首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the homogenate of rat submaxillary gland, two kinds of serine proteinases, named tentatively proteinases A and B, were isolated and their chemical properties and activities toward rat kininogens were examined, in comparison with those of submaxillary kallikrein. Proteinase A with Mr of 28,200 rapidly cleaved high-molecular-weight (HMW) kininogen into a protein of 67 kDa, which retained thiol-proteinase inhibitory activity, but had lost the correcting activity of HMW kininogen on the prolonged clotting time of Fitzgerald trait plasma. It liberated bradykinin from HMW kininogen but did not liberate kinin from T-kininogen and did not degrade T-kininogen. On the other hand, proteinase B with Mr of 30,400 showed a very weak activity for the liberation of kinin from T-kininogen and the cleavage of T-kininogen at pH 8.0. However, the enzyme extensively degraded T-kininogen at pH 4.5. Proteinase B also degraded HMW kininogen at pH 4.5 and pH 8.0, but liberated bradykinin only at pH 8.0. Thiol-proteinase inhibitory activities of HMW kininogen and T-kininogen were inactivated after the incubation with proteinase B at pH 4.5 but not at pH 8.0, while the correcting activity of HMW kininogen on the Fitzgerald trait plasma was inactivated at pH 4.5 and 8.0. The NH2-terminal amino acid sequences of proteinases A and B were different from each other, and distinguishable with those of serine proteinases in rat submaxillary gland so far reported. These results provide evidence that in addition to the known kallikrein, there exist at least two kinds of serine proteinases in rat submaxillary gland, both of which liberate bradykinin from rat HMW kininogen at pH 8.0 and modulate the functional activities of HMW kininogen and T-kininogen, degrading these proteins at pH 8.0 or 4.5.  相似文献   

2.
Direct radioimmunoassay for rat T-kininogen   总被引:1,自引:0,他引:1  
Antibodies raised in rabbits against pure rat T-kininogen did not cross-react with Ile-Ser-Bradykinin, bradykinin, nor with kininogens from other mammalian species. They presented a 1 to 15% cross-reaction with pure rat HMW kininogen, depending on the quantity of HMW kininogen. A direct radioimmunoassay for rat T-kininogen in plasma was developed and it enabled 89 fmol of the protein to be detected. A good correspondence was obtained between the direct RIA and the T-kinin generating assay. By the direct assay, it was found that T-kininogen is increased about ten fold in rats subcutaneously injected with turpentine. These data were confirmed by HPLC analysis of the plasma kinins released by trypsin which demonstrated that only T-kinins are increased, bradykinin being unchanged. It was possible according to the results obtained by the direct RIA and HPLC analysis to estimate that in the normal rat, HMW and LMW kininogen represent about 35% and T-kininogen 65%. In the turpentine-treated rat, T-kininogen reached 95%. This RIA will allow the study of the regulation of T-kininogen in the rat and the synthesis of this protein in cells in culture.  相似文献   

3.
High-molecular-weight (HMW) kininogen was purified from guinea-pig plasma by measuring its ability to correct the prolonged clotting time in human HMW kininogen deficient plasma (Fitzgerald trait). The purified HMW kininogen demonstrated a homogeneous band in disc gel electrophoresis in the presence of sodium dodecyl sulfate under reducing or non-reducing conditions with an apparent molecular weight of 100,000. Kinin released from HMW kininogen by treatment with guinea-pig plasma kallikrein was identified as bradykinin by reverse-phase HPLC and amino-acid analysis. The capacity of HMW kininogen as a thiol-proteinase inhibitor was realized by its dose-dependent inhibitory activity to papain. The Ki value for papain was estimated to be 42 pM. The kinin-free HMW kininogen maintained the inhibitor and clotting-factor activities with similar capacities to those of the HMW kininogen molecule. Heavy chain (H-chain) and light chain (L-chain) of HMW kininogen were prepared from reduced and alkylated kinin-free HMW kininogen by HPLC. The S-alkylated H-chain, but not L-chain, demonstrated the inhibitor activity with the Ki value 6.9 nM for papain, whereas the S-alkylated L-chain, but not H-chain, maintained the clotting activity one-third of the capacity of HMW kininogen. Specific antibodies recognized HMW kininogen, but also a probable low-molecular-weight kininogen(s) with an apparent molecular weight of 60,000 in the guinea-pig plasma. All of these properties are consistent with the reports on human, bovine and rat HMW kininogen.  相似文献   

