首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The objective of the current investigation was to develop a reliable method to obtain vesicular arbuscular mycorrhizae (VAM) in micropropagated plantlets and to determine their influence on growth. An in vitro system for culturing the VA mycorrhizal fungus Glomus intraradices with Ri T-DNA-transformed carrot roots or nontransformed tomato roots was used in this study as a potential active source of inoculum for the colonization of micropropagated plantlets. After root induction, micropropagated plantlets grown on cellulose plugs (sorbarod) were placed in contact with the primary mycorrhizae in growth chambers enriched with 5000 ppm CO2 and fed with a minimal medium. After 20 days of tripartite culture, all plantlets placed in contact with the primary symbiosis were colonized by the VAM fungus. As inoculum source, 30-day-old VA mycorrhizal transformed carrot roots had a substantially higher infection potential than 5-, 10-or 20-day-old VAM. Colonized plantlets had more extensive root systems and better shoot growth than control plants. The VAM symbiosis reduced the plantlet osmotic potential. This response may be a useful pre-adaptation for plantlets during transfer to the acclimatization stage.  相似文献   

2.
Investigations were carried out to achieve cent per cent transplantation success of micropropagated Leucaena leucocephala (a fast growing multipurpose leguminous tree species) plantlets using two vesicular arbuscular mycorrhizal fungi, Glomus fasciculatum and Glomus macrocarpum. Plantlets were obtained by rooting the shoots [obtained through; hypocotyl callus in presence of 10-5M BAP + 10-6M NAA; and axillary bud sprouting from cotyledonary and other nodes in presence of 10-5M BAP, on Gamborg's B5 medium], on half strength B5 medium supplemented with 5×10-6M IBA. Subsequent to the nodulation of their roots with Rhizobium (strain PRGL 001)in soilrite, these plantlets were tranferred to sterilized garden soil by laying inoculum of either Glomus fasciculatum or Glomus macrocarpum around their roots. Only 20% of the plantlets survived in soils lacking VAM fungus. In contrast, cent per cent of the plantlets of Leucaena leucocephala established very well and showed good growth in VAM inoculated soil. Roots of the later plantlets showed presence of both external and internal hyphae with well formed arbuscules and vesicles confirming the establishment of good mycorrhizal association. These studies convincingly demonstrate that the mycorrhizal association help in successful establishment of tissue culture raised plantlets of Leucaena leucocephala in the field conditions by alleviating the transplantation shock. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
4.
Microscopic evidence suggests that fungi forming endosymbioses with liverworts in the Marchantiales are arbuscular mycorrhizal (AM) fungi from the Glomeromycota. Polymerase chain reaction amplification of ribosomal sequences confirmed that endophytes of the New Zealand liverwort, Marchantia foliacea, were members of the genus Glomus. Endophytes from two Glomus rDNA phylotypes were repeatedly isolated from geographically separated liverwort samples. Multiple phylotypes were present in the same liverwort patch. The colonizing Glomus species exhibited substantial internal transcribed spacer sequence variation within phylotypes. This work suggests that certain liverwort species may serve as a model for studying DNA sequence variation in colonizing AM phylotypes and specificity in AM-host relationships.  相似文献   

5.
6.
Soybean [Glyeine max (L.) Merr. cv. Amsoy 71] plants were inoculated with either the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum. with a strain of Bradyrizobobium Japonicum. or with both endophytes in combintion. Noninoculated controlplantes were fertilized with levels of N and P previously found to compensate for nutrient input following infection by Bradyhizobium or Glomus Temporal differences in N and P assimilation in nodulated or mycorrhizal plants indicated that Glomus was most effective during early vegetative growth and Bradyrhizobion was active until the mid-pod-fill stage in soybean. In general. soybeans colonized by Glomus contained more Cu but less Mn and P than corresponding P-fertilized plants. Soyubean roots infected with G. fasciculaum contained five unusual fatty acids: [16: 1 (11c): 8:3 (6c, 9c, 12c): 20:3 (8c, 11c, 14c): 20:4 (5c, 8c, 11c, 14c): 20:5 (5c, 8c, 11c, 14c, 17c)] that were absent in non-infected roots. Fatty acid 16:1 (11c) comprised 43% of total fatty acids in Glomus-infected roots at week 9 and 29% of total root fatty acids at week 15. This isomer of hexadecenoic acid was positively correlated with vesicle number (r = 0.92**). and 16:1 (11c) was probably the principalstorage fatty acid in fungal vesicles. These five unusual fatty acids were not found in the leaves. pods or seeds of either VAM or non-VAM plants. Specific leaf area increased with time in nodulated soybeans. but these plants contained lessCu than corresponding N-fertilized plants. Soybeans nodulated with Bradyrthizobium contained more total lipid and proportionately more fatty acid 16:0 than N-fertilized plants. Infection by Glomus or Bradyrhizobium also altered the fatty acid composition of above-ground plant parts, although these changes were subtle compared to the markedly different fatty acid found in Glomus-infected roots. These findings suggest that seed quality may be altered due to the physiological changes resulting from infection by N2-fixing bacteria and/or endomycorrhizal fungi. Observed differences in the plant nutrition of inoculated soybeans could not be replicated by fertilizer addition alone.  相似文献   

