首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 920 毫秒
1.
The decay of gramicidin fluorescence resulting from ultraviolet exposure was compared to the decay of conductance from gramicidin-containing planar bilayer membranes under the same conditions of illumination. The decay rate was the same for both processes. The fluorescence decay was identical whether gramicidin was dissolved in methanol or incorporated into lipid vesicles, indicating that the peptide conformation does not affect the sensitivity of gramicidin to photolysis. The correlation of fluorescence decay and conductance decay imply that conductance loss from gramicidin-doped membranes illuminated with ultraviolet light is due to photochemical modifications of the channel tryptophans rather than simply to disturbance of the conformation of gramicidin channels.  相似文献   

2.
Gramicidin A (the major component of gramicidin D) is a highly hydrophobic peptide with very little solubility in water. Hence, the conformation of this peptide has been extensively investigated in organic solvents and model membranes, but not in water. The peptide adopts a beta6.3-helical conformation in the monomeric and dimeric forms. We have investigated the conformation of gramicidin A in water by monitoring hydrogen-deuterium exchange by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Our results indicate that gramicidin A is monomeric and exists in a highly folded conformation. The metal ion bound forms are clearly discernible in the monomers. The presence of the dimeric form is not observed. It is unlikely this is due to the operating conditions or the method used, as both hetero- and homodimers in gramicidin D are detected when methanol is used as a solvent. The present study also establishes that the linear gramicidins retain a history of solvent environment when ions are generated by matrix-assisted laser desorption ionization and analyzed by time-of-flight.  相似文献   

3.
The conformation of the milk protein alpha-lactalbumin has been studied using vibrational circular dichroism (VCD) and compared to parallel studies on lysozyme. These proteins have been shown by Acharya et al. [(1989) J. Mol. Biol. 208, 99-127] to have very similar three-dimensional crystal structures. However, their VCD spectra in D2O solution are quite different. The VCD of lysozyme in D2O more resembles that of alpha-lactalbumin in 33% propanol/D2O, under which conditions alpha-lactalbumin has conformationally transformed to a structure with increased helical fraction. These results can be seen to be consistent with UVCD and resolution-enhanced FTIR spectra of alpha-lactalbumin and lysozyme in both D2O and H2O environments. The solvent sensitivity of the alpha-lactalbumin spectra and hence of its conformation contrasted with the lack of such sensitivity for lysozyme suggest that the alpha-lactalbumin crystal structure represents a conformation different from that which is dominant in aqueous solution.  相似文献   

4.
M C Ba?ó  L Braco  C Abad 《Biochemistry》1991,30(4):886-894
We have investigated the conformation of gramicidin A reconstituted in different phospholipid environments, small unilamellar vesicles, extensive bilayers, and micelles, by exploiting a recently proposed experimental approach based on high-performance liquid chromatography [Ba?ó et al. (1988) J. Chromatogr. 458, 105; Ba?ó et al. (1989) FEBS Lett. 250, 67]. The method allows the separation of conformational species of the peptide, namely, antiparallel double-stranded (APDS) dimers and beta 6.3-helical monomers, and quantitation of their proportions in the lipid environment. Various experimental parameters (e.g., nature of organic solvent, time of incubation in organic solvent, lipid-to-peptide mole ratio, time of sonication, and temperature) commonly involved in sample preparation protocols have been analyzed independently. The results show how the peptide conformation in model membranes is exquisitely dictated by the particular nature of the reconstitution protocol. In addition, we have elucidated the nature of the slow conformational transition of gramicidin toward the channel configuration that takes place upon incubation of the model membranes. This transition has been characterized as a temperature-dependent conversion from APDS dimeric to beta 6.3-helical monomeric forms. Analysis of kinetic data permits an accurate calculation of the rate constant for this process at different temperatures in phospholipid vesicles and micelles. Finally, an explanation is proposed for the laboratory-to-laboratory variation in the observed spectral patterns of inserted gramicidin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Vibrational circular dichroism (VCD) spectroscopy was used to investigate the solution conformations of cyclosporins A, C, D, G, and H in CDCl(3), in the amide I and NH/OH-stretching regions, and their corresponding magnesium complexes in CD(3)CN, in the amide I region. VCD spectra are sensitive to the chiral arrangement of Cdbond;O and NH bonds in this cyclic undecapeptide. Calculations of molecular geometries, as well as IR and VCD intensities of model cyclosporin fragments that include the intramolecular hydrogen bonds of the crystal conformations of cyclosporins A and H (CsA and CsH), were carried out at the density functional theory (DFT; BPW91 functional/6-31G* basis set) level. The good agreement between IR and VCD spectra from experiment and DFT calculations provides evidence that the crystal conformation of CsA is dominant in CDCl(3) solution; CsH, however, assumes both an intramolecularly hydrogen-bonded crystal conformation and more open forms in solution. Comparisons of the experimental and calculated VCD spectra in the NH/OH-stretching region of the noncomplexed cyclosporins indicate that conformers with both free and hydrogen-bonded NH and OH groups are present in solution. Differences between the IR and VCD spectra for the metal-free and magnesium-complexed cyclosporins are indicative of strong interactions between cyclosporins and magnesium ions.  相似文献   

