首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Long term elevation of the intracellular Na+/K+ ratio inhibits macromolecule synthesis and proliferation in the majority of cell types studied so far, including vascular smooth muscle cells (VSMC). We report here that inhibition of the Na+,K+ pump in VSMC by ouabain or a 1-h preincubation in K+-depleted medium attenuated apoptosis triggered by serum withdrawal, staurosporine, or okadaic acid. In the absence of ouabain, both DNA degradation and Caspase-3 activation in VSMC undergoing apoptosis were insensitive to modification of the extracellular Na+/K+ ratio as well as to hyperosmotic cell shrinkage. In contrast, protection of VSMC from apoptosis by ouabain was abolished under equimolar substitution of Na+o with K+o, showing that the antiapoptotic action of Na+,K+ pump inhibition was caused by inversion of the intracellular Na+/K+ ratio. Unlike VSMC, the same level of increment of the [Na+]i/[K+]i ratio caused by a 2-h preincubation of Jurkat cells with ouabain did not affect chromatin cleavage and Caspase-3 activity triggered by treatment with Fas ligand, staurosporine, or hyperosmotic shrinkage. Thus, our results show for the first time that similar to cell proliferation, maintenance of a physiologically low intracellular Na+/K+ ratio is required for progression of VSMC apoptosis.  相似文献   

2.
The effects of inhibition of the basolateral Na(+)-K(+)-ATPase (pump) on the apical low-conductance K+ channel of principal cells in rat cortical collecting duct (CCD) were studied with patch-clamp techniques. Inhibition of pump activity by removal of K+ from the bath solution or addition of strophanthidin reversibly reduced K+ channel activity in cell-attached patches to 36% of the control value. The effect of pump inhibition on K+ channel activity was dependent on the presence of extracellular Ca2+, since removal of Ca2+ in the bath solution abolished the inhibitory effect of 0 mM K+ bath. The intracellular [Ca2+] (measured with fura-2) was significantly increased, from 125 nM (control) to 335 nM (0 mM K+ bath) or 408 nM (0.2 mM strophanthidin), during inhibition of pump activity. In contrast, cell pH decreased only moderately, from 7.45 to 7.35. Raising intracellular Ca2+ by addition of 2 microM ionomycin mimicked the effect of pump inhibition on K+ channel activity. 0.1 mM amiloride also significantly reduced the inhibitory effect of the K+ removal. Because the apical low-conductance K channel in inside-out patches is not sensitive to Ca2+ (Wang, W., A. Schwab, and G. Giebisch, 1990. American Journal of Physiology. 259:F494-F502), it is suggested that the inhibitory effect of Ca2+ is mediated by a Ca(2+)-dependent signal transduction pathway. This view was supported in experiments in which application of 200 nM staurosporine, a potent inhibitor of Ca(2+)- dependent protein kinase C (PKC), markedly diminished the effect of the pump inhibition on channel activity. We conclude that a Ca(2+)- dependent protein kinase such as PKC plays a key role in the downregulation of apical low-conductance K+ channel activity during inhibition of the basolateral Na(+)-K(+)-ATPase.  相似文献   

