首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Structural organization of the hCTLA-1 gene encoding human granzyme B   总被引:2,自引:0,他引:2  
Cytotoxic T lymphocytes (CTLs) and natural killer/lymphokine-activated cells produce granzymes, a family of serine esterase proteins located in cytoplasmic granules. These might be involved in different cytotoxic pathways. We report the structural organization of the human gene encoding granzyme B (hCTLA-1). A 4.75-kb genomic DNA fragment containing all the sequences of granzyme B-encoding cDNA clones has been sequenced. The gene is composed of five exons and four introns. A comparison with the genomic organization of murine CCP1/CTLA-1 showed very similar structure and a 76% nucleotide homology in the coding sequences. This suggests that both genes may have a common ancestor. No typical regulatory element was detected in the 1160 bp upstream from the ATG start codon. The detection of a second locus related to hCTLA-1 is also described.  相似文献   

3.
4.
A cDNA clone that is closely related to the granule-associated serine proteases of cytolytic T lymphocytes (CTL), called granzymes A-F, was isolated from a CTL expression library. The encoded serine protease, granzyme G, shows 70%-89% nucleotide identities to the granzymes C-F and, like those, consists of 228 amino acids preceded by the short propeptide Glu-Glu and a 18 residue long signal peptide. Granzyme G was identified by amino-terminal sequence analysis as a correctly processed and sorted protein stored in lysosome-like granules. The phylogenetic history of the granzyme multigene family was reconstructed by two tree-making methods and by Southern blot analyses of human, rat, and mouse DNA. Our results indicate differences in the evolutionary pathway between these species. The murine granzymes C-G descended from a progenitor present at the time of mammalian radiation. Granzyme C branched off first after the primate-rodent split and was involved in a recombination event with granzyme B before the rat-mouse divergence. Granzymes D and E have diverged after the mouse-rat speciation. However, no experimental evidence for the existence of a granzyme C-D-E-F-G equivalent was found in humans, and loss of the ancestral gene in the primate lineage is discussed. In view of the species differences in the number of granzyme gene copies during recent evolution, we propose that the murine granzymes B-G play several distinct roles in CTL-mediated effector functions as a response to quite recent changes of the biochemical environment.  相似文献   

5.
From a genomic library of Brassica campestris (brown sarson cv. B54), we have cloned and sequenced about 2 kb of upstream regulatory region from one of the 2S albumin-coding gene family. The sequence has several seed-specific promoter motifs. A sequence alignment of the 5' flanking regions of the available Brassica 2S storage protein genes showed that our sequence is a double crossover recombinant product of the two members of the napin gene family. A possible explanation of this fact is that Brassica species evolved through gene duplication and recombination from a common ancestor with fewer number of chromosomes and genes.  相似文献   

6.
Genes encoding T-cell-receptor α/δ chains, neutrophil cathepsin G, and lymphocyte CGL/granzymes are closely linked on chromosomal band 14q11.2. The current work identifies the human mast cell chymase gene (CMA1) as the fourth protease in this cluster and maps the gene to within 150 kb of the cathepsin G gene. The gene order is centromere-T cell receptor α/δ-CGL-1/granzyme B-CGL-2/granzyme H-cathepsin G-chymase. Chymase and cathepsin G genes are shown to be cotranscribed in the human mast cell line HMC-1 and in U-937 cells. Other cells transcribe cathepsin G or CGL/granzyme genes, but not chymase genes, suggesting a capacity for independent regulation. Comparison of the 5′ flank of the chymase gene with those of cathepsin G and CGL/granzymes reveals little overall homology. Only short regions of the 5′ flanks of the human and murine chymase genes sequenced to date are similar, suggesting that they are more distantly related than human and rodent CGL-1/granzyme B, the flanks of which are highly homologous. The expression patterns and clustering of genes provide possible clues to the presence of locus control regions that orchestrate lineage-restricted expression of leukocyte and mast cell proteases.  相似文献   

7.
To investigate the question of whether lytic granules share a common biogenesis with lysosomes, cloned cytolytic T cell lines were derived from a patient with I-cell disease. The targeting of two soluble lytic granule components, granzymes A and B, was studied in these cells which lack a functional mannose-6-phosphate (Man-6-P) receptor-mediated pathway to lysosomes. Using antibodies and enzymatic substrates to detect the lytic proteins, I-cells were found to constitutively secrete granzymes A and B in contrast to normal cells in which these proteins were stored for regulated secretion. These results suggest that granzymes A and B are normally targeted to the lytic granules of activated lymphocytes by the Man-6-P receptor. In normal cells, the granzymes bear Man-6-P residues, since the oligosaccharide side chains of granzymes A and B, as well as radioactive phosphate on granzyme A from labeled cells, were removed by endoglycosidase H (Endo H). However, in I-cells, granzymes cannot bear Man-6-P and granzyme B acquires complex glycans, becoming Endo H resistant. Although the levels of granzymes A and B in cytolytic I-cell lymphocytes are < 30% of the normal levels, immunolocalization and cell fractionation of granzyme A demonstrated that this reduced amount is correctly localized in the lytic granules. Therefore, a Man-6-P receptor-independent pathway to the lytic granules must also exist. Cathepsin B colocalizes with granzyme A in both normal and I-cells indicating that lysosomal proteins can also use the Man-6-P receptor-independent pathway in these cells. The complete overlap of these lysosomal and lytic markers implies that the lytic granules perform both lysosomal and secretory roles in cytolytic lymphocytes. The secretory role of lytic granules formed by the Man-6-P receptor-independent pathway is intact as assessed by the ability of I-cell lymphocytes to lyse target cells by regulated secretion.  相似文献   