6.
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.  相似文献   

7.
Bour P  Kim J  Kapitan J  Hammer RP  Huang R  Wu L  Keiderling TA 《Chirality》2008,20(10):1104-1119
A model cyclohexapeptide, cyclo-(Phe-(D)Pro-Gly-Arg-Gly-Asp) was synthesized and its IR and VCD spectra were used as a test of density functional theory (DFT) level predictions of spectral intensities for a peptide with a nonrepeating but partially constricted conformation. Peptide structure and flexibility was estimated by molecular dynamics (MD) simulations and the spectra were simulated using full quantum mechanical (QM) approaches for the complete peptide and for simplified models with truncated side chains. After simulated annealing, the backbone conformation of the ring structure is relatively stable, consisting of a normal beta-turn and a tight loop (no H-bond) which does not vary over short trajectories. Only in quite long MD runs at high temperatures do other conformations appear. MD simulations were carried out for the cyclic peptide in water and in TFE, which match experimental solvents, as well as with and without protonation of the Asp carboxyl group. DFT spectral simulations were made using the annealed structure and were extended to include basis set variation, to determine an optimal computational approach, and solvent simulation with a polarized continuum model (PCM). Stepwise full DFT simulation of spectra was done for various sequences with the same backbone geometry but based on (1) solely Gly residues, (2) Ala substitution except Gly and Pro, and (3) complete sequences with side chains. Additionally, a selection of structures was used to compute IR and VCD spectra with the optimal method to determine structural variation effects. The side chains, especially the Asp-COOH and Arg-NH(2) transitions, had an impact on the computed amide frequencies, IR intensities and VCD pattern. Since experimentally these groups would have little chirality, due to conformational variation, they do not impact the observed VCD spectra. Correcting for frequency shifts, the Ala model for the cyclopeptide gives the clearest representation of the amide VCD. The experimental sign pattern for the amide I' band in D(2)O and also the sharper, more intense amide I VCD band in TFE was seen to some degree in one conformer with Type II' turns, but the data favor a mix of structures.  相似文献   

8.
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.  相似文献   

9.
J A Killian  K U Prasad  D Hains  D W Urry 《Biochemistry》1988,27(13):4848-4855
The conformation of gramicidin in diacylphosphatidylcholine model membranes was investigated as a function of the solvent in which peptide and lipid are initially codissolved. By use of circular dichroism it is demonstrated that, upon removal of the solvent and hydration of the mixed gramicidin/lipid film, it is the conformational behavior of the peptide in the organic solvent that determines its final conformation in dimyristoylphosphatidylcholine model membranes. As a consequence, parameters that influence the conformation of the peptide in the solvent also play an essential role, such as the gramicidin concentration and the rate of interconversion between different conformations. Of the various solvents investigated, only with trifluoroethanol is it possible directly to incorporate gramicidin entirely in the beta 6.3-helical (channel) configuration. It is also shown that the conformation of gramicidin in the membrane varies with the peptide/lipid ratio, most likely as a result of intermolecular gramicidin-gramicidin interactions at higher peptide/lipid ratios, and that heat incubation leads to a conformational change in the direction of the beta 6.3-helical conformation. Using lipids with an acyl chain length varying from 12 carbon atoms in dilauroylphosphatidylcholine to 22 carbon atoms in dierucoylphosphatidylcholine, it was possible to investigate the acyl chain length dependence of the gramicidin conformation in model membranes prepared from these lipids with the use of different solvent systems. It is demonstrated for each solvent system that the distribution between different conformations is relatively independent of the acyl chain length but that the rate at which the conformation converts toward the beta 6.3-helical configuration upon heating of the samples is affected by the length of the acyl chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Vibrational Circular Dichroism (VCD) spectra of unblocked L-proline oligopeptides, (Pro)n n = 3 to 7, dissolved in D2O are reported. For these oligomers, the VCD spectra can be attributed to a conformational dominance of the trans amide conformation with subunits interrelated by a left-handed twist, particularly for the longer oligomers. As a function of oligomer length, formation of this conformation starts at n = 3; and by n = 5 a spectrum closely resembling that of the poly-L-proline II helix in shape and magnitude is seen. The VCD data are compared with previous (Pro)n results using IR, CD, Raman and NMR spectroscopies, and reasons for the variations in interpretation are discussed.  相似文献   

