known about the roles of dendritic cells in the pathogenesis of COPD.

Methods

The extent of dendritic cell infiltration in COPD tissue specimens was determined using immunohistochemical localization of CD83+ cells (marker of matured myeloid dendritic cells), and CD1a+ cells (Langerhans cells). The extent of tissue infiltration with Langerhans cells was also determined by the relative expression of the CD207 gene in COPD versus control tissues. To determine mechanisms by which dendritic cells accumulate in COPD, complimentary studies were conducted using monocyte-derived human dendritic cells exposed to cigarette smoke extract (CSE), and dendritic cells extracted from mice chronically exposed to cigarette smoke.

Results

In human COPD lung tissue, we detected a significant increase in the total number of CD83+ cells, and significantly higher amounts of CD207 mRNA when compared with control tissue. Human monocyte-derived dendritic cells exposed to CSE (0.1-2%) exhibited enhanced survival in vitro when compared with control dendritic cells. Murine dendritic cells extracted from mice exposed to cigarette smoke for 4 weeks, also demonstrated enhanced survival compared to dendritic cells extracted from control mice. Acute exposure of human dendritic cells to CSE induced the cellular pro-survival proteins heme-oxygenase-1 (HO-1), and B cell lymphoma leukemia-x(L) (Bcl-xL), predominantly through oxidative stress. Although activated human dendritic cells conditioned with CSE expressed diminished migratory CCR7 expression, their migration towards the CCR7 ligand CCL21 was not impaired.

Conclusions

These data indicate that COPD is associated with increased numbers of cells bearing markers associated with Langerhans cells and mature dendritic cells, and that cigarette smoke promotes survival signals and augments survival of dendritic cells. Although CSE suppressed dendritic cell CCR7 expression, migration towards a CCR7 ligand was not diminished, suggesting that reduced CCR7-dependent migration is unlikely to be an important mechanism for dendritic cell retention in the lungs of smokers with COPD.  相似文献   

8.
Dendritic cell–based vaccines offer promise for therapy of ovarian cancer. Previous studies have demonstrated that oxidation of several antigens, including ovarian cancer cells, using hypochlorous acid strongly enhances their immunogenicity and their uptake and presentation by dendritic cells. The response of T cells and dendritic cells to autologous tumour from patients with active disease has not previously been investigated. Monocyte-derived dendritic cells were generated from patients with active disease and activated by co-culture with oxidised tumour cells and the TLR agonist poly I:C. The dendritic cells showed an activated phenotype, but secreted high levels of TGFβ. Co-culture of the antigen-loaded dendritic cells with autologous T cells generated a population of effector T cells that showed a low level of specific lytic activity against autologous tumour, as compared to autologous mesothelium. The addition of neutralising antibody to TGFβ in DC/T cell co-cultures increased the levels of subsequent tumour killing in three samples tested. Co-culture of monocytes from healthy volunteers with the ovarian cell line SKOV-3 prior to differentiation into dendritic cells reduced the ability of dendritic cells to stimulate cytotoxic effector cells. The study suggests that co-culture of dendritic cells with oxidised tumour cells can generate effector cells able to kill autologous tumour, but that the high tumour burden in patients with active disease may compromise dendritic cell and/or T cell function.  相似文献   

9.
Compared with other members of the dendritic cell family, the antigen profile of the recently recognized vascular dendritic cells has received limited attention. This study demonstrates that vascular dendritic cells in the human aorta and carotid arteries express 55-kD actin-bundling protein (p55), a specific marker for blood dendritic cells and Langerhans cells. This finding will facilitate screening of dendritic cells during their isolation from the arterial wall, as well as other investigations.(J Histochem Cytochem 47:1481-1486, 1999)  相似文献   

10.
Gamma irradiation is one of the methods used to sterilize melanoma cells prior to coculturing them with monocyte-derived immature dendritic cells in order to develop antitumor vaccines. However, the changes taking place in tumor cells after irradiation and their interaction with dendritic cells have been scarcely analyzed. We demonstrate here for the first time that after irradiation a fraction of tumor cells present large lipid bodies, which mainly contain triglycerides that are several-fold increased as compared to viable cells as determined by staining with Oil Red O and BODIPY 493/503 and by biochemical analysis. Phosphatidyl-choline, phosphatidyl-ethanolamine and sphingomyelin are also increased in the lipid bodies of irradiated cells. Lipid bodies do not contain the melanoma-associated antigen MART-1. After coculturing immature dendritic cells with irradiated melanoma cells, tumor cells tend to form clumps to which dendritic cells adhere. Under such conditions, dendritic cells are unable to act as stimulating cells in a mixed leukocyte reaction. However, when a maturation cocktail composed of TNF-alpha, IL-6, IL-1beta and prostaglandin E2 is added to the coculture, the tumor cells clumps disaggregate, dendritic cells remain free in suspension and their ability to efficiently stimulate allogeneic lymphocytes is restored. These results help to understand the events following melanoma cell irradiation, shed light about interactions between irradiated cells and dendritic cells, and may help to develop optimized dendritic cell vaccines for cancer therapy.  相似文献   

