首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Escherichia coli MG1655 cells expressing Vitreoscilla hemoglobin (VHb), Alcaligenes eutrophus flavohemoprotein (FHP), the N-terminal hemoglobin domain of FHP (FHPg), and a fusion protein which comprises VHb and the A. eutrophus C-terminal reductase domain (VHb-Red) were grown in a microaerobic bioreactor to study the effects of low oxygen concentrations on the central carbon metabolism, using fractional (13)C-labeling of the proteinogenic amino acids and two-dimensional [(13)C, (1)H]-correlation nuclear magnetic resonance (NMR) spectroscopy. The NMR data revealed differences in the intracellular carbon fluxes between E. coli cells expressing either VHb or VHb-Red and cells expressing A. eutrophus FHP or the truncated heme domain (FHPg). E. coli MG1655 cells expressing either VHb or VHb-Red were found to function with a branched tricarboxylic acid (TCA) cycle. Furthermore, cellular demands for ATP and reduction equivalents in VHb- and VHb-Red-expressing cells were met by an increased flux through glycolysis. In contrast, in E. coli cells expressing A. eutrophus hemeproteins, the TCA cycle is running cyclically, indicating a shift towards a more aerobic regulation. Consistently, E. coli cells displaying FHP and FHPg activity showed lower production of the typical anaerobic by-products formate, acetate, and D-lactate. The implications of these observations for biotechnological applications are discussed.  相似文献   

2.
The ribosome and tRNA levels of Escherichia coli cells, transformed with a native or mutated Vitreoscilla hemoglobin genes (vhb), were investigated using asymmetrical flow field-flow fractionation (AFFFF). Mutagenesis of vhb by error-prone PCR was carried out to alter the growth behavior of microaerobically cultivated native VHb-expressing E. coli. A VHb mutant, pVMT1, was identified, which was able to reach a remarkably high final A600 of 15, the value of which being 160% higher than that of a VHb control carrying pVHb8 (A600 5.8). AFFFF revealed that cells expressing mutant vhbs showed up to a doubling in the number of active 70S ribosomes cell–1, an almost 3-fold increase in the number of tRNAs cell–1, and up to a 26% increase in the mass fraction of active 70S ribosomes.  相似文献   

3.
Dimeric hemoglobin (VHb) from the bacterium Vitreoscilla sp. strain C1 displays 30 to 53% sequence identity with the heme-binding domain of flavohemoglobins (flavoHbs) and exhibits the presence of potential sites for the interaction with its FAD/NADH reductase partner. The intersubunit contact region of VHb indicates a small interface between two monomers of the homodimer, suggesting that the VHb dimers may dissociate easily. Gel filtration chromatography of VHb exhibited a 25 to 30% monomeric population of VHb, at a low protein concentration (0.05 mg/ml), whereas dimeric VHb remained dominant at a high protein concentration (10 mg/ml). The structural characteristics of VHb suggest that the flavoreductase can also associate and interact with VHb in a manner analogous to flavoHbs and could yield a flavo-VHb complex. To unravel the functional relevance of the VHb-reductase association, the reductase domain of flavoHb from Ralstonia eutropha (formerly Alcaligenes eutrophus) was genetically engineered to generate a VHb-reductase chimera (VHb-R). The physiological implications of VHb and VHb-R were studied in an hmp mutant of Escherichia coli, incapable of producing any flavoHb. Cellular respiration the of the hmp mutant was instantaneously inhibited in the presence of 10 μM nitric oxide (NO) but remained insensitive to NO inhibition when these cells produced VHb-R. In addition, E. coli overproducing VHb-R exhibited NO consumption activity that was two to three times slower in cells overexpressing only VHb and totally undetectable in the control cells. A purified preparation of VHb-R exhibited a three- to fourfold-higher NADH-dependent NO uptake activity than that of VHb alone. Overproduction of VHb-R in the hmp mutant of E. coli conferred relief from the toxicity of sodium nitroprusside, whereas VHb alone provided only partial benefit under similar condition, suggesting that the association of VHb with reductase improves its capability to relieve the deleterious effect of nitrosative stress. Based on these results, it has been proposed that the unique structural features of VHb may allow it to acquire two functional states in vivo, namely, a single-domain homodimer that may participate in facilitated oxygen transfer or a two-domain heterodimer in association with its partner reductase that may be involved in modulating the cellular response under different environmental conditions. Due to this inherent structural flexibility, it may perform multiple functions in the cellular metabolism of its host. Separation of the oxidoreductase domain from VHb may thus provide a physiological advantage to its host.  相似文献   