11.
Fourier transform ir vibrational circular dichroism (VCD) spectra in the amide I′ region of poly(L-lysine) in D2O solutions have confirmed the existence of three distinct conformational states and an unordered conformational state in this homopolypeptide. Characteristic VCD spectra are presented for the right-handed α-helix, the antiparallel β-sheet, an extended helix conformation previously referred to as the so-called “random coil,” and a completely unordered conformation characterized by the absence of any amide I′ VCD. VCD for the antiparallel β-sheet in solution and the unordered chain conformation are presented for the first time. Each of the four different VCD spectra is unique in appearance and lends weight to the view that VCD has the potential to become a sensitive new probe of the secondary structure of proteins in solution.  相似文献   

12.
Model peptides based on -(Aib-Ala)(n)-, and (Aib)(n)-Leu-(Aib)(2) sequences, which have varying amounts of 3(10)-helical character, were studied by use of vibrational and electronic circular dichroism (VCD and ECD) and Fourier transform infrared (FTIR) absorption spectroscopies to test the correlation of spectral response and conformation. The data indicate that these peptides, starting from a length of about four to six residues, predominantly adopt a 3(10)-helical conformation at room temperature. The longest model peptides, depending on the series, may evidence some alpha-helical contribution to the spectra, while the shorter ones, with less than six residues, have much less order. The IR absorption spectra (as supported by theory) showed only small frequency changes between 3(10)- and alpha-helices. By contrast, solvent effects are a source of much bigger perturbations. The ECD results show that the intensity ratio for the approximately 222-nm to approximately 208-nm bands, while useful for distinguishing between these two helical types in some sequences, may have a narrower range of application than VCD. However, the VCD data presented here continue to support the proposed discrimination between alpha- and 3(10)-helices based on qualitative amide I and II bandshape differences. The present study shows the intensities of the 3(10)-helical amide I (peak-to-peak) to its amide II VCD to be of the same order and useful for discriminating them from alpha-helices, whose amide I dominates the amide II in intensity. This qualitative result is experimentally independent of the amount of alphaMe-substituted residues in the sequence. These experimental VCD results are consistent in detail with theoretical spectral simulations for Ac-(Ala)(8)-NH(2), Ac-(Aib-Ala)(4)-NH(2), and Ac-(Aib)(8)-NH(2) in 3(10)- and alpha-helical conformations.  相似文献   

13.
The membrane conformation of the peptide ionophore gramicidin A is shown by 19F NMR to be described by the N-terminal to N-terminal beta LD helical dimer model proposed by Urry [Urry, D.W. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 672-676]. Fully active analogues of gramicidin with 19F labels at both the N- and C-termini are prepared synthetically. Labeled peptides are incorporated into small unilamellar vesicles of dimyristoylphosphatidylcholine. Measurements of the accessibility of the labels to either aqueous or lipophilic paramagnetic probes show that the N-terminus of gramicidin is located in the membrane interior and the C-terminus is at the membrane surface. Of the specific models proposed for the structure of gramicidin, these data are consistent only with that of Urry. The C-terminal 19F NMR peak in vesicles actually consists of three overlapping peaks. Experiments with the aqueous shift reagent Tm3+ show that C-terminal 19F nuclei in the inner and in the outer leaflets of vesicles resonate at different frequencies. The outer leaflet peak in turn consists of two overlapping peaks, possibly due to a local rearrangement of the C-terminal label.  相似文献   