4.
Studies have compared “total”, HMW kininogen and leukokininogen levels in human, rabbit and rat plasmas using trypsin, glass powder and cathepsin D as kininogenases or activators of kininogenases. Rat plasma was found to have about 10 fold more leukokininogen than the other plasmas assayed. When trypsin was used to estimate total kininogen, rat plasma liberated maximal amounts of kinin only in the presence of high concentrations of trypsin (1 mg/ml incubation mixture). In addition, it was found that trypsin in these concentrations liberated from rat plasma both bradykinin and a previously unidentified kinin which we have termed “T-kinin”. The results overall indicate that in the case of rat and rabbit plasma, currently used methods for estimations of total kininogen may not be accurate. T-kinin may represent a leukokininogen or a hitherto undescribed kininogen.  相似文献   

5.
Low molecular weight (LMW) kininogen was isolated from pooled rat plasma by chromatography on DEAE-Sephadex A-50, CM-Sephadex C-50, Blue-Sepharose CL-6B, and Sephadex G-100. It was shown to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoelectrophoresis. The molecular weight of rat LMW kininogen was determined to be 72,000 by SDS-PAGE. The LMW kininogen contained 83.5% protein, 4.0% hexose, 5.5% hexosamine, and 2.7% sialic acid. Kinin liberated from LMW kininogen by trypsin treatment was identified as an Ile-Ser-bradykinin(T-kinin) by analysis involving ion exchange column chromatography on CM-Sephadex C-25 and high performance liquid chromatography on a reverse-phase column (ODS-120T). LMW kininogen formed kinin with rat submaxillary gland kallikrein, but the kinin liberated was only 14% of the total kinin content, that is, that released by trypsin. In order to determine the immunochemical properties of LMW kininogen, specific antiserum was prepared in rabbits. The antiserum cross-reacted with high molecular weight (HMW) kininogen, but spur formation was observed between the LMW and HMW kininogens. The kininogen level in rat plasma was estimated to be 433 microgram/ml by a quantitative single radial immunodiffusion test.  相似文献   

6.
The two types of the rat kininogen genes show different modes of mRNA production. The K gene encodes two distinct mRNAs for high molecular weight (HMW) and low molecular weight (LMW) kininogens. These two mRNAs are generated by differential usage of the 3'-terminal exon (LMW exon) and the one next to this exon (HMW exon) through alternative polyadenylation and splicing. In contrast, the two T genes selectively generate the LMW form of the mRNA, although the T genes are extremely homologous to the K gene, including the sequence (psi HMW region) corresponding to the HMW exon of the K gene. In this study, we constructed a series of chimeric kininogen genes by exchanging equivalent restriction fragments of the K and T genes and examined the sequences and the mechanisms governing the different expression patterns of the kininogen genes by introducing the chimeric genes into heterologous COS cells. The results indicate that the formation of the two forms of the mRNA is controlled by two separate 3' sequences of the kininogen genes. One is located within the internal sequence of the HMW/psi HMW region, whereas the other is within the LMW exon and its preceding region. Our data also suggest that the different expression patterns of the kininogen genes are primarily governed by differing splicing efficiency.  相似文献   

7.
8.
It has been proposed that a cysteine proteinase inhibitor (CPI) found in the ascitic fluid of Sarcoma 180 tumor-bearing mice is a kind of kininogen (Itoh, N., Yokota, S., Takagishi, U., Hatta, A., and Okamaoto, H. (1987) Cancer Res. 47, 5560-5565). The first 40 NH2-terminal residues and 54 residues of the COOH-terminal sequence, including the bradykinin moiety of highly purified ascites CPI, were determined and compared with those of mammalian low molecular weight kininogens (LMWK). The significant identity between these amino acid sequences with those of other mammalian LMWKs suggests that ascites CPI corresponds precisely to mouse LMWK. This kininogen has a light chain composed of 43 amino acid residues, which contains a unique Met-Ala-Arg-bradykinin sequence. Hydroxyproline, which was recently identified in the bradykinin sequence of kininogen from the ascitic fluid of a cancer patient, was not found in the kinin moiety of this mouse kininogen. Among purified glandular kallikreins from human, hog, rat, and mouse, only mouse submaxillary gland kallikrein was able to release bradykinin from this kininogen. Kinetic studies using a newly synthesized fluorogenic substrate, N-t-butoxycarbonyl-Met-Ala-Arg-MCA, revealed that mouse kallikrein hydrolyzes this substrate approximately 80-fold faster than does hog kallikrein, suggesting that the unique Met-Ala-Arg-bradykinin sequence is responsible for the varied susceptibility of mouse kininogen to different kallikreins.  相似文献   

