首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.  相似文献   

3.
4.
The total creatine pool size [Cr(total); creatine (Cr) + phosphocreatine (PCr)] is crucial for optimal energy utilization in skeletal muscle, especially at the onset of exercise and during intense contractions. The Cr(total) likely is controlled by long-term modulation of Cr uptake via the sodium-dependent Cr transporter (CrT). To test this hypothesis, adult male Sprague-Dawley rats were fed 1% Cr, their muscle Cr(total) was reduced by approximately 85% [1% beta-guanidinoproprionic acid (beta-GPA)], or their muscle Cr(total) was repleted (1% Cr after beta-GPA depletion). Cr uptake was assessed by skeletal muscle (14)C-Cr accumulation to Cr and PCr by using hindlimb perfusion, and CrT protein content was assessed by Western blot. Cr uptake rate decreased with dietary Cr supplementation in the white gastrocnemius (WG; 45%) only. Depletion of muscle Cr(total) to approximately 15% of normal increased Cr uptake in the soleus (21%) and red gastrocnemius (22%), corresponding to 70-150% increases in muscle CrT content. In contrast, the inherently lower Cr uptake rate in the WG was unchanged with depletion of muscle Cr(total) even though CrT band density was increased by 230%. Thus there was no direct relationship between apparent muscle CrT abundance and Cr uptake rates. However, Cr uptake rates scaled inversely with decreases in muscle Cr(total) in the high-oxidative muscle types but not in the WG. This implies that factors controlling Cr uptake are different among fiber types. These observations may help explain the influence of initial muscle Cr(total), time dependency, and variations in muscle Cr(total) accumulation during Cr supplementation.  相似文献   

5.
6.
The course of refolding and reactivation of urea-denatured creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) has been studied in the absence and presence of molecular chaperonin GroEL. The enzyme was denatured in Tris--HCl buffer containing 6 M urea for 1 h. In the refolding studies, the denatured enzyme was diluted 60-fold into the same buffer containing GroEL or not for activity, turbidity, fluorescence measurements and polyacrylamide gel electrophoresis. The results show that the reactivation process is dependent of creatine kinase concentration in the concentration range 2.5--4 microM. The levels of activity recovery decrease with increasing enzyme concentration because of the formation of wrong aggregates. The molecular chaperonin GroEL can bind the refolding intermediate of creatine kinase and thus prevent the formation of wrong aggregates. This intermediate is an inactive dimeric form that is in a conformation resembling the 'molten globule' state.  相似文献   

7.
8.
The estimation of creatine   总被引:4,自引:0,他引:4  
  相似文献   

9.
Beal MF 《Amino acids》2011,40(5):1305-1313
There is a substantial body of literature, which has demonstrated that creatine has neuroprotective effects both in vitro and in vivo. Creatine can protect against excitotoxicity as well as against β-amyloid toxicity in vitro. We carried out studies examining the efficacy of creatine as a neuroprotective agent in vivo. We demonstrated that creatine can protect against excitotoxic lesions produced by N-methyl-d-aspartate. We also showed that creatine is neuroprotective against lesions produced by the toxins malonate and 3-nitropropionic acid (3-NP) which are reversible and irreversible inhibitors of succinate dehydrogenase, respectively. Creatine produced dose-dependent neuroprotective effects against MPTP toxicity reducing the loss of dopamine within the striatum and the loss of dopaminergic neurons in the substantia nigra. We carried out a number of studies of the neuroprotective effects of creatine in transgenic mouse models of neurodegenerative diseases. We demonstrated that creatine produced an extension of survival, improved motor performance, and a reduction in loss of motor neurons in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). Creatine produced an extension of survival, as well as improved motor function, and a reduction in striatal atrophy in the R6/2 and the N-171-82Q transgenic mouse models of Huntington’s disease (HD), even when its administration was delayed until the onset of disease symptoms. We recently examined the neuroprotective effects of a combination of coenzyme Q10 (CoQ10) with creatine against both MPTP and 3-NP toxicity. We found that the combination of CoQ and creatine together produced additive neuroprotective effects in a chronic MPTP model, and it blocked the development of alpha-synuclein aggregates. In the 3-NP model of HD, CoQ and creatine produced additive neuroprotective effects against the size of the striatal lesions. In the R6/2 transgenic mouse model of HD, the combination of CoQ and creatine produced additive effects on improving survival. Creatine may stabilize mitochondrial creatine kinase, and prevent activation of the mitochondrial permeability transition. Creatine, however, was still neuroprotective in mice, which were deficient in mitochondrial creatine kinase. Administration of creatine increases the brain levels of creatine and phosphocreatine. Due to its neuroprotective effects, creatine is now in clinical trials for the treatment of Parkinson’s disease (PD) and HD. A phase 2 futility trial in PD showed approximately a 50% improvement in Unified Parkinson’s Disease Rating Scale at one year, and the compound was judged to be non futile. Creatine is now in a phase III clinical trial being carried out by the NET PD consortium. Creatine reduced plasma levels of 8-hydroxy-2-deoxyguanosine in HD patients phase II trial and was well-tolerated. Creatine is now being studied in a phase III clinical trial in HD, the CREST trial. Creatine, therefore, shows great promise in the treatment of a variety of neurodegenerative diseases.  相似文献   