14.
Wang F  Polavarapu PL 《Biopolymers》2003,70(4):614-619
The vibrational absorption and vibrational circular dichroism (VCD) spectra of melittin in D(2)O solutions at different pH values, different salt concentrations, or different 2,2,2-trifluoroethanol (TFE) concentrations are recorded in the amide I' (1850-1600 cm(-1)) region. Two models are used to simulate this peptide in different conditions, and a coupled oscillator program is used to obtain the calculated absorption and VCD spectra. This study indicates that melittin adopts a mixed structure in D(2)O solution at low pH, low salt concentration, or low TFE concentration. With an increase in pH, salt concentration, or TFE concentration, the structure changes to alpha-helix and further increases lead to aggregation. These results demonstrate the versatility of VCD in probing the conformations of peptides under different environmental perturbations.  相似文献   

15.
Noncovalent interactions of poly(L-lysine) (PL), oligopeptides L-lysyl-L-alanyl-L-alanine and (L-lysyl-L-alanyl-L-alanine)(2) with meso-tetrakis(4-sulfonatophenyl)porphine (TPPS), and poly(L-glutamic acid) (PLGA) with meso-tetrakis(1-methyl-4-pyridyl)porphine tetra-p-tosylate (TMPyP) in aqueous solutions have been studied using combination of spectroscopic methods: Vibrational circular dichroism (VCD) spectroscopy in the mid-infrared region provides a direct information on conformational changes of the polypeptides and oligopeptides caused by interactions with porphyrins; ultraviolet-visible absorption, fluorescence, and electronic circular dichroism (ECD) reveal the aggregation characterization of the porphyrin part of the complexes. Interactions of TPPS with tripeptide, hexapeptide, and PL containing about ten amino acid residues in the molecular chain are accompanied with the changes of VCD patterns in the amide I' region. In these cases, the conformation of the oligopeptide part of complexes is obviously influenced by interactions with TPPS and partial changes of random coil structure are observed in VCD. When PL was composed of the hundreds of lysine residues, just a weak intensity decrease was detected and the shape of VCD spectrum typical for the random coil structure was preserved. As follows from the uv-vis absorption and fluorescence spectra, porphyrin molecules are attached to peptides by electrostatic interaction as a monomer or dimer and interaction between porphyrin and peptide depends on the polypeptide chain length. For the PLGA-TMPyP system with PLGA containing from tens to hundreds of glutamic acid residues in the chain, the VCD spectra were unchanged when TMPyP was presented in the aqueous solution of PLGA and random coil conformation of PLGA-TMPyP aggregates was preserved.  相似文献   

16.
Vibrational circular dichroism (VCD) studies are reported for two unrelated recombinant growth factor proteins: epidermal growth factor and basic fibroblast growth factor (bFGF). NMR, electronic CD, and bFGF X-ray studies indicate that these two proteins are primarily composed of beta-sheet and loop secondary structure elements with no detectable alpha-helices. Two reports on solution conformation of these proteins using FTIR absorption spectroscopy with subsequent resolution enhancement confirmed the presence of a large fraction of a beta-sheet conformation but in addition indicated the presence of large absorption bands in the 1650-1656 cm-1 region, which are typically assigned to alpha-helices. The VCD spectra of both proteins have band shapes that strongly resemble those of other high beta-sheet fraction proteins, such as the trypsin family of proteins. Quantitative analysis of the VCD spectra also indicates that these proteins are predominantly in beta-sheet and extended ("other") conformations with very little alpha-helix fraction. These results agree with the CD interpretation and affirm that the FTIR peaks in the region 1650-1656 cm-1 can be assigned to loops. This study provides an example of the limitations of using FTIR frequencies alone for examination of protein secondary structure.  相似文献   

17.
Vibrational circular dichroism (VCD) and IR absorption spectra are obtained in a chloroform solution for poly[gamma-((R)-alpha-phenethyl)-L-glutamate] (PRPLG) and poly[gamma-((S)-alpha-phenethyl)-L-glutamate] (PSPLG), whose only structural difference is an opposite chiral center in the side chain. Their characteristic amide A, I, and II bands show VCD patterns quite similar to those of poly[gamma-benzyl-L-glutamate] (PBLG), indicating that the secondary structure of these polypeptides is a right-handed alpha-helix. The VCD spectra in the CH stretching region exhibit different patterns for PRPLG and PSPLG, reflecting the chirality difference in the side chains. This difference is interpreted on the basis of the additivity of optical activity contributions from the main chain conformation and the chirality difference in the side chains. The results indicate that a VCD difference spectrum of the CH stretching region is a useful diagnostic tool for elucidating local chirality differences.  相似文献   