3.
Coupled Na+ exit/Ca2+ entry (Na/Ca exchange operating in the Ca2+ influx mode) was studied in giant barnacle muscle cells by measuring 22Na+ efflux and 45Ca2+ influx in internally perfused, ATP-fueled cells in which the Na+ pump was poisoned by 0.1 mM ouabain. Internal free Ca2+, [Ca2+]i, was controlled with a Ca-EGTA buffering system containing 8 mM EGTA and varying amounts of Ca2+. Ca2+ sequestration in internal stores was inhibited with caffeine and a mitochondrial uncoupler (FCCP). To maximize conditions for Ca2+ influx mode Na/Ca exchange, and to eliminate tracer Na/Na exchange, all of the external Na+ in the standard Na+ sea water (NaSW) was replaced by Tris or Li+ (Tris-SW or LiSW, respectively). In both Na-free solutions an external Ca2+ (Cao)-dependent Na+ efflux was observed when [Ca2+]i was increased above 10(-8) M; this efflux was half-maximally activated by [Ca2+]i = 0.3 microM (LiSW) to 0.7 microM (Tris-SW). The Cao-dependent Na+ efflux was half-maximally activated by [Ca2+]o = 2.0 mM in LiSW and 7.2 mM in Tris-SW; at saturating [Ca2+]o, [Ca2+]i, and [Na+]i the maximal (calculated) Cao-dependent Na+ efflux was approximately 75 pmol#cm2.s. This efflux was inhibited by external Na+ and La3+ with IC50's of approximately 125 and 0.4 mM, respectively. A Nai-dependent Ca2+ influx was also observed in Tris-SW. This Ca2+ influx also required [Ca2+]i greater than 10(-8) M. Internal Ca2+ activated a Nai-independent Ca2+ influx from LiSW (tracer Ca/Ca exchange), but in Tris-SW virtually all of the Cai-activated Ca2+ influx was Nai-dependent (Na/Ca exchange). Half-maximal activation was observed with [Na+]i = 30 mM. The fact that internal Ca2+ activates both a Cao-dependent Na+ efflux and a Nai-dependent Ca2+ influx in Tris-SW implies that these two fluxes are coupled; the activating (intracellular) Ca2+ does not appear to be transported by the exchanger. The maximal (calculated) Nai-dependent Ca2+ influx was -25 pmol/cm2.s. At various [Na+]i between 6 and 106 mM, the ratio of the Cao-dependent Na+ efflux to the Nai-dependent Ca2+ influx was 2.8-3.2:1 (mean = 3.1:1); this directly demonstrates that the stoichiometry (coupling ratio) of the Na/Ca exchange is 3:1. These observations on the coupling ratio and kinetics of the Na/Ca exchanger imply that in resting cells the exchanger turns over at a low rate because of the low [Ca2+]i; much of the Ca2+ extrusion at rest (approximately 1 pmol/cm2.s) is thus mediated by an ATP-driven Ca2+ pump.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We examined the effect of cGMP on Na+/Ca2+ exchange in rat aortic smooth muscle cells (VSMCs) in primary culture. The intracellular Ca2+ concentration [( Ca2+]i) was raised by adding ionomycin to VSMCs incubated at high extracellular pH (pH0) (pH0 = 8.8) and high extracellular Mg2+ (Mg2+0) (Mg2+0 = 20 mM), conditions that inhibit activity of the sarcolemmal Ca2+ pump. 45Ca2+ efflux observed under these conditions was mostly extracellular Na+ (Na+0)-dependent and thus presumably catalyzed by the Na+/Ca2+ exchanger. Brief treatment of VSMCs with 8-bromo-cGMP or atrial natriuretic peptide increased this Na+0-dependent 45Ca2+ efflux by about 50%. The 8-bromo-cGMP treatment did not significantly influence total cell Na+, membrane potential, and cell pH. Conversely, when VSMCs were loaded with Na+ and then exposed to a Na+0-free medium, the rate of 45Ca2+ uptake into VSMCs increased as cell Na+ increased. Prior treatment of VSMCs with 8-bromo-cGMP accelerated 45Ca2+ uptake by up to 60% without influencing Na+ loading itself. Treatment of VSMCs with 25 microM 2,5-di-(tert-butyl)-1,4-benzohydroquinone, an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, induced a transient elevation of [Ca2+]i. 8-Bromo-cGMP stimulated the rate of recovery phase of this Ca2+ transient measured in the high pHo/high Mg2+o medium. All these results indicate that cGMP stimulates Na+/Ca2+ exchange in VSMCs.  相似文献   

5.
Unidirectional (22)Na, Li(+) and Rb(+) fluxes and net fluxes of Na(+) and K(+) were measured in U937 human leukemic cells before and after induction of apoptosis by staurosporine (1 microM, 4 h) to answer the question which ion transporter(s) are responsible for changes in cell ion and water balance at apoptosis. The original version of the mathematical model of cell ion and water balance was used for analysis of the unidirectional ion fluxes under the balanced distribution of major monovalent ions across the cell membrane. The values of all major components of the Na(+) and K(+) efflux and influx, i.e. fluxes via the Na(+),K(+)-ATPase pump, Na(+) channels, K(+) channels, Na/Na exchanger and Na-Cl symport were determined. It is concluded that apoptotic cell shrinkage and changes in Na(+) and K(+) fluxes typical of apoptosis in U937 cells induced by staurosporine are caused by a complex decrease in the pump activity, Na-Cl symport and integral Na(+) channel permeability.  相似文献   