10.
The equilibrium constants of two reactions catalyzed by rabbit muscle creatine kinase with creatine or cyclocreatine as substrate were determined by 31P-NMR. The value of the equilibrium constant with creatine as substrate was 172.10(7) M(-1) in agreement with previous work (Veech, R.L., Lawson, J.W.R., Cornell, W. and Krebs, H.A. (1979) J. Biol. Chem 254, 6538-6547). The value with cyclocreatine was 5.62.10(7) M(-1) and the ratio of the two constants is 30.6. It was possible to determine the ratio of the two equilibrium constants in a reaction mixture containing both substrates since it was found that the 31P resonances of P-creatine and P-cyclocreatine were well resolved. The ratio of K1/K2 determined in such experiments was 34.6, of the same order as previously reported by Annesley and Walker (Annesley, T.M. and Walker, J.B. (1977) Biochem. Biophys. Res. Commun. 74, 185-190).  相似文献   

11.
The objectives of this study were to determine the cause of the crystallization in a large volume creatine supplement solution made from effervescent powders containing di-creatine citrate, and to characterize these crystals using thermal analyses and x-ray diffractometry. Creatine effervescent powders were dissolved in deionized water (pH 6.2) and stored both at room temperature (RT) (25°C) and refrigerated condition (4°C) over a period of 45 days. Creatine concentration was determined using high-performance liquid chromatography (HPLC). Intrinsic dissolution and saturated solubility of creatine, creatine monohydrate, and di-creatine citrate in water were determined and compared. Crystal growth was detected only in the refrigerated samples on the seventh day of storage. Differential Scanning Calorimetry (DSC) and x-ray diffraction (XRD) studies revealed that the crystals formed were of creatine monohydrate. Ninety percent creatine degradation was observed within 45 days for RT samples. However, at refrigerated condition this degradation was 80% within the same time period. The pH of the RT samples also increased from 3.6 to 4.5 during storage. No such increase was observed in the case of refrigerated samples. The intrinsic dissolution rate constants of the compounds decreased in the following order: dicreatine citrate>creatine>creatine monohydrate. In conclusion, di-creatine citrate used in effervescent formulation dissociates to creatine in aqueous solution and eventually crystallizes out as creatine monohydrate. Significant decrease in solubility and effect of pH contribute to this crystallization process.  相似文献   

12.
Despite the pivotal role of creatine (Cr) and phosphocreatine (PCr) in muscle metabolism, relatively little is known about sarcolemmal creatine transport, creatine transporter (CRT) isoforms, and subcellular localization of the CRT proteins. To be able to quantify creatine transport across the sarcolemma, we have developed a new in vitro assay using rat sarcolemmal giant vesicles. The rat giant sarcolemmal vesicle assay reveals the presence of a specific high-affinity and saturable transport system for Cr in the sarcolemma (Michaelis-Menten constant 52.4 +/- 9.4 microM and maximal velocity value 17.3 +/- 3.1 pmol x min(-1) x mg vesicle protein(-1)), which cotransports Cr into skeletal muscle together with Na(+) and Cl(-) ions. The regulation of Cr transport in giant vesicles by substrates, analogs, and inhibitors, as well as by phorbol 12-myristate 13-acetate and insulin, was studied. Two antibodies raised against COOH- and NH(2)-terminal synthetic peptides of CRT sequences both recognize two major polypeptides on Western blots with apparent molecular masses of 70 and 55 kDa, respectively. The highest CRT expression occurs in heart, brain, and kidney, and although creatine kinase is absent in liver cells, CRT is also found in this tissue. Surprisingly, immunofluorescence staining of cultured adult rat heart cardiomyocytes with specific anti-CRT antibodies, as well as cell fractionation and cell surface biotinylation studies, revealed that only a minor CRT species with an intermediate molecular mass of approximately 58 kDa is present in the sarcolemma, whereas the previously identified major CRT-related protein species of 70 and 55 kDa are specifically located in mitochondria. Our studies indicate that mitochondria may represent a major compartment of CRT localization, thus providing a new aspect to the current debate about the existence and whereabouts of intracellular Cr and PCr compartments that have been inferred from [(14)C]PCr/Cr measurements in vivo as well as from recent in vivo NMR studies.  相似文献   