4.
Limited oxygen availability is a prevalent problem in microbial biotechnology. Recombinant Escherichia coli expressing the hemoglobin from Vitreoscilla (VHb) or the flavohemoglobin from Ralstonia eutropha (formerly Alcaligenes eutrophus) (FHP) demonstrate significantly increased cell growth and productivity under microaerobic conditions. We identify novel bacterial hemoglobin-like proteins and examine if these novel bacterial hemoglobins can elicit positive effects similar to VHb and FHP and if these hemoglobins alleviate oxygen limitation under microaerobic conditions when expressed in E. coli. Several finished and unfinished bacterial genomes were screened using R. eutropha FHP as a query sequence for genes (hmp) encoding hemoglobin-like proteins. Novel hmp genes were identified in Pseudomonas aeruginosa, Salmonella typhi, Klebsiella pneumoniae, Deinococcus radiodurans, and Campylobacter jejuni. Previously characterized hmp genes from E. coli and Bacillus subtilis and the novel hmp genes from P. aeruginosa, S. typhi, C. jejuni, K. pneumoniae, and D. radiodurans were PCR amplified and introduced into a plasmid for expression in E. coli. Biochemically active hemoproteins were expressed in all constructs, as judged by the ability to abduct carbon monoxide. Growth behavior and byproduct formation of E. coli K-12 MG1655 cells expressing various hemoglobins were analyzed in microaerobic fed-batch cultivations and compared to plasmid-bearing control and to E. coli cells expressing VHb. The clones expressing hemoglobins from E. coli, D. radiodurans, P.aeruginosa, and S. typhi reached approximately 10%, 27%, 23%, and 36% higher final optical density values, respectively, relative to the plasmid bearing E. coli control (A(600) 5.5). E. coli cells expressing hemoproteins from P. aeruginosa, S. typhi, and D. radiodurans grew to similar final cell densities as did the strain expressing VHb (A(600) 7.5), although none of the novel constructs was able to outgrow the VHb-expressing E. coli strain. Additionally, increased yield of biomass on glucose was measured for all recombinant strains, and an approximately 2-fold yield enhancement was obtained with D. radiodurans hemoprotein-expressing E. coli relative to the E. coli control carrying the parental plasmid without any hemoglobin gene.  相似文献   

5.
On-line NAD(P)H fluorescence and culture redox potential (CRP) measurements were utilized to investigate the role of Vitreoscilla hemoglobin (VHb) in perturbing oxygen metabolism of microaerobic Escherichia coli Batch cultures of a VHb-synthesizing E. coli strain and the iso-genic control under fully aerated conditions were subject to several high/low oxygen transitions, and the NAD(P)H fluorescence and CRP were monitored during these passages. The presence of VHb decreased the rate of net NAD(P)H generation by 2.4-fold under diminishing oxygen tension. In the absence of aeration, the strain producing VHb maintained a steady NAD(P)H level 1.8-fold less than that of the control, indicating that the presence of VHb keeps E. coli in a more oxidized state under oxygen-limited conditions. Estimated from CRP, the oxygen uptake rates near anoxia were 25% higher for cells with VHb than those without. These results suggest that VHb-expressing cells have a higher microaerobic electron transport chain turnover rate. To examine how NAD(P)H utilization of VHb-expressing cells responds to rapidly changing oxygen tension, which is common in large-scale fermentations, we pulsed air intermittently into a cell suspension and recorded the fluorescence response to the imposed dissolved oxygen (DO) fluctuation. Relative to the control, cells containing VHb had a sluggish fluorescence response to sudden changes of oxygen tension, suggesting that VHb buffers intracellular redox perturbations caused by extracellular DO fluctuations.(c) John Wiley & Sons, Inc.  相似文献   

6.
Bacterial Hbs (haemoglobins), like VHb (Vitreoscilla sp. Hb), and flavoHbs (flavohaemoglobins), such as FHP (Ralstonia eutropha flavoHb), have different autoxidation and ligand-binding rates. To determine the influence of each domain of flavoHbs on ligand binding, we have studied the kinetic ligand-binding properties of oxygen, carbon monoxide and nitric oxide to the chimaeric proteins, FHPg (truncated form of FHP comprising the globin domain alone) and VHb-Red (fusion protein between VHb and the C-terminal reductase domain of FHP) and compared them with those of their natural counterparts, FHP and VHb. Moreover, we also analysed polarity and solvent accessibility to the haem pocket of these proteins. The rate constants for the engineered proteins, VHb-Red and FHPg, do not differ significantly from those of their natural counterparts, VHb and FHP respectively. Our results suggest that the globin domain structure controls the reactivity towards oxygen, carbon monoxide and nitric oxide. The presence or absence of a reductase domain does not affect the affinity to these ligands.  相似文献   