6.
Calcium can ameliorate Na+ toxicity in plants by decreasing Na+ influx through nonselective cation channels. Here, we show that elevated external [Ca2+] also inhibits Na+ -induced K+ efflux through outwardly directed, K+ -permeable channels. Noninvasive ion flux measuring and patch-clamp techniques were used to characterize K+ fluxes from Arabidopsis (Arabidopsis thaliana) root mature epidermis and leaf mesophyll under various Ca2+ to Na+ ratios. NaCl-induced K+ efflux was not related to the osmotic component of the salt stress, was inhibited by the K+ channel blocker TEA+, was not mediated by inwardly directed K+ channels (tested in the akt1 mutant), and resulted in a significant decrease in cytosolic K+ content. NaCl-induced K+ efflux was partially inhibited by 1 mm Ca2+ and fully prevented by 10 mm Ca2+. This ameliorative effect was at least partially attributed to a less dramatic NaCl-induced membrane depolarization under high Ca2+ conditions. Patch-clamp experiments (whole-cell mode) have demonstrated that two populations of Ca2+ -sensitive K+ efflux channels exist in protoplasts isolated from the mature epidermis of Arabidopsis root and leaf mesophyll cells. The instantaneously activating K+ efflux channels showed weak voltage dependence and insensitivity to external and internal Na+. Another population of K+ efflux channels was slowly activating, steeply rectifying, and highly sensitive to Na+. K+ efflux channels in roots and leaves showed different Ca2+ and Na+ sensitivities, suggesting that these organs may employ different strategies to withstand salinity. Our results suggest an additional mechanism of Ca2+ action on salt toxicity in plants: the amelioration of K+ loss from the cell by regulating (both directly and indirectly) K+ efflux channels.  相似文献   

7.
Replacing extracellular Na+ with choline transiently increased cytoplasmic free Ca2+ ([Ca2+]i) more than 5-fold in coronary endothelial cells. Removing external Na+ stimulated 45Ca2+ efflux approximately 4-fold and influx approximately 1.7-fold. The stimulation of efflux was independent of extracellular Ca2+ and the osmotic Na+ substitute. The release of stored Ca2+, rather than Ca2+ influx via Na(+)-Ca2+ exchange, probably causes the increase in [Ca2+]i and 45Ca2+ efflux. Cadmium or decreasing external, not intracellular, pH transiently increased [Ca2+]i. Cd2+ and some other divalent metals also stimulated 45Ca2+ efflux. The potency order of the metals that stimulated efflux was Cd2+ greater than CO2+ greater than Ni2+ greater than Fe2+ greater than Mn2+. Incubating the cells with Zn2+ prior to assaying efflux in the absence of Zn2+ strongly inhibited the stimulation of 45Ca2+ efflux by Cd2+, pH 6, and the removal of external Na+ without affecting the stimulation of efflux by ATP. These findings support the hypothesis that certain trace metals or decreasing external Na+ or pH trigger the release of stored Ca2+ by stimulating a cell surface "receptor."  相似文献   

8.
Agonist-specific regulation of [Na+]i in pancreatic acinar cells   总被引:1,自引:1,他引:0  
In a companion paper (Zhao, H., and S. Muallem. 1995), we describe the relationship between the major Na+,K+, and Cl- transporters in resting pancreatic acinar cells. The present study evaluated the role of the different transporters in regulating [Na+]i and electrolyte secretion during agonist stimulation. Cell stimulation increased [Na+]i and 86Rb influx in an agonist-specific manner. Ca(2+)-mobilizing agonists, such as carbachol and cholecystokinin, activated Na+ influx by a tetraethylammonium-sensitive channel and the Na+/H+ exchanger to rapidly increase [Na+]i from approximately 11.7 mM to between 34 and 39 mM. As a consequence, the NaK2Cl cotransporter was largely inhibited and the activity of the Na+ pump increased to mediate most of the 86Rb(K+) uptake into the cells. Secretin, which increases cAMP, activated the NaK2Cl cotransporter and the Na+/H+ exchanger to slowly increase [Na+]i from approximately 11.7 mM to an average of 24.6 mM. Accordingly, secretin increased total 86Rb uptake more than the Ca(2+)- mobilizing agonists and the apparent coupling between the NaK2Cl cotransport and the Na+ pump. All the effects of secretin could be attributed to an increase in cAMP, since forskolin affected [Na+]i and 86Rb fluxes similar to secretin. The signaling pathways mediating the effects of the Ca(2+)-mobilizing agonists were less clear. Although an increase in [Ca2+]i was required, it was not sufficient to account for the effect of the agonists. Activation of protein kinase C stimulated the NaK2Cl cotransporter to increase [Na+]i and 86Rb fluxes without preventing the inhibition of the cotransporter by Ca(2+)-mobilizing agonists. The effects of the agonists were not mediated by changes in cell volume, since cell swelling and shrinkage did not reproduce the effect of the agonists on [Na+]i and 86Rb fluxes. The overall findings of the relationships between the various Na+,K+, and Cl- transporters in resting and stimulated pancreatic acinar cells are discussed in terms of possible models of fluid and electrolyte secretion by these cells.  相似文献   

