首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partial acid hydrolyzates of the extracellular polysaccharide from Porphyridiunm cruentum yield three disaccharides and two uronic acids. These constitute all of the uronic acid in the polymer. The novel disaccharides are 3-O-(α-D-glucopyranosyl- uronic acid)-L-galactose, 3-O-(2-O-methyl-ca-glucopyranosyluronic acid)-D- galactose, and 3-0-(2-0-methyl-a-D-glucopyranosyluronic acid)-D-glucose. The polyanion of high molecular weight contains D- and L-galactose, xylose, D-glucose, D-glucuronic acid and 2-O-methyl-D-glucuronic acid, and sulfate in molar ratio (relative to D-glucose) of 2.12:2.42:1.00:1.22:2.61. Preliminary periodate-oxidation studies suggest that the hexose and uronic acids are joined to other residues by ( 1→3) glycosidic linkages. About one-half of the xylose residues are (1→3)-linked.  相似文献   

2.
The linkage pattern of the K6-antigen was investigated using material from the urinary pathogen, Escherichia coli LP 1092. The polysaccharide consists of ribose and 3-deoxy-D-manno-2-octulosonate (KDO) in a ratio of 2:1. Colorimetric procedures, Smith degradation, methylation analysis, and nuclear magnetic resonance spectroscopy were applied to the whole polysaccharide and to a trisaccharide “repeating unit” obtained by mild-acid catalyzed hydrolysis. Together, the data are compatible only with a branched chain structure …3Ribfβ1→7KDOpβ2→3Ribfβ
  相似文献   

3.
Methods are described for the isolation and gas chromatographic-mass spectrometric analysis of the 4-methyl-5-β-hydroxyethyl thiazole moiety of thiamine in microbial cells. Using these methods, it was determined that in Escherichia coli the nitrogen atom in the thiazole ring of thiamine is derived solely from l-tyrosine.  相似文献   

4.
Steric factors involved in the action of glycosidases and galactose oxidase   总被引:1,自引:0,他引:1  
α-(1→2)-L=-Fucosidase, β-D=-galactosidase and galactose oxidase are sterically hindered by certain types of branching in the oligosaccharide chains. 1) β-D=-Galactosidase will not cleave galactose when the penultimate sugar carries a sialic acid residue as in I. 2) Galactose Oxidase will not oxidize the galactose residue in trisaccharide I but will in II. Moreover, neither galactose nor N-acetylgalactosamine, glycosidically bound as in III, is susceptible to oxidation with galactose oxidase until the α-(1→2) linkage between them is cleaved by α-N-acetylgalactosaminidase. 3) α-(1→2)-L=-Fucosidase action is inhibited by α-(1→3)-N-acetylgalactosaminyl or galactosyl residue, as in III and IV. Removal of the terminal sugars makes the fucosyl residue susceptible to fucosidase action.
  相似文献   

5.
Incubation of UDP-[14C]-N-acetylglucosamine with calf pancreas microsomes in the presence of Mn++ and potassium thiocyanate gave a labeled glycolipid, tentatively identified as P1-2-acetamido-2-deoxy-D-glucosyl P2-dolichyl pyrophosphate on the basis of cochromatography with synthetic P1-2-acetamido-2-deoxy-α-D-glucopyranosyl P2-dolichyl pyrophosphate, similar chemical and enzymic hydrolyses of the biosynthetic and synthetic compounds, and stimulation of the biosynthesis by addition to the incubation mixture o dolichyl phosphate or a crude lipid fraction extracted from microsomes.  相似文献   

6.
Monotosylation of 4-deoxy-3-O-methyl-dl-threo- and -erythro-pentopyranose led, in 62–68% yield, to the 2-O-tosyl derivatives which, on treatment at room temperature with sodium hydride in anhydrous ether, gave quantitatively 1,2-anhydro-4-deoxy-3-O-methyl-dl-threo- and -erythro-pentopyranose, respectively. These epoxides reacted with 2,4-dimethoxypyrimidine in the presence of pyridinium hydrochloride to give, in 68–78% yield, 1-(4-deoxy-3-O-methyl-β-dl-erythro- and -α,β-dl-threo-pentopyranosyl)-4-methoxy-2-pyrimidinone, respectively. Isomers having a trans-1′,2′ configuration were preponderantly formed by an Sn2 reaction.  相似文献   