7.
In several organisms, expression of a gene encoding dimeric hemoglobin (VHb) from the obligate aerobic bacterium Vitreoscilla stercoraria has been shown to increase microaerobic cell growth and enhance oxygen-dependent cell metabolism. In an attempt to further improve these effects of VHb, a gene encoding two vhb genes connected by a short linker of six base pairs was constructed and expressed in Escherichia coli(double VHb). Escherichia coli cells expressing double VHb reached a cell density 19% higher than that of cells expressing native VHb. The protein production per cell remained constant since the increase in cell growth was accompanied by an increase in protein content by 16%. Investigation of ribosome and tRNA content revealed that cells expressing double VHb reached their maximal capacity of protein synthesis later during cultivation than cells expressing native VHb, and furthermore they reached considerably higher levels of ribosome and tRNA compared to that of the VHb-expressing cells.  相似文献   

8.
The amount of Vitreoscilla hemoglobin (VHb) expression was modulated over a broad range with an isopropyl-beta-D-thiogalactopyranoside- (IPTG-) inducible plasmid, and the consequences on microaerobic Escherichia coli physiology were examined in glucose fed-batch cultivations. The effect of IPTG induction on growth under oxygen-limited conditions was most visible during late fed-batch phase where the final cell density increased initially linearly with increasing VHb concentrations, ultimately saturating at a 2.7-fold increase over the VHb-negative (Vhb(-)) control. During the same growth phase, the specific excretions of fermentation by-products, acetate, ethanol, formate, lactate, and succinate from the culture expressing the highest amount of VHb were reduced by 25%, 49%, 68%, 72%, and 50%, respectively, relative to the VHb(-) control. During the exponential growth phase, VHb exerted a positive but smaller control on growth rate, growth yield, and respiration. Varying the amount of VHb from 0 to 3.8 mumol/g dry cell weight (DCW) increased the specific growth rate, the growth yield, and the oxygen consumption rate by 33%, 35%, and 60%, respectively. Increasing VHb concentration to 3.8 mumol/g DCW suppressed the rate of carbon dioxide evolution in the exponential phase by 30%. A metabolic flux distribution analysis incorporating data from these cultivations discloses that VHb(+) cells direct a larger fraction of glucose toward the pentose phosphate pathway and a smaller fraction of carbon through the tricarboxylic acid cycle from acetyl coenzyme A. The overall nicotinamide adenine dinucleotide [NAD(P)H] flux balance indicates that VHb-expressing cells generate a net NADH flux by the NADH/NADPH transhydrogenase while the VHb(-) cells yield a net NADPH flux under the same growth conditions. Flux distribution analysis also reveals that VHb(+) cells have a smaller adenosine triphosphate (ATP) synthesis rate from substrate-level phosphorylation but a larger overall ATP production rate under microaerobic conditions. The thermodynamic efficiency of growth, based on reducing equivalents generated per unit of biomass produced, is greater for VHb(+) cells. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.

Escherichia coli strains W3110 and BL21 were engineered for the production of plasmid DNA (pDNA) under aerobic and transitions to microaerobic conditions. The gene coding for recombinase A (recA) was deleted in both strains. In addition, the Vitreoscilla hemoglobin (VHb) gene (vgb) was chromosomally inserted and constitutively expressed in each E. coli recA mutant and wild type. The recA inactivation increased the supercoiled pDNA fraction (SCF) in both strains, while VHb expression improved the pDNA production in W3110, but not in BL21. Therefore, a codon-optimized version of vgb was inserted in strain BL21recA, which, together with W3110recAvgb+, was tested in cultures with shifts from aerobic to oxygen-limited regimes. VHb expression lowered the accumulation of fermentative by-products in both strains. VHb-expressing cells displayed higher oxidative activity as indicated by the Redox Sensor Green fluorescence, which was more intense in BL21 than in W3110. Furthermore, VHb expression did not change pDNA production in W3110, but decreased it in BL21. These results are useful for understanding the physiological effects of VHb expression in two industrially relevant E. coli strains, and for the selection of a host for pDNA production.