9.
High molecular weight (HMW) kininogen is known to be a large plasma protein and cleaved by plasma proteinase kallikrein, then it generates four fragments in the blood coagulation cascade: heavy chain, bradykinin, fragment 1.2, and light chain. The fragment 1.2 has also been found in the basic protein fraction of bovine milk as a bioactive protein which promotes osteoblast proliferation. The milk basic protein has been shown to be a multi functional edible protein which promotes bone formation and inhibits bone resorption. In the present study, we purified the fragment 1.2 from bovine plasma and assessed it could promote osteoblast proliferation and posses the activity after pepsin digestion. Purified plasma HMW kininogen did not promote the proliferation, however, the kallikrein-cleaved HMW kininogen promoted the proliferation. The fragment 1.2, purified from the proteolysate, also promoted the proliferation. The pepsin digestion was performed according to the method of the assessment of allergenesity of genetically modified crops. After pepsin digestion, the fragment 1.2 generated resistant fragments and showed the promoting activity of osteoblast proliferation. These results suggest that the enzymatically-digested fragments of bovine HMW kininogen are able to be a naturally occurred active protein that promotes the bone formation by oral administration.  相似文献   

10.
The active component on the proliferation of osteoblastic MC3T3-E1 cells was purified and identified from bovine milk. The growth-promoting activity was measured by [(3)H]thymidine incorporation on the cell. The purified protein showed a molecular size of 17 kDa on SDS-PAGE. Its amino-terminal amino acid sequence was very similar to the internal sequence of bovine high molecular weight (HMW) kininogen, which comprises fragment 1.2. The promotion of proliferation was specific for osteoblastic MC3T3-E1 cells, not for fibroblast BALB/3T3 cells. In blood coagulation, HMW kininogen is considered to be cleaved by a specific enzyme kallikrein. HMW kininogen then releases two peptides, a biologically active peptide bradykinin and fragment 1.2, but the fate of fragment 1.2 is unknown. This milk-derived protein that comprises to fragment 1.2 showed a growth-promoting activity of osteoblasts. We propose the possibility that milk plays an important role in bone formation by supplying the active agent for osteoblasts as well as supplying calcium.  相似文献   

11.
A kinin-directed monoclonal antibody to kininogens has been developed by the fusion of murine myeloma cells with mouse splenocytes immunized with bradykinin-conjugated hemocyanin. The hybrid cells were screened by an enzyme-linked immunosorbent assay (ELISA) and a radioimmunoassay (RIA) for the secretion of antibodies to bradykinin. Ascitic fluids were produced and purified by a bradykinin-agarose affinity column. The monoclonal antibody (IgG1) bound to bradykinin, Lys-bradykinin, Met-Lys-bradykinin, and kininogens in ELISA. Further, this target-directed monoclonal antibody recognized purified low and high molecular weight bovine, human, or rat kininogens and T-kininogen in Western blotting. After turpentine-induced acute inflammation, rat kininogen levels increased dramatically in liver and serum as well as in the perfused pituitary, heart, lung, kidney, thymus, and other tissues, as identified by the kinin-directed kininogen antibody in Western blot analyses. The results were confirmed by measuring kinin equivalents of kininogens with a kinin RIA. During an induced inflammatory response, rat kininogens were localized immunohistochemically with the kinin-directed monoclonal antibody in parenchymal cells of liver, in acinar cells and some granular convoluted tubules of submandibular gland, and in the collecting tubules of kidney. Northern and cytoplasmic dot blot analyses using a kinin oligonucleotide probe showed that kininogen mRNA levels in liver but not in other tissues increase after turpentine-induced inflammation. The results indicated that rat kininogens are distributed in various tissues in addition to liver and only liver kininogen is induced by acute inflammation. The target-directed kininogen monoclonal antibody is a useful reagent for studying the structure, localization, and function of kininogens or any protein molecule containing the kinin moiety.  相似文献   