7.
L(+)-threo-chloramphenicol induces reversion of His?Salmonella typhimurium strains TA100 and TA1535 in the conventional Ames' assay without microsomal activation. Any mutagenicity of D(?)-threo-chloramphenicol was masked by toxicity. Similarly, a sensitive fluctuation test showed mutagenesis with L(+)-threo-chloramphenicol at concentrations of 0.5 μM and above but the D(?) isomer proved to be toxic even at these low levels. The L(+) isomer caused single strand breaks in the DNA of Escherichia coliBr and Salmonella typhimurium strains TA1535, TA100 and TA1976. The D(?) isomer caused breaks in Escherichia coliBr and Salmonella typhimurium TA1976 although it was less effective and it did not produce DNA breaks in TA1535 or TA100.  相似文献   

8.
9.
The mechanism of biosynthesis of 4-methyl-5-β-hydroxyethyl thiazole, the thiazole moiety of thiamine was studied in Salmonella typhimurium. Using the adenosine derepression technique the incorporation of various 14C-labeled precursors was determined. We found that [Me-14C]methionine, [2-14C]methionine, [U-14C]alanine, and [2-14C]glycine were not incorporated whereas [2-14C]-tyrosine was incorporated. Degradation of the 4-methyl-5-β-hydroxyethyl thiazole obtained after [2-14C]tyrosine incorporation revealed that all of the activity was located on carbon-2. These findings are discussed and compared with previous findings concerning 4-methyl-5-β-hydroxyethyl thiazole biosynthesis.  相似文献   

10.
3-deoxy-D-manno acid (KDO) has been characterised as the major component (53%) of the capsular polysaccharide antigen of N. meningitidis serogroup 29-e. This is the first reported occurrence of KDO in any biological polymer other than its well established occurrence in the lipopolysaccharides of gram-negative bacteria.  相似文献   

11.
Fibroblasts from a patient with mannosidosis were grown in a medium containing a radioactive monosaccharide (D[U-14C]mannose or N-acetyl-D-[1-14C]-glucosamine). An accumulation of radioactive material was observed. It was possible to prevent the accumulation to a certain degree by the addition of human liver α-D-mannosidase to the fibroblast medium. After six days of fibroblast culture the majority of the accumulated material had a molecular weight in the oligosaccharide range and was stationary during high-voltage electropresis. Paper chromatography of the stationary material separated three radioactive compounds with the same chromatographic mobilities as the oligosaccharides α-D-Man-(1 → 3)-β-D-Man-(1 → 4)-D-GlcNAc (I), α-D-Man-(1 → 2)- α-D-Man-(1 → 3)-β-D-Man-(1 → 4)-GlcNAc (II), and α-D-Man-(1 → 2)-α-D-Man- (1 → 2)-α-D-Man-(1 → 3)-β-D-Man-(1 → 4)-GlcNAc (III) previously isolated from the urine of patients with mannosidosis. Degradation of the three radioactive compounds with jack bean α-mannosidase gave D-mannose and a disaccharide (containing D-mannose and N-acetyl-D-glucosamine). Thus the three main compounds observed in the fibroblast from patients with mannosidosis are most probably identical to the oligosaccharides I–III.  相似文献   

12.
The 3,4-O- and 1,2:3,4-di-O-isopropylidene derivatives (7 and 8) of l-dendroketose [4-C-(hydroxymethyl)-l-glycero-pentulose] (1) have been synthesized stereo-specifically from 4-C-(hydroxymethyl)-1,2:3,4-di-O-isopropylidene-l-erythro-pentitol (2).  相似文献   

13.
Man is exposed to epoxides of fatty acids from a number of sources, yet their degradative metabolism is not well understood. In mouse liver the 100,000 g supernatant or the cytosolic fraction is the most active fraction in hydrating cis- and trans-epoxymethyl stearates with the oxirane ring opening in a trans manner to give the corresponding threo and erythro diols, respectively. Hydration was also observed in the microsomal, nuclei and cell debris, and mitochondrial fractions in decreasing order of specific activity.  相似文献   

14.
4-Hydroxybenxyl alcoholl was identified by gas chromatography-mass spectrometry as a metabolite of Escherichia coli when it is grown on a medium containing no thiamine or 4-methyl-5-β-hydroxyethyl thiazole. 4-Hydroxybenzyl alcohol was found to be derived from L-tyrosine and the amount produced was found to be inhibited by the addition of thiamine to the growth medium. The amount of 4-hydroxybenzyl alcohol produced, as measured by isotopic dilution, was shown to be equivalent to the amount of thiamine formed. Based on these observations, it was concluded that 4-hydroxybenzyl alcohol is the cleavage product produced during the biosynthesis of the thiazole moiety of thiamine from tyrosine.  相似文献   