9.
The effect of physiological and pharmacological concentrations of aldosterone on Na+ efflux catalyzed by the human erythrocyte Na+,K+-ATPase in vitro were studied. Aldosterone had no significant effect on ouabain-sensitive Na+ efflux from fresh erythrocytes. In addition, aldosterone did not alter Na+ transport activity of stimulated Na+,K+-ATPase of Na+ loaded erythrocytes. Finally, Na+ efflux from Na+ loaded erythrocytes was not changed by preincubation of the cells with aldosterone. It is concluded that aldosterone in vitro does not modify pump activity of the human erythrocyte Na+, K+-ATPase.  相似文献   

10.
Apoptosis plays an important role in maintaining the balance between proliferation and cell loss in the intestinal epithelium. Apoptosis rates may increase in intestinal pathologies such as inflammatory bowel disease and necrotizing enterocolitis, suggesting pharmacological prevention of apoptosis as a therapy for these conditions. Here, we explore the feasibility of this approach using the rat epithelial cell line IEC-6 as a model. On the basis of the known role of K+ efflux in apoptosis in various cell types, we hypothesized that K+ efflux is essential for apoptosis in enterocytes and that pharmacological blockade of this efflux would inhibit apoptosis. By probing intracellular [K+] with the K+-sensitive fluorescent dye and measuring the efflux of 86Rb+, we found that apoptosis-inducing treatment with the proteasome inhibitor MG-132 leads to a twofold increase in K+ efflux from IEC-6 cells. Blockade of K+ efflux with tetraethylammonium, 4-aminopyridine, stromatoxin, chromanol 293B, and the recently described K+ channel inhibitor 48F10 prevents DNA fragmentation, caspase activation, release of cytochrome c from mitochondria, and loss of mitochondrial membrane potential. Thus K+ efflux occurs early in the apoptotic program and is required for the execution of later events. Apoptotic K+ efflux critically depends on activation of p38 MAPK. These results demonstrate for the first time the requirement of K+ channel-mediated K+ efflux for progression of apoptosis in enterocytes and suggest the use of K+ channel blockers to prevent apoptotic cell loss occurring in intestinal pathologies.  相似文献   

11.
Inhibition of red cell Ca2+-ATPase by vanadate   总被引:3,自引:0,他引:3  
1. The Mg2+- plus Ca2+-dependent ATPase (Ca2+-ATPase) in human red cell membranes is susceptible to inhibition by low concentrations of vanadate. 2. Several natural activators of Ca2+-ATPase (Mg2+, K+, Na+ and calmodulin) modify inhibition by increasing the apparent affinity of the enzyme for vanadate. 3. Among the ligands tests, K+, in combination with Mg2+, had the most pronounced effect on inhibition by vanadate. 4. Under conditions optimal for inhibition of Ca2+-ATPase, the K 1/2 for vanadate was 1.5 microM and inhibition was nearly complete at saturating vanadate concentrations. 5. There are similarities between the kinetics of inhibition of red cell Ca2+-ATPase and (Na+ + K+)-ATPase prepared from a variety of sources; however, (Na+ + K+)-ATPase is approx. 3 times more sensitive to inhibition by vanadate.  相似文献   