12.
A rabbit antibody against the light-chain of guinea-pig high-molecular-weight (HMW) kininogen, which was specific to HWM kininogen and did not recognize low-molecular-weight kininogen, was prepared. This antibody demonstrated the presence of HMW kininogen antigen at the interstitial-tissue space in the guinea-pig skin by means of immunohistochemistry. The interstitial-tissue HMW kininogen antigen was extracted from the skin. This antigen molecule in the skin extract behaved identically as HWM kininogen of plasma in slab-polyacrylamide gel electrophoresis under the presence of sodium dodecyl sulfate followed by immunoblotting. Therefore, it was concluded that HMW kininogen was present in the interstitial-tissue fluid in the skin. The amount of HMW kininogen in the skin extract was quantified by a sandwich enzyme-linked immunosorbent assay with the anti-light-chain antibody and a goat anti-guinea-pig HMW kininogen antibody. On the assumption that the interstitial-tissue volume is 50 ml/100 g wet skin tissue, the average concentration of HMW kininogen in the interstitial-tissue fluid of the skin was calculated to be 23% of the plasma concentration. On the other hand, the proportion of intravascular HMW kininogen (derived from blood remaining in the vessels of the harvested skin) in relation to the total HMW kininogen in the skin extract was quantified by measuring the radio-labelled HMW kininogen which had been injected intravenously as a tracer of the intravascular HMW kininogen. About 5% of the total HMW kininogen in the skin extract was calculated to be derived from the intravascular blood volume of the skin, indicating that the majority of the HMW kininogen in the skin extract was derived from the extravascular-tissue space.  相似文献   

13.
The influence of sex hormones on rat plasma T-kininogen concentration was examined. The level of T-kininogen in the post-pubertal female rat is about 3-times that of the male animal. Female rats castrated as adults or 15 days after birth, had low T-kininogen concentrations, near those of male rats. In contrast, castration of mature or immature male animals induced no change in T-kininogen. Treatment of castrated female or male rats with 17 alpha-ethinylestradiol significantly increased the T-kininogen level, whereas administration of testosterone or progesterone had no effect. The influence of estrogen was specific for T-kininogen, since plasma HMW kininogen concentration was the same in male and female rats and was not affected by castration or sex hormone treatment. T-kininogen concentration was not significantly changed in pregnant rat between the 12th and the 20th day of pregnancy, but increased after parturition. It was high in the newborn rat at birth and then decreased similarly over the next 3 weeks in males and females. It continued to decrease in the males, reaching the level of the adult rat, but it increased in the female from 3-4 weeks of age and reached the adult level at about 6-8 weeks. These data indicate that natural estrogens have a physiological influence on the plasma level of T-kininogen in female rats whereas testosterone had no effect on either male or castrated female rats. HMW kininogen is not physiologically dependent on sex hormones.  相似文献   

14.
The relationship between rat major acute phase protein and the kininogens   总被引:7,自引:0,他引:7  
The rat major acute phase protein (alpha 1-MAP) is a cysteine protease inhibitor. The stoichiometry of the interaction between the inhibitor and enzyme was shown to be 1:2. A cDNA clone specific for rat alpha 1-MAP was isolated from a cDNA library prepared from an inflamed rat liver RNA template. The 1458-base pair insert was sequenced and positively identified by alignment with a partial amino acid sequence obtained by radiosequence analysis of the primary translation product for alpha 1-MAP. Complete sequence analysis determined the alpha 1-MAP cDNA coded for the entire protein with the exception of the first four amino acids of the signal peptide, all of which were identified by radiosequencing. The coding sequence spans 1282 nucleotides, followed by 115 base pairs of a 3' untranslated region. Two putative active sites, suggested by the enzyme-inhibitor ratio, have been identified by analysis of internal duplications of the alpha 1-MAP sequence and the alignment of these regions with the sequences of several low molecular weight cysteine protease inhibitors. A computer homology analysis of the protein sequence revealed a 59.3% overall identity between rat alpha 1-MAP and bovine low molecular weight (LMW) kininogen. The homology included the signal peptide regions. LMW kininogen is a precursor of bradykinin. alpha 1-MAP does contain a bradykinin sequence; the flanking amino acids are different, however. Evidence for the expression of the LMW and a high molecular weight kininogen from the same gene, and the high degree of homology between these proteins and the rat acute phase protein suggest that all three proteins belong to a precisely regulated gene family.  相似文献   