7.
Interaction of plant roots with arbuscular mycorrhizal fungi (AMF) is a complex trait resulting in cooperative interactions among the two symbionts including bidirectional exchange of resources. To study arbuscular mycorrhizal symbiosis (AMS) trait variation in the model plant Lotus japonicus, we performed an integrated multi‐omics analysis with a focus on plant and fungal phospholipid (PL) metabolism and biological significance of lysophosphatidylcholine (LPC). Our results support the role of LPC as a bioactive compound eliciting cellular and molecular response mechanisms in Lotus. Evidence is provided for large interspecific chemical diversity of LPC species among mycorrhizae with related AMF species. Lipid, gene expression and elemental profiling emphasize the Lotus–Glomus intraradices interaction as distinct from other arbuscular mycorrhizal (AM) interactions. In G. intraradices, genes involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs were enhanced, while in Lotus, FA synthesis genes were up‐regulated during AMS. Furthermore, FAS protein localization to mitochondria suggests FA biosynthesis and elongation may also occur in AMF. Our results suggest the existence of interspecific partitioning of PL resources for generation of LPC and novel candidate bioactive PLs in the Lotus–G. intraradices symbiosis. Moreover, the data advocate research with phylogenetically diverse Glomeromycota species for a broader understanding of the molecular underpinnings of AMS.  相似文献   

8.
A nested multiplex PCR (polymerase chain reaction) approach was used for multilocus genotyping of arbuscular mycorrhizal fungal populations. This method allowed us to amplify multiple loci from Glomus single spores in a single PCR amplification. Variable introns in the two protein coding genes GmFOX2 and GmTOR2 were applied as codominant genetic markers together with the LSU rDNA. Genetic structure of Glomus spp. populations from an organically and a conventionally cultured field were compared by hierarchical sampling of spores from four plots in each field. Multilocus genotypes were characterized by SSCP (single stranded conformation polymorphism) and sequencing. All spore genotypes were unique suggesting that no recombination was taking place in the populations. There were no overall differences in the distribution of genotypes in the two fields and identical genotypes could be sampled from both fields. Analysis of gene diversity indicated that Glomus populations are subdivided between plots within each field. There were however, no subdivision between the fields.  相似文献   

9.
10.
Requena  Natalia  Mann  Petra  Hampp  Rüdiger  Franken  Philipp 《Plant and Soil》2002,244(1-2):129-139
The life cycle of the obligate biotrophic arbuscular mycorrhizal fungi comprises several well-defined developmental stages whose genetic determinants are still unknown. With the aim of understanding the molecular processes governing the early developmental phase of the AM fungal life cycle, a subtractive cDNA library was constructed using a suppressive subtractive hybridization technique. The library contains more than 600 clones with an average size of 500 bp. The isolated cDNAs correspond to genes up-regulated during the early development of the AM fungus Glomus mosseaeversus genes expressed in extraradical hyphae. The expression of several of the isolated genes was further confirmed by RT-PCR analysis. Among the isolated clones, a novel gene named GmGIN1 only expressed during early development in G. mosseae was found. The full-length GmGIN1 cDNA codes for a protein of 429 amino acids. The most interesting feature of the deduced protein is its two-domain structure with a putative self-splicing activity. The N-terminal domain shares sequence similarity with a novel family of GTP binding proteins while the C-terminus has a striking homology to the C-terminal part of the hedgehog protein family from metazoa. The C-terminal part of hedgehog proteins is known to participate in the covalent modification of the N-terminus by cholesterol, and in the self-splicing activity which renders the active form of the protein with signalling function. We speculate that the N-terminal part of GmGIN1, activated through a similar mechanism to the hedgehog proteins, has GTP-binding activity and participates in the signalling events prior to symbiosis formation.  相似文献   