12.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

13.
Rapid effects of serum stimulation on electrical and ionic membrane properties and their relationship to the initiation of DNA synthesis and cell division have been investigated in mouse N1E-115 neuroblastoma cells. Addition of 10% fetal calf serum to serum-deprived N1E-115 cells results in the initiation of DNA synthesis after a lag of approximately 10 hr. The earliest events following serum addition include: transient membrane potential and resistance changes, detectable within seconds and lasting 5--10 min; a persistent increase in the initial rate of 22Na+ influx, the major part of which is not of electrodiffusional origin, and which is potentiated by weak acid anions; and an external Na+-dependent increase in the rate of the Na+, K+ pump. In the absence of serum the stimulation of the Na+, K+ pump can be mimicked by increasing net Na+ influx with monensin or neurotoxins. Growth-depleted serum fails to induce any of the electrical and ionic events. The diuretic amiloride (0.4 mM) inhibits serum-induced Na+ influx, Na+, K+ pump stimulation and DNA synthesis, but does not affect the electrical response or the basal influx rates. The results suggest that serum growth factors act, at least in part, by stimulating an electroneutral, amiloride-sensitive Na+/H+ exchange mechanism. The enhanced Na+ influx then results in the observed stimulation of the Na+, K+ pump, while the simultaneous efflux of protons may raise the intracellular pH.  相似文献   

14.
A (Ca2+, Mg2+)-ATPase activity and a (Ca2+, Mg2+)-dependent phosphorylation from ATP have been found in plasma membrane fragments from squid optical nerves under conditions where contamination by intracellular organelles is unlikely. The properties of this (Ca2+, Mg2+)-ATPase activity are almost identical to those of the ATP-dependent uncoupled Ca2+ efflux observed in dialyzed squid giant axons. This gives further support to the notion that the mechanism responsible for maintaining the low levels of ionized Ca concentration in nerves at rest is not a Na+-Ca2+ exchange system but an ATP-driven uncoupled Ca2+ pump.  相似文献   

15.
The regulation of the increase in intracellular calcium ([Ca2+]i) occurring in cytolytic T lymphocytes (CTLs) upon their interaction with antigen was examined. This [Ca2+]i increase and lytic function were insensitive to verapamil, a Ca channel blocker. An antigen-independent increase in [Ca2+]i was not induced by depolarization of CTLs with excess extracellular K+, suggesting that Ca2+ influx is not mediated by the ubiquitous voltage-gated Ca channel. The antigen-induced [Ca2+]i increase was inhibited by prior membrane hyperpolarization with valinomycin. Hyperpolarization occurred under normal circumstances in CTLs exposed to antigen-receptor-specific antibodies. This potential change was Ca2+-dependent and inhibited by K channel blockade. Conversely, K channel blockade augmented the antigen-specific [Ca2+]i increase while markedly decreasing the K+ efflux associated with CTL lytic function. Therefore, either membrane potential or intracellular K+ regulates the antigen-specific [Ca2+]i increase in CTLs.  相似文献   

16.
In many cell types, low concentrations of inositol 1,4,5-trisphosphate (IP3) release only a portion of the intracellular IP3-sensitive Ca2+ store, a phenomenon known as "quantal" Ca2+ release. It has been suggested that this effect is a result of reduced activity of the IP3- dependent Ca2+ channel with decreasing calcium concentration within the IP3-sensitive store ([Ca2+]s). To test this hypothesis, the properties of IP3-dependent Ca2+ release in single saponin-permeabilized HSY cells were studied by monitoring [Ca2+]s using the Ca(2+)-sensitive fluorescent dye mag-fura-2. In permeabilized cells, blockade of the sarco/ER Ca(2+)-ATPase pump in stores partially depleted by IP3 induced further Ca2+ release via an IP3-dependent route, indicating that Ca2+ entry via the sarco/ER Ca(2+)-ATPase pump had been balanced by Ca2+ loss via the IP3-sensitive channel before pump inhibition. IP3- dependent Mn2+ entry, monitored via quenching of luminal mag-fura-2 fluorescence, was readily apparent in filled stores but undetectable in Ca(2+)-depleted stores, indicating markedly reduced IP3-sensitive channel activity in the latter. Also consistent with reduced responsiveness of Ca(2+)-depleted stores to IP3, the initial rate of refilling of these stores was unaffected by the presence of 0.3 microM IP3, a concentration that was clearly effective in eliciting Ca2+ release from filled stores. Analysis of the rate of Ca2+ release at various IP3 concentrations indicated a significant shift of the IP3 dose response toward higher [IP3] with decreasing [Ca2+]s. We conclude that IP3-dependent Ca2+ release in HSY cells is a steady-state process wherein Ca2+ efflux via the IP3 receptor Ca2+ channel is regulated by [Ca2+]s, apparently via changes in the sensitivity of the channel to IP3.  相似文献   