15.
Thirty-four monoclonal antibodies directed against human high molecular weight (HMW) and low molecular weight (LMW) kininogens and their derivatives were obtained, and the specificities of the antibodies were assayed by enzyme-linked immunosorbent assay (ELISA). By use of HMW kininogen, kinin-free HMW kininogen, kinin-free and fragment 1.2 (fr 1.2) free HMW kininogen, fr 1.2-light chain of HMW kininogen, LMW kininogen, kinin-free LMW kininogen, heavy chain of LMW kininogen, and light chain of LMW kininogen, the monoclonal antibodies were characterized and classified into four groups: (A) 20 monoclonal antibodies reacting with only the heavy chain, a common region of HMW and LMW kininogens; each of these monoclonal antibodies possessed the specificity to domain 1 (2 monoclonal antibodies), domain 2 (2 monoclonal antibodies), domain 3 (7 monoclonal antibodies), and both domains 2 and 3 (7 monoclonal antibodies) of the heavy chain; (B) 7 monoclonal antibodies reacting with fr 1.2, a unique histidine-rich region; (C) 5 monoclonal antibodies reacting with the light chain of HMW kininogen; (D) 2 monoclonal antibodies reacting with the light chain of LMW kininogen. Two monoclonal antibodies in the first group (group A), designated HKG H7 and H12, effectively suppressed the thiol proteinase inhibitor activity of HMW kininogen to papain and calpains and of LMW kininogen to papain, but the others did not affect it. Further, all the monoclonal antibodies which recognized the fr 1.2 or light chain of HMW kininogen (groups B and C) suppressed the clotting activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have investigated in detail the cleavage of human high molecular weight (HMW) kininogen by human plasma kallikrein and revealed the formation of a nicked kininogen and a novel kinin-free protein (KFP) as intermediate cleavage products. The cleavage of a single chain HMW kininogen (Mr=120,000) by plasma kallikrein was a three-step reaction. The first cleavage yielded a nicked kininogen composed of two disulfide-linked 62,000 and 56,000 daltons chains. The second cleavage yielded kinin and an intermediate kinin-free protein, KFP-I, which was apparently of equal size to the nicked kininogen. The third cleavage yielded a stable kinin-free protein, KFP-II, composed of two disulfide-linked 62,000 and 45,000 daltons chains. The liberation of an 8,000 daltons fragment was identified when the 56,000 daltons chain isolated by SP-Sephadex C-50 chromatography of reduced and alkylated KFP-I was cleaved by plasma kallikrein into the 45,000 daltons chain. Although the antiserum against HMW kininogen cross-reacted with low molecular weight (LMW) kininogen, the antiserum against the 45,000 daltons chain was specific for HMW kininogen. These results suggest that the antigenic determinant groups common to HMW and LMW kininogens are located in the 62,000 daltons heavy chain, while those specific for HMW kininogen are located in the 45,000 daltons light chain, which is known to retain blood coagulation activity.  相似文献   