8.
9.
10.
Song R  Messing J 《Plant physiology》2002,130(4):1626-1635
A new approach has been undertaken to analyze the sequences and linear organization of the 19-kD zein genes in maize (Zea mays). A high-coverage, large-insert genomic library of the inbred line B73 based on bacterial artificial chromosomes was used to isolate a redundant set of clones containing members of the 19-kD zein gene family, which previously had been estimated to consist of 50 members. The redundant set of clones was used to create bins of overlapping clones that represented five distinct genomic regions. Representative clones containing the entire set of 19-kD zein genes were chosen from each region and sequenced. Seven bacterial artificial chromosome clones yielded 1,160 kb of genomic DNA. Three of them formed a contiguous sequence of 478 kb, the longest contiguous sequenced region of the maize genome. Altogether, these DNA sequences provide the linear organization of 25 19-kD zein genes, one-half the number previously estimated. It is suggested that the difference is because of haplotypes exhibiting different degrees of gene amplification in the zein multigene family. About one-half the genes present in B73 appear to be expressed. Because some active genes have only been duplicated recently, they are so conserved in their sequence that previous cDNA sequence analysis resulted in "unigenes" that were actually derived from different gene copies. This analysis also shows that the 22- and 19-kD zein gene families shared a common ancestor. Although both ancestral genes had the same incremental gene amplification, the 19-kD zein branch exhibited a greater degree of far-distance gene translocations than the 22-kD zein gene family.  相似文献   

11.
We have determined the nucleotide sequence of 4508 base pairs of human genomic DNA which contain the human serine esterase gene from cytotoxic T lymphocytes (SECT) (equivalent to the 1-3E cDNA clone) and include 879 bp of 5' flanking DNA and 393 bp of 3' flanking DNA. The gene consists of five exons of 88, 148, 136, 261, and 257 nucleotides separated by four introns of 1043, 455, 205, and 643 nucleotides. The location of introns with respect to protein coding sequences in the SECT gene is identical to that of the human cathepsin G and murine granzyme B genes. Comparison of SECT gene exonic sequences to murine granzyme B-F cDNA sequences indicates similarities of 75 and 72% for granzymes B and C and 61, 59, and 61% for granzymes D, E, and F, respectively. The 5' flanking sequence of the SECT gene showed similarity only to the 5' flanking sequence of the murine granzyme B gene, indicating that these genes are homologous. Comparison of the SECT gene sequence to the human cathepsin G sequence indicated no similarity in the 5' flanking DNA although the exonic sequences show 64% sequence similarity overall and 45% sequence similarity in the respective 3' untranslated regions. These similarities suggest that the SECT and cathepsin G genes are members of the same family of serine protease genes. Evidence from high and low stringency Southern transfer analysis of human genomic DNA indicates the presence of another gene of at least 85% sequence similarity to the SECT gene.  相似文献   

12.
Approximately 2% of mammalian genes encode proteases. Comparative genomics reveals that those involved in immunity and reproduction show the most interspecies diversity and evidence of positive selection during evolution. This is particularly true of granzymes, the cytotoxic proteases of natural killer cells and CD8+ T cells. There are 5 granzyme genes in humans and 10 in mice, and it is suggested that granzymes evolve to meet species-specific immune challenge through gene duplication and more subtle alterations to substrate specificity. We show that mouse and human granzyme B have distinct structural and functional characteristics. Specifically, mouse granzyme B is 30 times less cytotoxic than human granzyme B and does not require Bid for killing but regains cytotoxicity on engineering of its active site cleft. We also show that mouse granzyme A is considerably more cytotoxic than human granzyme A. These results demonstrate that even "orthologous" granzymes have species-specific functions, having evolved in distinct environments that pose different challenges.  相似文献   

13.
Cell specificity of granzyme gene expression   总被引:17,自引:0,他引:17  
Granzymes are serine proteases present in secretory granules of cytolytic T lymphocyte lines. We have studied the expression of the granzyme family (granzyme A, B, C, D, E, F, and G) in different lymphoid cell populations and cell lines as well as in nonlymphoid cells and tissues. Our data show that with few exceptions expression of granzyme genes is restricted to T cells and their thymic precursors. In mature T cells granzymes are expressed only upon activation. The same is true for thymocytes, with the exception of grazyme A that is expressed also in non-stimulated cells. In T cells and thymocytes the distribution of mRNAs coding for different granzymes depends on the subpopulation tested and the activation protocol. Highly cytolytic PEL express granzymes A and B but none of the other granzymes.  相似文献   