17.
Papaverine (1-[(3,4-Dimethoxyphenyl) methyl]-6,7-dimethoxyisoquinoline) and nantenine (O-methyldomesticine) are chemically related isoquinoline alkaloids displaying similar dose-dependent sedative or convulsant effects, but seem to act differentially on synaptosomal membrane enzymes. Na+, K+-, Mg2+- and Ca2+-ATPase activities were inhibited by nantenine but not by papaverine, whereas acetylcholinesterase activity remained unchanged by nantenine but slightly enhanced by papaverine. Nantenine inhibited roughly both 20-50% Ca2+- and Mg2+-ATPase activities but 40-90% Na+, K+-ATPase activity. Kinetic analysis indicated that nantenine interacts with the substrate ATP for Ca2+-ATPase activity but that it competes with K+ for Na+, K+-ATPase activity. Given the roles of Na+, K+-ATPase and Ca2+-ATPase in cation transport and [Ca2+]i regulation, respectively, the inhibitory effect of nantenine upon these enzymes may explain its convulsant effect though not its sedative activity. The sedative action of both nantenine and papaverine is hardly attributable to an effect on the synaptosomal membrane enzymes assayed.  相似文献   

18.
The possible presence and properties of the Ca2+-dependent K+ channel have been investigated in the Ehrlich ascites tumor cell. The treatment with ionophore A23187 + CA2+, propranolol or the electron donor system ascorbate-phenazine methosulphate, all of which activate that transport system in the human erythrocyte, produces in the Ehrlich cell a net loss of K+ (balanced by the uptake of Na+) and a stimulation of both the influx and the efflux of 86Rb. These effects were antagonized by quinine, a known inhibitor of the Ca2+-dependent K+ channel in other cell systems, and by the addition of EGTA to the incubation medium. Ouabain did not have an inhibitory effect. These results suggests that the Ehrlich cell possesses a Ca2+-dependent K+ channel whose characteristics are similar to those described in other cell systems.  相似文献   

19.
Using dialysed squid axons we have been able to control internal and external ionic compositions under conditions in which most of the Na+ efflux goes through the Na+ pump. We found that (i) internal K+ had a strong inhibitory effect on Na+ efflux; this effect was antagonized by ATP, with low affinity, and by internal Na+, (ii) a reduction in ATP levels from 3 mM to 50 microM greatly increased the apparent affinity for external K+, but reduced its effectiveness compared with other monovalent cations, as an activator of Na+ efflux, and (iii) the relative effectiveness of different K+ congeners as external activator of the Na+ efflux, though affected by the ATP concentration, was not affected by the Na+/K+ ratio inside the cells. These results are consistent with the idea that the same conformation of the (Na+ + K+)-ATPase can be reached by interaction with external K+ after phosphorylation and with internal K+ before rephosphorylation. They also stress a nonphosphorylating regulatory role of ATP.  相似文献   

20.
An increase in endogenous Na+,K+-ATPase inhibitor(s) with digitalis-like properties has been reported in chronic renal insufficiency, in Na+-dependent experimental hypertension and in some essential hypertensive patients. The present study specifies some properties and some biochemical characteristics of a semipurified compound from human urine having digitalis-like properties. The urine-derived inhibitor (endalin) inhibits Na+,K+-ATPase activity and [3H]-ouabain binding, and cross-reacts with anti-digoxin antibodies. The inhibitory effect on ATPases of endalin is higher on Na+,K+-ATPase than on Mg2+-ATPase and Ca2+-ATPase. The mechanism of endalin action on highly purified Na+,K+-ATPase was compared to that of ouabain and was similar in that it reversibly inhibited Na+,K+-ATPase activity; it inhibited Na+,K+-ATPase non-competitively with ATP; its inhibitory effect was facilitated by Na+; K+ decreased its inhibitory effect on Na+,K+-ATPase; it competitively inhibited ouabain binding to the enzyme; its binding was maximal in the presence of Mg2+ and Pi; it decreased the Na+ pump activity in human erythrocytes; it reduced serotonin uptake by human platelets; and it was diuretic and natriuretic in rat bioassay. The endalin differed from ouabain in only three aspects: its inhibitory effect was not really specific for Na+,K+-ATPase; its binding to the enzyme was undetectable in the presence of Mg2+ and ATP; it was not kaliuretic in rat bioassay. Endalin is a reversible and partial specific inhibitor of Na+,K+-ATPase, its Na+,K+-ATPase inhibition closely resembles that of ouabain and it could be considered as one of the natriuretic hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号