  相似文献   

10.
The vhb gene encoding Vitreoscilla haemoglobin (VHb) was transferred to barley with the aim of studying the role of oxygen availability in germination and growth. Previous findings indicate that VHb expression improves the efficiency of energy generation during oxygen-limited growth, and germination is known to be an energy demanding growth stage during which the embryos also suffer from oxygen deficiency. When subjected to oxygen deficiency, the roots of vhb-expressing barley plants showed a smaller increase in alcohol dehydrogenase (ADH) activity than those of the control plants. This indicates that VHb plants experienced less severe oxygen deficiency than the control plants, possibly due to the ability of VHb to substitute ADH for recycling NADH and maintaining glycolysis. In contrast to previous findings, we found that constitutive vhb expression did not improve the germination rate of barley kernels in any of the conditions studied. In some cases, vhb expression even slowed down germination slightly. VHb production also appeared to restrict root formation in young seedlings. The adverse effects of VHb on germination and root growth may be related to its ability to scavenge nitric oxide (NO), an important signal molecule in both seed germination and root formation. Because NO has both cytotoxic and stimulating properties, the effect of vhb expression in plants may depend on the level and role of endogenous NO in the conditions studied. VHb production also affected the levels of endogenous barley haemoglobin, which may explain the relatively moderate effects of VHb in this study.  相似文献   

11.
12.
Vitreoscilla hemoglobin (VHb) gene driven by the constitutive bla promoter was expressed in the cellulose-producing Acetobacter xylinum. The expressed VHb was biochemically active and could enhance cell growth in a shaken culture containing cellulase. VHb-expressing A. xylinum (VHb+) exhibited a specific growth rate 50% higher than that of the host strain (VHb-). Probably because of its faster growth rate, the size of tentacled cellulose beads produced by VHb+ was about 20% of that produced by VHb- after 2 days cultivation in a shake-flask. When cultured statically, the amount of cellulose pellicle produced by VHb+ could be 2-fold that produced by VHb-. Cellulose pellicle concentration of 11 g/L was obtained for VHb+, whereas 6 g/L was obtained for VHb- after 6 days of microaerobic incubation.  相似文献   

13.
Expression of the gene encoding bacterial hemoglobin (VHb) from Vitreoscilla has been previously used to improve recombinant cell growth and enhance product formation under microaerobic conditions, a common phenomenon in large-scale cultivations of bacteria. This technology has now been applied to tobacco suspension cultures. Tobacco suspension cultures have been generated from VHb-expressing tobacco plants. Cell cultures were capable of producing an active hemoglobin. When grown in shake flasks, the cells did not show any lag-phase and exhibited improved cell growth, compared to controls carrying the parental plasmid.  相似文献   

14.
A scheme for the detoxification of superoxide in Pyrococcus furiosus has been previously proposed in which superoxide reductase (SOR) reduces (rather than dismutates) superoxide to hydrogen peroxide by using electrons from reduced rubredoxin (Rd). Rd is reduced with electrons from NAD(P)H by the enzyme NAD(P)H:rubredoxin oxidoreductase (NROR). The goal of the present work was to reconstitute this pathway in vitro using recombinant enzymes. While recombinant forms of SOR and Rd are available, the gene encoding P. furiosus NROR (PF1197) was found to be exceedingly toxic to Escherichia coli, and an active recombinant form (rNROR) was obtained via a fusion protein expression system, which produced an inactive form of NROR until cleavage. This allowed the complete pathway from NAD(P)H to the reduction of SOR via NROR and Rd to be reconstituted in vitro using recombinant proteins. rNROR is a 39.9-kDa protein whose sequence contains both flavin adenine dinucleotide (FAD)- and NAD(P)H-binding motifs, and it shares significant similarity with known and putative Rd-dependent oxidoreductases from several anaerobic bacteria, both mesophilic and hyperthermophilic. FAD was shown to be essential for activity in reconstitution assays and could not be replaced by flavin mononucleotide (FMN). The bound FAD has a midpoint potential of −173 mV at 23°C (−193 mV at 80°C). Like native NROR, the recombinant enzyme catalyzed the NADPH-dependent reduction of rubredoxin both at high (80°C) and low (23°C) temperatures, consistent with its proposed role in the superoxide reduction pathway. This is the first demonstration of in vitro superoxide reduction to hydrogen peroxide using NAD(P)H as the electron donor in an SOR-mediated pathway.  相似文献   