17.
Previous studies from our laboratories (Sugo et al. (1980) Biochemistry 19, 3215-3220) have shown that bovine high-molecular-weight (HMW) kininogen remarkably accelerates the kaolin-mediated activation of Factor XII in the presence of prekallikrein, and that both fragment 1.2 and the light chain regions located in the COOH terminal half of the kininogen molecule are essential for the activation. In the present study, we demonstrate that the accelerating effect of HMW kininogen is mediated through its adsorption on the kaolin surface through the fragment 1.2 region and its complex formation with prekallikrein through the light chain region. The evidence is as follows: 1. HMW kininogen radio-labeled with 125I was adsorbed on kaolin and the adsorption was inhibited by the prior treatment of kaolin with fragment 1.2, fragment 1.2-light chain, kinin-free protein or HMW kininogen, but not with kinin- and fragment 1.2-free protein, light chain or low molecular-weight (LMW) kininogen. 2. The complex formation of HMW kininogen with prekallikrein in bovine plasma or in the purified system was examined by gel-filtration on a column of Sephacryl S-200 In bovine plasma, prekallikrein was eluted in the same fraction as HMW kininogen, showing an apparent molecular weight of 250,000, whereas purified prekallikrein was eluted in the fraction corresponding to an apparent molecular weight of 100,000. When purified prekallikrein was mixed with purified HMW kininogen in a mol ratio of 1 to 2, all prekallikrein was found to be associated with HMW kininogen. Furthermore, purified prekallikrein mixed with kininogen derivatives, such as kinin- and fragment 1.2-free protein, fragment 1.2-light chain or light chain, was eluted in the higher molecular weight fraction. HMW kininogen did not form a complex with prekallikrein. Using the same technique, it was shown that kinin- and fragment 1.2-free protein forms a complex not only with prekallikrein but also with kallikrein.  相似文献   

18.
Two peptides exhibiting kinin activity in an isolated rat uterus assay were purified from pasteurized skim bovine milk. The amino acid sequence of the more prominent peptide was found to be that of bradykinin. Partially purified kinin preparations were also obtained from N-tosyl-L-phenylalanyl chloromethyl ketone-treated trypsin digests of non-fat dry milk and insoluble lactalbumin. The application of fast atom bombardment/mass spectrometry permitted detection of the bradykinin protonated molecular ion in each of these samples. Collision-activated decomposition of the ion of m/z 1061 confirmed it to be the protonated molecular ion of bradykinin. Fast atom bombardment/mass spectrometry analysis further confirmed the occurrence of bradykinin in a pancreatic kallikrein digest of a partially purified bovine milk kininogen preparation. In apparent contrast with bovine plasma kininogens, the forms of kininogen which occur in milk include a high Mr kininogen (Mr greater than 68,000) and a low Mr kininogen (Mr 16,000-17,000). Kinin formation from the high Mr kininogen is catalyzed by porcine pancreatic kallikrein or trypsin.  相似文献   

19.
High molecular weight (HMW) kininogen was purified from fresh human plasma by two successive column chromatographies on DEAE-Sephadex A-50 and Zn-chelate Sepharose 4B. The purified HMW kininogen appeared to be a single band on sodium dodecyl sulfate (SDS)-polyacrylamide disc gel electrophoresis in both the presence and absence of beta-mercaptoethanol. However, it gave two bands on nonreduced SDS-polyacrylamide slab gel electrophoresis, a major band of dimeric form (Mr 200 000, ca. 95%) and a minor band of monomeric form (Mr 105 000, ca. 5%). Under reduced conditions, the dimeric form was converted stoichiometrically to a monomeric form (Mr 110 000), and the monomeric form observed under nonreduced conditions (Mr 105 000) was converted to a heavy chain (Mr 60 000) and a light chain (Mr 50 000). The formation of a dimer of HMW kininogen was also confirmed by an immunoblotting experiment. This unique property of intact HMW kininogen to form a dimer was further utilized in studies on the kininogens and their derivatives as thiol proteinase inhibitors. The purified HMW kininogen strongly inhibited the caseinolytic activities of calpain I, calpain II, and papain but not those of trypsin, chymotrypsin, and thermolysin, indicating that it was a group-specific inhibitor for thiol proteinases. When HMW kininogen was reduced with 0.14 or 1.4 M beta-mercaptoethanol, its inhibitory activity was partially or mostly inactivated, but on subsequent air oxidation its activity was almost completely recovered. In addition, kinin-free and fragment 1,2 free HMW kininogen showed higher inhibitory activity than the intact HMW kininogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The complete amino acid sequence of major acute phase alpha 1-protein of the rat (MAP) was derived from the nucleotide sequence of cloned cDNA. Amino acid analysis and partial sequencing supported the predicted sequence. The amino acid compositions of MAP and rat low-Mr kininogen are identical within experimental variation. The sequence is homologous (60%) to that of bovine low-Mr kininogen and both proteins carry the sequence for the vasoactive nonapeptide bradykinin in their C-terminal region. The rate of synthesis of MAP and the levels of MAP mRNA change coordinately during the acute phase response to inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号