11.
Two distinct subsets of dendritic cells are produced within the non-adherent cell population of the stroma-dependent long-term culture system. These are the small subset containing dendritic cell precursors and their progeny, large long-term culture-dendritic cells, which resemble immature CD11c+CD11b+MHCIIloCD8alpha- dendritic cells. The replicative and developmental potential of cells produced in long-term culture were investigated as a model for production of dendritic cells from progenitors. Cell proliferation and apoptosis were examined by labelling with bromodeoxyuridine and Annexin-V, respectively. The developmental potential of cells was analysed following transfer on to stromal monolayers or into in vitro colony and transwell assays. Results demonstrate that small long-term culture-dendritic cells are stromal cell-dependent. In the absence of stroma, they become apoptotic and die. Furthermore, direct contact with stromal cells is necessary for the differentiation and proliferation of small precursor cells. The small cell subset contains no long-term self-renewing cells, but instead appears to contain cells committed to developing into large long-term culture dendritic cells. The large long-term culture dendritic cell subset also contains dividing cells. Survival of large long-term culture-dendritic cells is dependent on soluble stroma-derived factor(s) and not direct contact with the stromal layer. All data suggest that the long-term culture system supports dendritic cell development from a self-renewing progenitor population resident within the stroma that gives rise to committed dendritic cell precursors and immature dendritic cells.  相似文献   

12.
Nitric oxide (NO) can stimulate dendritic cells to a more activated state. However, nitric oxide and peroxynitrites production by dendritic cells has been usually associated with pathological situations such as autoimmunity or inflammatory diseases. This study was designed to determine if dendritic cells obtained from healthy volunteers produce nitric oxide and peroxynitrites, which results in protein nitration. The expression of arginase II, but not arginase I, isoform was detected in monocytes and dendritic cells. There was higher inducible nitric oxide synthase (iNOS) protein expression and lower arginase activity both in immature and mature dendritic cells, compared to monocytes. This caused nitric oxide production, and maturation of dendritic cells which provoked a significative increase of nitrites and nitrates compared to immature dendritic cells. There was also peroxynitrites synthesis during monocyte differentiation as shown by the nitration of proteins. Immunoblot revealed a pattern of nitrated proteins in cell extracts obtained from monocytes and dendritic cells, however there were bands that appeared only in human dendritic cells, in particular an intense 90 kDa band. Nitric oxide production and nitrotyrosine formation could affect the antigen presentation and modify the immune response.  相似文献   

13.
We investigated the effects of all-trans-retinoic acid on dendritic cells derived from human cord blood monocytes to clarify how vitamin A affects immune function in children. Monocytes were separated from 18 cord blood samples, and dendritic cells were differentiated by culture. The percentage of dendritic cells was markedly lower in all-trans-retinoic acid treated cells than in untreated cells. After exposure to tumour necrosis factor-alpha for 3 days, all-trans-retinoic acid treated dendritic cells showed a reduced capacity to activate alloreactive T cells compared to untreated cells. In addition, all-trans-retinoic acid-treated dendritic cells could drive T cells towards T-helper cell type 2 responses with decreased secretion of interleukin-12, interferon-gamma, and increased production of interleukin-10 and interleukin-4. However, when Ro 41-5253, a selective retinoic acid receptor alpha antagonist, was add to culture, all the above actions were reversed. Thus, all-trans-retinoic acid may act at the first step of the immune response by inhibiting the differentiation of dendritic cells, maturation and induction of the T-helper cell type-2 response. The actions of all-trans-retinoic acid on dendritic cells were mediated through retinoic acid receptor alpha.  相似文献   

14.
Bassity E  Clark TG 《PloS one》2012,7(3):e33196
Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro.  相似文献   

15.
We have generated a panel of mAbs that identify three presumably novel human dendritic cell Ags: BDCA-2, BDCA-3, and BDCA-4. In blood, BDCA-2 and BDCA-4 are expressed on CD11c(-) CD123(bright) plasmacytoid dendritic cells, whereas BDCA-3 is expressed on small population of CD11c(+) CD123(-) dendritic cells. All three Ags are not detectable on a third blood dendritic cell population, which is CD1c(+) CD11c(bright) CD123(dim), or on any other cells in blood. BDCA-4 is also expressed on monocyte-derived and CD34(+) cell-derived dendritic cells. Expression of all three Ags dramatically changes once blood dendritic cells undergo in vitro maturation. BDCA-2 is completely down-regulated on plasmacytoid CD11c(-) CD123(bright) dendritic cells, expression of BDCA-3 is up-regulated on both plasmacytoid CD11c(-) CD123(bright) dendritic cells and CD1c(+) CD11c(bright) CD123(dim) dendritic cells, and expression of BDCA-4 is up-regulated on CD1c(+) CD11c(bright) CD123(dim) dendritic cells. BDCA-2 is rapidly internalized at 37 degrees C after mAb labeling. The three presumably novel Ags serve as specific markers for the respective subpopulations of blood dendritic cells in fresh blood and will be of great value for their further analysis and to evaluate their therapeutic potential.  相似文献   