11.
Two isolates of Paenibacillus validus (DSM ID617 and ID618) stimulated growth of the arbuscular mycorrhizal fungus Glomus intraradices Sy167 up to the formation of fertile spores, which recolonize carrot roots. Thus, the fungus was capable of completing its life cycle in the absence of plant roots, but relied instead on the simultaneous growth of bacteria. The supernatant of a mixed batch culture of the two P. validus isolates contained raffinose and another, unidentified trisaccharide. Among the oligosaccharides tested, raffinose was most effective in stimulating hyphal mass formation on plates but could not promote growth to produce fertile spores. A suppressive subtractive hybridization library followed by reverse Northern analyses indicated that several genes with products involved in signal transduction are differentially expressed in G. intraradices SY 167 when grown in coculture with P. validus (DSM 3037). The present investigation, while likely representing a significant step forward in understanding the arbuscular mycorrhizal fungus symbioses, also confirms that its optimal establishing and functioning might rely on many, as yet unidentified factors.  相似文献   

12.
Three plant growth-promoting rhizobacteria viz. Bacillus megaterium, B. subtilis and Pseudomonas corrugata were used for biological hardening of micropropagated plantlets of Picrorhiza kurrooa. The bacterial isolates antagonized the fungal spp. postulated to cause death of micropropagated plants in plate-based assays and positively influenced survival and growth parameters in greenhouse investigation.  相似文献   

13.
Phytostabilization strategies may be suitable to reduce the dispersion of uranium (U) and the overall environmental risks of U-contaminated soils. The role of Glomus intraradices, an arbuscular mycorrhizal (AM) fungus, in such phytostabilization of U was investigated with a compartmented plant cultivation system facilitating the specific measurement of U uptake by roots, AM roots and extraradical hyphae of AM fungi and the measurement of U partitioning between root and shoot. A soil-filled plastic pot constituted the main root compartment (CA) which contained a plastic vial filled with U-contaminated soil amended with 0, 50 or 200 mg KH2PO4−P kg–1soil (CB). The vial was sealed by coarse or fine nylon mesh, permitting the penetration of both roots and hyphae or of just hyphae. Medicago truncatula plants grown in CA were inoculated with G. intraradices or remained uninoculated. Dry weight of shoots and roots in CA was significantly increased by G. intraradices, but was unaffected by mesh size or by P application in CB. The P amendments decreased root colonization in CB, and increased P content and dry weight of those roots. Glomus intraradices increased root U concentration and content in CA, but decreased shoot U concentrations. Root U concentrations and contents were significantly higher when only hyphae could access U inside CB than when roots could also directly access this U pool. The proportion of plant U content partitioned to shoots was decreased by root exclusion from CB and by mycorrhizas (M) in the order: no M, roots in CB > no M, no roots in CB > M, roots in CB > M, no roots in CB. Such mycorrhiza-induced retention of U in plant roots may contribute to the phytostabilization of U contaminated environments.  相似文献   

14.
丛枝菌根结构与功能研究进展   总被引:5,自引:0,他引:5  
丛枝菌根(arbuscular mycorrhiza,AM)是陆地生态系统中分布最广泛、最重要的互惠共生体之一,对提高植物抗逆性、修复污染生境、保持生态系统稳定与可持续生产力的作用显著.AM结构特征是判断菌根形成的主要指标,与其功能密切相关.本文总结了AM丛枝结构、泡囊结构、菌丝结构和侵入点结构等发育特征;分析了A型丛枝结构、P型丛枝结构、泡囊结构和根外菌丝结构与促进寄主植物养分吸收和生长、提高植物抗旱性、耐涝性、耐盐性、抗高温、拮抗病原物、提高植物抗病性、抗重金属毒性、分解有毒有机物、修复污染与退化土壤等功能的关系,及其所发挥的重要作用;探讨了影响AM结构与功能的因子,以及基于AM不同结构所发挥功能的作用机制.旨在为系统研究AM真菌发育特征、AM真菌效能机制,以及评价和筛选AM真菌高效菌种提供依据.  相似文献   