18.
High-speed (14 kHz) solid-state magic angle spinning (MAS) 1H NMR has been applied to several membrane peptides incorporated into nondeuterated dilauroyl or dimyristoylphosphatidylcholine membranes suspended in H2O. It is shown that solvent suppression methods derived from solution NMR, such as presaturation or jump-return, can be used to reduce water resonance, even at relatively high water content. In addition, regioselective excitation of 1H peptide resonances promotes an efficient suppression of lipid resonances, even in cases where these are initially two orders of magnitude more intense. As a consequence, 1H MAS spectra of the peptide low-field region are obtained without interference from water and lipid signals. These display resonances from amide and other exchangeable 1H as well as from aromatic nonexchangeable 1H. The spectral resolution depends on the specific types of resonance and membrane peptide. For small amphiphilic or hydrophobic oligopeptides, resolution of most individual amide resonance is achieved, whereas for the transmembrane peptide gramicidin A, an unresolved amide spectrum is obtained. Partial resolution of aromatic 1H occurs in all cases. Multidimensional 1H-MAS spectra of membrane peptides can also be obtained by using water suppression and regioselective excitation. For gramicidin A, F2-regioselective 2D nuclear Overhauser effect spectroscopy (NOESY) spectra are dominated by intermolecular through-space connectivities between peptide aromatic or formyl 1H and lipid 1H. These appear to be compatible with the known structure and topography of the gramicidin pore. On the other hand, for the amphiphilic peptide leucine-enkephalin, F2-regioselective NOESY spectra mostly display cross-peaks originating from though-space proximities of amide or aromatic 1H with themselves and with aliphatic 1H. F3-regioselective 3D NOESY-NOESY spectra can be used to obtain through-space correlations within aliphatic 1H. Such intrapeptide proximities should allow determination of the conformation of the peptide in membranes. It is suggested that high-speed MAS multidimensional 1H NMR of peptides in nondeuterated membranes and in H2O can be used for studies of both peptide structure and lipid-peptide interactions.  相似文献   

19.
Structure of gramicidin A.   总被引:1,自引:5,他引:1       下载免费PDF全文
Gramicidin A, a hydrophobic linear polypeptide, forms channels in phospholipid membranes that are specific for monovalent cations. Nuclear Magnetic Resonance (NMR) spectroscopy provided the first direct physical evidence that the channel conformation in membranes is an amino terminal-to-amino terminal helical dimer, and circular dichroism (CD) spectroscopy has shown the sensitivity of its conformation to different environments and the structural consequences of ion binding. The three-dimensional structure of a gramicidin/cesium complex has been determined by x-ray diffraction of single crystals using single wavelength anomalous scattering for phasing. The left-handed double helix in this crystal form corresponds to one of the intermediates in the process of folding and insertion into membranes. Co-crystals of gramicidin and lipid that appear to have gramicidin in their membrane channel conformation have also been formed and are presently under investigation. Hence, we have used a combination of spectroscopic and diffraction techniques to examine the conformation and functionally-related structural features of gramicidin A.  相似文献   

20.
The B-Z transition of the synthetic oligonucleotide, (dG-dC)20, induced by Mn2+ ions at room temperature, was investigated by absorption and Vibrational Circular Dichroism (VCD) spectroscopy in the range of 1800-800 cm(-1). Metal ion concentration was varied from 0 to 0.73 M Mn2+ (0 to 8.5 moles of Mn2+ per mole of oligonucleotide phosphate, [Mn]/[P]). While both types of spectra showed considerable changes as the Mn2+ concentrations were raised, differences between the two were often complementary in their expression and extent, those displayed by VCD being more clearly evident due to the inversion of the opposite helical sense from the right-handed to the left-handed conformation. The main phase of the transition occurred in the metal ion concentration between 0.8-1.1 [Mn]/[P]. Gradual changes that took place in the spectra were interpreted in terms of simultaneous processes that depended on metal ion concentration, namely B-Z transformation, binding of Mn2+ to phosphates and to nitrogen bases, and partial denaturation. Below approximately 0.6 [Mn]/[P], only a small portion of the oligonucleotide adopted the Z conformation within a 3 hour period, whereas conversion was completed in the same time interval for concentrations between 0.9-1.2 [Mn]/[P]. At [Mn]/[P] >1.7, complete transition to the Z-form took place immediately on adding Mn2+. Applying VCD spectroscopy in combination with conventional infrared absorption proved most useful for corroborating changes in the absorption spectra, and for detecting in an unique manner, not attainable by absorption methods, conformational changes that lead to the inversion of the helical sense of the oligonucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号