14.
15.
16.
17.
Sequences of immunoglobulin (Ig) cDNA clones of Xenopus laevis show that at least three different VH families are expressed in association with different JH elements and different isotypes of Ig constant regions. In genomic Southern blot analysis, the VH probes for each family hybridize to a distinct set of multiple DNA fragments. In contrast, the genomic JH elements and the IgM constant region gene are localized in a single DNA fragment of approximately 15 kb. Genomic VH elements contain regulatory sequences similar to those in VH genes of shark, fish and mammals and have a leader peptide sequence that contains an intron; they encode the VH region until residue 95 and have heptamer--23-bp--nonamer motifs similar to the rearrangement signal sequences (RSS) in all other vertebrate VH elements. The six genomic JH elements so far sequenced have a nonamer--23-bp--heptamer motif at their 5' end. These RSS motifs imply the existence of DH elements. The comparison of cDNA clones that contain similar constant regions but different VH regions or JH elements suggest rearrangement events. This is shown by Southern blot analysis of erythrocyte and B cell DNA with a JH probe. Thus, the overall organization of the Xenopus Ig gene locus is similar to that of mammals but strikingly different from shark.  相似文献   

18.
Huang QQ  Chen A  Jin JP 《Gene》1999,229(1-2):1-10
Three muscle type-specific troponin T (TnT) genes are present in vertebrate to encode a number of protein isoforms via alternative mRNA splicing. While the genomic structures of cardiac and fast skeletal muscle TnT genes have been documented, this study cloned and characterized the slow skeletal muscle TnT (sTnT) gene. Complete nucleotide sequence and genomic organization revealed that the mouse sTnT gene spans 11.1kb and contains 14 exons, which is smaller and simpler than the fast skeletal muscle and cardiac TnT genes. Potentially representing a prototype of the TnT gene family, the 5'-region of the sTnT gene contains fewer unsplit large exons, among which two alternatively spliced exons are responsible for the NH2-terminal variation of three sTnT isoforms. The sTnT gene structure shows that the alternatively spliced central segment found in human sTnT cDNAs may be a result from splicing using an alternative acceptor site at the intron 11-exon 12 boundary. Together with the well-conserved protein structure, the highly specific expression of sTnT in slow skeletal muscles indicates a differentiated function of this member of the TnT gene family. The determination of genomic structure and alternative splicing pathways of sTnT gene lays a foundation to further understand the TnT structure-function evolution as well as contractile characteristics of different types of muscle fiber.  相似文献   

19.
Loh J  Thomas DA  Revell PA  Ley TJ  Virgin HW 《Journal of virology》2004,78(22):12519-12528
Gammaherpesviruses can establish lifelong latent infections in lymphoid cells of their hosts despite active antiviral immunity. Identification of the immune mechanisms which regulate gammaherpesvirus latent infection is therefore essential for understanding how gammaherpesviruses persist for the lifetime of their host. Recently, an individual with chronic active Epstein-Barr virus infection was found to have mutations in perforin, and studies using murine gammaherpesvirus 68 (gammaHV68) as a small-animal model for gammaherpesvirus infection have similarly revealed a critical role for perforin in regulating latent infection. These results suggest involvement of the perforin/granzyme granule exocytosis pathway in immune regulation of gammaherpesvirus latent infection. In this study, we examined gammaHV68 infection of knockout mice to identify specific molecules within the perforin/granzyme pathway which are essential for regulating gammaherpesvirus latent infection. We show that granzymes A and B and the granzyme B substrate, caspase 3, are important for regulating gammaHV68 latent infection. Interestingly, we show for the first time that orphan granzymes encoded in the granzyme B gene cluster are also critical for regulating viral infection. The requirement for specific granzymes differs for early versus late forms of latent infection. These data indicate that different granzymes play important and distinct roles in regulating latent gammaherpesvirus infection.  相似文献   

20.
Genomic representation of the Hind II 1.9 kb repeated DNA.   总被引:19,自引:10,他引:9       下载免费PDF全文
The genomic representation and organization of sequences homologous to a cloned Hind III 1.9 kb repeated DNA fragment were studied. Approximately 80% of homologous repeated DNA was contained in a genomic Hind III cleavage band of 1.9 kb. Double digestion studies indicated that the genomic family, in the majority, followed the arrangement of the sequenced clone, with minor restriction cleavage variations compatible with a few base changes. Common restriction sites external to the 1.9 kb sequence were mapped, and hybridization of segments of the cloned sequence indicated the 1.9 kb DNA was itself not tandemly repeated. Kpn I bands which were homologous to the sequence contained specific regions of the repeat, and the molecular weight of these larger fragments could be simply explained. Mapping of common external restriction sites indicated that in some but not all cases the repeat could be organized in larger defined blocks of greater than or equal to 5.5 kb. In some instances, flanking regions adjacent to the repeat may contain common DNA elements such as other repeated DNA sequences, or possibly rearranged segments of the 1.9 kb sequence. It is suggested that although the 1.9 kb sequence is not strictly contiguous, at least some of these repeated sequences in the human genome are arranged in clustered or intercalary arrays. A region of the 1.9 kb sequence hybridized to a mouse repeated DNA, indicating homology beyond the primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号