15.
在实验室条件下用低(0.5 mmol·L-1)、中(8 mmol·L-1)、高(15 mmol·L-1)浓度Al3 溶液胁迫接种和未接种丛枝菌根(AM)的樟树幼苗,10周后测定植株叶片的叶绿素含量、净光合速率(Pn),气孔导度(Gs)、蒸腾速率(Tr)、胞间CO2浓度(Ci)和气孔限制值(Ls).结果表明:未接种和接种樟树幼苗叶片叶绿素含量在低浓度Al3 胁迫时与相应对照无显著差异,而在中、高浓度Al3 胁迫下均显著低于相应对照,并均随Al3 浓度增加而逐渐下降;接种植株的叶绿素含量在对照和中、低浓度Al3 胁迫下均高于相应未接种植株,而在高浓度Al3 胁迫下显著低于未接种植株.未接种和接种樟树幼苗叶片Pn在低浓度Al3 胁迫时均显著高于对照(P<0.05),在中、高浓度时均显著低于对照,且在Al3 浓度间差异显著;末接种和接种樟树幼苗叶片Ci均随Al3 胁迫浓度增加逐渐提高,而其余参数则逐渐下降;在同一Al3 浓度处理下,接种和未接种植株的叶片光合参数均无显著差异.研究发现,中、高浓度Al3 胁迫能显著降低樟树幼苗的净光合速率,且光合机构活性降低是主要原因;接种AM真菌能显著增加中、低浓度Al3 胁迫樟树幼苗的叶片叶绿素含量,但不能显著减轻中、高浓度Al3 胁迫对樟树幼苗光合速率的抑制作用.  相似文献   

16.
17.
城市湿地(urban wetland)植物多样性水平高,并具有积极的净化和美化环境的作用。本研究以浙江绍兴镜湖城市湿地公园为研究样地,通过ICP-AES检测了人工园区和次生林土壤中几种金属元素(Al、Cr、Cu、K和Zn)的含量,比较不同类型的菌根植物——黑麦草(Lolium perenne L.)(AM)、六月霜(Monochasma sauatieri Franch)(AM)和乌饭树(Vaccinium bracteatum Thunb)(ERM)对金属元素的富集作用。通过高通量测序分析各宿主植物根部真菌群落的组成和结构,比较其对宿主植物金属富集能力的影响。结果表明:(1)人工园区土壤中5种金属元素的含量均显著高于次生林下的土壤;(2)乌饭树对Al的富集能力较强,黑麦草和六月霜富集Cr能力都较强;(3)3种植物根部真菌主要来自Ascomycota,而乌饭树根部Basidiomycota也是优势真菌,AM真菌在黑麦草和六月霜根部真菌群落结构中较少,而公认的ERM真菌Helotiales和Sebacinales在乌饭树根部真菌群落中的比例较高,且与所测金属元素无显著相关性。绍兴镜湖城市湿地公园次生林土壤环境保持良好。  相似文献   

18.
Summary A procedure is described for selection and screening of VA mycorrhizal fungi in pot and field trials. The VA mycorrhizal fungi from 20 farm paddocks with unexpectedly high pasture production were compared withGlomus fasciculatus for ability to stimulate plant growth. The fungi from three soils (F4, F11, and F20) which were 84–142% more effective thanG. fasciculatus at stimulating growth in sterilised soils were then tested for ability to stimulate clover growth in unsterilised soils in pots, and in the field. F4, F11 and F20 were more efficient thanG. fasciculatus and the indigenous mycorrhizal fungi in all except one field soil.  相似文献   

19.
Colonization of two plant species by Glomus intraradices was studied to investigate the two morphological types (Arum and Paris), their symbiotic interfaces and metabolic activities. Root pieces and sections were stained to observe the colonization and metabolic activity of all mycorrhizal structures. There were no growth responses observed in the plants caused by mycorrhizal symbiosis. The two morphological types had a similar percentage of root colonized, but the Arum-type had higher metabolic activity. Most of the mycorrhizal structures (88%) showed succinate dehydrogenase activity; about half showed acid phosphatase activity; and a small percentage showed alkaline phosphatase activity. Phosphatase activity was highest in arbuscules and low in intercellular hyphae in the Arum-type colonization. In the Paris-type, hyphal coils and arbusculate coils showed a similar intermediate percentage of phosphatase activity. We conclude that acid phosphatase is more important than alkaline phosphatase in both colonization types. We discuss the possibility that, whereas arbuscules in Arum-type are the main site for phosphorus release to the host plant, both the hyphal and arbusculate coils may be involved in the Paris-type.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号