13.
The immunosuppressive drug cyclosporin A (CsA) inhibited the hCRT-1 cDNA-induced creatine uptake in Xenopus oocytes and the endogenous creatine uptake in cultured C(2)C(12) muscle cells in a dose- and time-dependent manner. FK506, another potent immunosuppressant, was unable to mimic the effect of CsA suggesting that the inhibitory effect of CsA was specific. To delineate the mechanism underlying, we investigated the effect of CsA on the K(m) and V(max) of creatine transport and also on the cell surface distribution of the creatine transporter. Although CsA treatment did not affect the K(m) (20-24 microm) for creatine, it significantly decreased the V(max) of creatine uptake in both oocytes and muscle cells. CsA treatment reduced the cell surface expression level of the creatine transporter in the muscle cells by approximately 60% without significantly altering its total expression level, and the reduction in the cell surface expression paralleled the decrease in creatine uptake. Taken together, our results suggest that CsA inhibited creatine uptake by altering the surface abundance of the creatine transporter. We propose that CsA impairs the targeting of the creatine transporter by inhibiting the function of an associated cyclophilin, resulting in an apparent loss in surface expression of the creatine transporter. Our results also suggest that prolonged exposure to CsA may result in chronically creatine-depleted muscle, which may be a cause for the development of CsA-associated clinical myopathies in organ transplant patients.  相似文献   

14.
15.
16.
Some properties of creatine phosphokinase   总被引:6,自引:0,他引:6       下载免费PDF全文
  相似文献   

17.
We have developed a novel enzymatic cycling method that uses creatine kinase (CK) to measure creatine. The method takes advantage of the reversibility of the CK reaction in which the forward (creatine phosphate forming) and reverse reactions are catalyzed in the presence of an excess amount of ATP and IDP, respectively. Real-time detection was accomplished using ADP-dependent glucokinase (ADP–GK) together with glucose-6-phosphate dehydrogenase. ADP, one of the cycling reaction products, was distinguished from IDP by using the nucleotide selectivity of the ADP–GK. The increasing level of ADP was measured from the level of reduced NADP at 340 nm. The method is appropriate for an assay that requires high sensitivity because the rate of increase in absorbance at 340 nm is proportional to the amount of CK present in the reaction mix. We reasoned that the method with CK in combination with creatinine amidohydrolase could be used to assay creatinine, an important marker of kidney function. Our results confirmed the quantitative capability of the assay.  相似文献   

18.
The heterogeneity of cardiac sarcomeric mitochondrial creatine kinase (creatine N-phosphotransferase, EC 2.7.3.2, sMi-CK), namely, brain ubiquitous Mi-CK (uMi-CK) and an atypical Mi-CK detected in the serum of a patient with ovarian cancer, was studied by isoelectric focusing. These Mi-CKs were found to be slightly different from each other with respect to their pIs under the examined conditions. The atypical Mi-CK was found to be an atypically oxidized form of uMi-CK. Results suggest that these heterogeneities of Mi-CK are caused by the genotypes, structures, biological functions and metabolism/dissimilation of Mi-CKs in the mitochondria and intravascular circulation.  相似文献   

19.
Creatine transporter 1 (CT1) defect is an X-linked disease that causes severe neurological impairment. No treatment has been available for this condition so far. Because the transport of creatine (Cr) precursors Gly and Arg is not affected in this disorder, we tested the possible corrective effect of these two amino acids on Cr depletion in lymphoblasts lacking the transporter. Substrates enriched with Arg or Arg plus Gly increased the concentration of intracellular Cr in affected cells as well as in control cells. The greatest effect was obtained with 10 and 15 mM Arg and 10mM Arg plus Gly. These results encourage an in vivo trial with Cr precursors in CT1 defect.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号