15.
Acyloin has been proposed to be an intermediate in the biosynthesis of long chain alkane-2,3-diols. In order to test this possibility, specifically labeled 3-hydroxyoctadecane-2-one (acyloin) was synthesized by coupling 2-methyl-1,3-dithiane with [1-14C]hexadecanal followed by cleaving of the thioketal. Injection of the synthetic 3-hydroxy [3-14C]octadecane-2-one into the uropygial gland of the ring-necked pheasant resulted in the formation of labeled octadecane-2,3-diol. Chemical degradation of this diol showed that all of the 14C was contained in C-3 of the diol showing direct conversion of acyloin to the diol. These observations support the hypothesis that alkane-2,3-diols might be biosynthesized by reduction of the acyloin derived from a condensation between hydroxyethyl thiamine pyrophosphate and fatty aldehyde. Gas-liquid chromatographic analysis of the alkane-2,3-diols, as their isopropylidene derivatives, of the pheasant strongly suggests that they are of the erythro-configuration; however, alkane-2,3-diol enzymatically formed from the racemic acyloin injected into the gland contained 59.5% erythro- and 40.5% threo-diastereoisomers. This distribution was identical to that produced by chemical reduction of the synthetic racemic acyloin. These results clearly show that the reduction step does not show a preference for either of the enantiomers of the acyloin and that the stereospecificity in diol biosynthesis probably resides in the condensation step.  相似文献   

16.
Abstract

9-(3-Deoxy-β-d-erythro-pentofuranosyl)-2,6-diaminopurine (2) was synthesized by an enzymatic transglycosylation of 2,6-diaminopurine using 3′-deoxycytidine (1) as a donor of the sugar moiety. Nucleoside 2 was transformed to 3′-deoxy guanosine (3), 9-(3-deoxy-β-d-erythro-pentofuranosyl)-2-amino-6-oxopurine (3′-deoxyisoguanosine; 4), and 9-(3-deoxy-β-d-erythro-pentofuranosyl)-2-fluoroadenine (5). Compounds 25 were evaluated for their anti-HIV activity.  相似文献   

17.
Methyl 3-azido-2-O-benzoyl-3,4-dideoxy-β-dl-erythro-pentopyranoside (6) was synthesized through two routes in five steps from methyl 2,3-anhydro-4-deoxy-β-dl-erythro-pentopyranoside (1). The first route proceeded via selective azide displacement of the 3-tosyloxy group of methyl 4-deoxy-2,3-di-O-tosyl-α-dl-threo-pentopyranoside, followed by detosylation and benzoylation. The second route consisted, with a better overall yield, in the azide displacement of the mesyloxy group of methyl O-benzoyl-4-deoxy-3-O-methylsulfonyl-α-dl-threo-pentopyranoside (10), obtained by benzylate opening of 1, followed by benzoylation, debenzylation, and mesylation. Compound 6 was transformed into its glycosyl chloride, further treated by 6-chloropurine to give the nucleoside 9-(3-azido-2-O-benzoyl-3,4-dideoxy-β-dl-erythro-pentopyranosyl)-6-chloropurine (13). When treated with propanolic ammonia, 13 yielded 9-(3-azido-3,4-dideoxy-β-dl-erythro-pentopyranosyl)adenine.  相似文献   

18.
Labelled shikimic acid was efficiently incorporated into the aniline moiety of N-(γ-L-glutamyl)-4-hydroxyaniline, a characteristic aromatic compound of the common mushroom, Agaricus bisporus. Incubations with [3-3H]- and [1,6-14C]shikimic acid clearly proved that the amination of shikimic acid occurs at its 4-position during the biosynthesis of N-(γ-L-glutamyl)-4-hydroxyaniline.  相似文献   

19.
Both pairs of dl-ll-desoxy- and dl-13-cis-erythro-15, 16-dihydroxyprostaglandins have been synthesized via 1,4-conjugate additions of an appropriately functionalized cis-vinyl cuprate to the requisite cyclopentenone. These prostaglandin analogs are considerably less potent than PGE2 as gastric secretion inhibitors or as bronchodilators.  相似文献   

20.
An enzyme has been discovered in Escherichia coli that catalyzes the conversion of the triphosphate ester of 2-amino-4-hydroxy-6-(d-erythro-1′,2′,3′-trihydroxypropyl)-7,8-dihydropteridine, (i.e. d-erythro-dihydroneopterin triphosphate) to an epimer of this compound, l-threo-dihydroneopterin triphophate. The enzyme, which is here named “d-erythro-dihydroneopterin triphosphate 2′-epimerase,” needs a divalent cation (Mg2+ or Mn2+ is most effective) for maximal activity. Its molecular weight is estimated at 87 000–89 000. Little or no activity can be detected if either the monophosphate or the phosphate-free form of the substrate is incubated with the enzyme. Evidence is presented to establish that all three phosphate residues of the substrate are retained in the product and that the product is of the l-threo configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号