16.
Dendritic cells are central to the early events of human immunodeficiency virus type 1 (HIV-1) transmission, but HIV-1 infects dendritic cells inefficiently in vitro compared to activated CD4(+) T cells. There is a strong postentry restriction of HIV-1 infection in dendritic cells, partly mediated by the cellular restriction factor APOBEC3G. Here, we reveal that arsenic trioxide markedly increases HIV infection of immature and mature dendritic cells as well as blood-derived myeloid dendritic cells in an APOBEC3G- and TRIM5alpha-independent way. Our data suggest the presence of powerful, arsenic-sensitive antiviral activities in primary human immune cells of the dendritic cell lineage.  相似文献   

17.
Activation of naive CD4 T cells by dendritic cells requires the sequential interaction of many TCR molecules with peptide-class II complexes of the appropriate specificity. Such interaction results in morphological transformation of class II MHC-containing endosomal compartments. In this study, we analyze the requirements for long tubular endosomal structures that polarize toward T cell contact sites using dendritic cells from I-A(b) class II -enhanced green fluorescent protein knock-in mice and I-A(b)-restricted CD4 T cells specific for OVA. Clustering of membrane proteins and ligation of T cell adhesion molecules LFA-1 and CD2 are involved in induction of endosomal tubulation. Activation of T cells increases their ability to induce class II-enhanced green fluorescent protein-positive tubules in dendritic cells, in part through up-regulation of CD40 ligand. Remarkably, and in stark contrast with the result obtained with dendritic cells loaded with intact OVA, OVA peptide added to dendritic cells failed to evoke T cell-polarized endosomal tubulation even though both conditions allowed T cell stimulation. These results suggest the existence of microdomains on the membrane of dendritic cells that allow Ag-specific T cells to evoke tubulation in the dendritic cell.  相似文献   

18.
In situ staining techniques were used to visualize physical interactions between dendritic cell subsets and naive Ag-specific CD4 T cells in the lymph node. Before injection of Ag, CD8(+) dendritic cells and naive OVA-specific CD4 T cells were uniformly distributed throughout the T cell-rich paracortex, whereas CD11b(+) dendritic cells were located mainly in the outer edges of the paracortex near the B cell-rich follicles. Many OVA-specific CD4 T cells were in contact with CD8(+) dendritic cells in the absence of OVA. Within 24 h after s.c. injection of soluble OVA, the OVA-specific CD4 T cells redistributed to the outer paracortex and interacted with CD11b(+), but not CD8(+) dendritic cells. This behavior correlated with the uptake of OVA and the presence of peptide-MHC complexes on the surface of CD11b(+) dendritic cells, and subsequent IL-2 production by the Ag-specific CD4 T cells. These results are consistent with the possibility that CD11b(+) dendritic cells play a central role in the activation of CD4 T cells in response to s.c. Ag.  相似文献   

19.
The objective of the study was to identify immune cell populations, in addition to Foxp3+ T-regulatory cells, that participate in the mechanisms of action of tolerogenic dendritic cells shown to prevent and reverse type 1 diabetes in the Non-Obese Diabetic (NOD) mouse strain. Co-culture experiments using tolerogenic dendritic cells and B-cells from NOD as well as transgenic interleukin-10 promoter-reporter mice along with transfer of tolerogenic dendritic cells and CD19+ B-cells into NOD and transgenic mice, showed that these dendritic cells increased the frequency and numbers of interleukin-10-expressing B-cells in vitro and in vivo. The expansion of these cells was a consequence of both the proliferation of pre-existing interleukin-10-expressing B-lymphocytes and the conversion of CD19+ B-lymphcytes into interleukin-10-expressing cells. The tolerogenic dendritic cells did not affect the suppressive activity of these B-cells. Furthermore, we discovered that the suppressive murine B-lymphocytes expressed receptors for retinoic acid which is produced by the tolerogenic dendritic cells. These data assist in identifying the nature of the B-cell population increased in response to the tolerogenic dendritic cells in a clinical trial and also validate very recent findings demonstrating a mechanistic link between human tolerogenic dendritic cells and immunosuppressive regulatory B-cells.  相似文献   

20.
In the present review, a series of studies on the origins of dendritic cells of mice and humans are summarized. Several subsets of mature dendritic cells found in vivo are described and these may correspond to distinct lineages. There is evidence that some dendritic cells are myeloid-derived and that others are lymphoid-derived. The different ways of generating dendritic cells are examined and an attempt to reconcile the differences seen using mouse and human culture models is made. The particular case of Langerhans cells is discussed and an historical overview of the biology of the plasmacytoid T cells, which may represent a distinct 'lymphoid-related' dendritic cell lineage, is given. It is concluded that three or four different pathways lead to the development of different subtypes of dendritic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号