15.
16.
A significantly improved, recombinant Escherichia coli has been developed to degrade the toxic organophosphorus compound, Paraoxon, to non-toxic materials by co-expression of organophosphorus hydrolase (OPH) under trc promoter and Vitreoscilla hemoglobin (VHb) under O2dependent nar promoter. VHb-expressing whole cells had significant enhancement of OPH activity (48%, 18.7 vs. 27.8 unit l–1) and bioconversion efficiency V max/K m (44%, 0.14 vs. 0.2 min–1) compared to VHb-free system.  相似文献   

17.
Expression of the gene encoding bacterial hemoglobin (VHb) from Vitreoscilla has been previously used to improve recombinant cell growth and enhance product formation under microaerobic conditions. It is very likely that the properties of VHb are not optimized for foreign hosts; therefore, we used error-prone PCR to generate a number of randomly mutated vhb genes to be expressed and studied in Escherichia coli. In addition, the mutated VHb proteins also contained an extension of eight residues (MTMITPSF) at the amino terminus. VHb mutants were screened for improved growth properties under microaerobic conditions and 15 clones expressing mutated hemoglobin protein were selected for further characterization and cultivated in a microaerobic bioreactor to analyze the physiological effects of novel VHb proteins on cell growth. The expression of four VHb mutants, carried by pVM20, pVM50, pVM104, and pVM134, were able to enhance microaerobic growth of E. coli by approximately 22%, 155%, 50%, and 90%, respectively, with a concomitant decrease of acetate excretion into the culture medium. The vhb gene in pVM20 contains two mutations substituting residues Glu19(A17) and Glu137(H23) to Gly. pVM50 expresses a VHb protein carrying two mutations: His36(C1) to Arg36 and Gln66(E20) to Arg66. pVM104 and pVM134 express VHb proteins carrying the mutations Ala56(E10) to Gly and Ile24(B5) to Thr, respectively. Our experiments also indicate that the positive effects elicited by mutant VHb-expression from pVM20 and pVM50 are linked to the peptide tail. Removal of the N-terminal sequence reduced cell growth approximately 23% and 53%, respectively, relative to wild-type controls. These results clearly demonstrate that it is possible to obtain mutated VHb proteins with improved characteristics for improving microaerobic growth of E. coli by using combined mutation techniques, addition of a peptide tail, and random error-prone PCR.  相似文献   

18.
19.
The bacterial hemoglobin vhbgene was cloned from sliding bacterium Vitreoscillasp. as an element of the system ensuring survival of this microorganism in an environment that contains insufficient amount of oxygen. The vhbgene was transferred fromEscherichia colito some Streptomycesstrains, producers of antibiotics, by the method of intergeneric conjugation using conjugative–integrative plasmid vectors pIH1 and pCH2. The stability of plasmid DNA inheritance was analyzed in the genomes of exconjugants. A positive effect of the vhbgene on processes of conjugation and antibiotic production in a number of examined strains was shown.  相似文献   

20.
The polyhydroxyalkanoate (PHA) synthase gene of Comamonas acidovorans DS-17 (phaCCa) was cloned by using the synthase gene of Alcaligenes eutrophus as a heterologous hybridization probe. Complete sequencing of a 4.0-kbp SmaI-HindIII (SH40) subfragment revealed the presence of a 1,893-bp PHA synthase coding region which was followed by a 1,182-bp β-ketothiolase gene (phaACa). Both the translated products of these genes showed significant identity, 51.1 and 74.2%, respectively, to the primary structures of the products of the corresponding genes in A. eutrophus. The arrangement of PHA biosynthesis genes in C. acidovorans was also similar to that in A. eutrophus except that the third gene, phaB, coding for acetoacetyl-coenzyme A reductase, was not found in the region downstream of phaACa. The cloned fragment complemented a PHA-negative mutant of A. eutrophus, PHB4, resulting in poly-3-hydroxybutyrate accumulation of up to 73% of the dry cell weight when fructose was the carbon source. The heterologous expression enabled the incorporation of 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate monomers. The PHA synthase of C. acidovorans does not appear to show any preference for 4-hydroxybutyryl-coenzyme A as a substrate. This leads to the suggestion that in C. acidovorans, it is the metabolic pathway, and not the specificity of the organism’s PHA synthase, that drives the incorporation of 4HB monomers, resulting in the efficient accumulation of PHA with a high 4HB content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号