首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A cholinotoxin, ethylcholine mustard aziridinium ion, (AF64A) specifically and ireversibly blocks the intraaxonal transport of acetylcholinesterase in the rat. Impairment of the transport of this enzyme in the septo-hippocampal cholinergic fibres and in the sciatic nerve has been studied, using different doses of AF64A. It is demonstrated that the effect on the axonal transport is dose-dependent, but is not related to the mode of drug application. AF64A thus may exert its neurotoxic effects on cholinergic neurons at several target sites of action. In addition to the localized presynaptic mechanisms, it may also be compromising cholinergic function by inhibiting axonal transport in vivo.  相似文献   

2.
3.
KLP64D and KLP68D are members of the kinesin-II family of proteins in Drosophila. Immunostaining for KLP68D and ribonucleic acid in situ hybridization for KLP64D demonstrated their preferential expression in cholinergic neurons. KLP68D was also found to accumulate in cholinergic neurons in axonal obstructions caused by the loss of kinesin light chain. Mutations in the KLP64D gene cause uncoordinated sluggish movement and death, and reduce transport of choline acetyltransferase from cell bodies to the synapse. The inviability of KLP64D mutations can be rescued by expression of mammalian KIF3A. Together, these data suggest that kinesin-II is required for the axonal transport of a soluble enzyme, choline acetyltransferase, in a specific subset of neurons in Drosophila. Furthermore, the data lead to the conclusion that the cargo transport requirements of different classes of neurons may lead to upregulation of specific pathways of axonal transport.  相似文献   

4.
Abstract: The choline analogue ethylcholine mustard aziridinium (AF64A) is a potent and irreversible inhibitor of choline uptake in brain synaptosomes and is used as a neurotoxin to produce animal models of cholinergic hypofunction. However, previous studies have shown that intraocular administration of AF64A in rats not only reduced the number of cholinergic neurons in the retina, but also induced ultrastructural alterations in the microvasculature. The purpose of this study was to investigate whether AF64A has a direct cytotoxic effect on endothelial cells. As revealed by the measurement of lactate dehydrogenase activity in the culture medium, AF64A produced similar concentration-dependent cellular damage in cultures of bovine cerebral endothelial cells and in the human cholinergic neuroblastoma cell line SK-N-MC, but not in bovine cerebral smooth muscle cells. The toxic effect of AF64A correlated well with the affinity of the choline transport system detected in each cell type. The effect of the toxin on endothelial cells was mediated by its interaction with the endothelial cell choline carrier, as demonstrated by the following observations: (a) AF64A inhibited [3H]choline uptake in a concentration-dependent manner in both cultured and freshly isolated cerebral endothelial cells, and (b) the addition of choline or hemicholinium-3 to the culture medium prevented the AF64A-induced toxicity in endothelial cell cultures.  相似文献   

5.
Compound AF64A, ethylcholine mustard aziridinium ion (0.4-8 nmol) was stereotaxically administered into rat dorsal hippocampus, and neurochemical changes were determined 5 days later. AF64A treatment, over an almost 10-fold dose range, resulted in a significant (up to 70%) decline in choline acetyltransferase activity. In the same tissue samples, Na+-dependent choline transport activity was also lowered, with most decreases ranging between 10 and 50% of controls; however, there was no significant correlation (r = 0.39) between these two parameters. Acetylcholinesterase activity was not affected by AF64A treatment when assayed by either histochemical or enzymatic methods. AF64A reduced acetylcholine levels by 43%, but did not alter norepinephrine content or serotonin uptake. These results demonstrate that AF64A can induce a specific, long-term reduction of cholinergic presynaptic biochemical markers in rat hippocampus. Thus, AF64A can serve as a useful new tool to study the cholinergic system and as an important agent to help develop animal models representing disorders of central cholinergic hypofunction.  相似文献   

6.
7.
The effect of ethylcholine aziridinium ion (AF64A) on choline transport in hippocampal, striatal, and cerebrocortical synaptosomes was studied. Synaptosomes prepared from these three brain regions were equally sensitive to AF64A. Low concentrations of AF64A produced a reversible inhibition (IC50 values = 1.35-2.25 microM), whereas higher concentrations produced an irreversible inhibition (IC50 values = 25-30 microM), which started as competitive. The irreversible component of the inhibition was independent of extracellular Na+ concentration, a finding suggesting that the choline transporter is alkylated at its outward position. The kinetics of the inhibition were rapid and similar in the three brain regions examined. The high-affinity choline transport was more sensitive to the toxin than the low-affinity choline transport. Based on these results, we propose a kinetic model that explains the reversible and the irreversible inhibitions induced by AF64A. The possible relationships between the concentrations that in vitro produce reversible and irreversible inhibition and those that in vivo produce selective and nonselective cholinergic hypofunction are discussed.  相似文献   

8.
AF64A (ethylcholine mustard aziridinium ion) was stereotaxically administered bilaterally (1 nmol/side) into rat lateral cerebral ventricles. Choline acetyltransferase (ChAT) activity and ChAT mRNA levels were measured at predetermined time points in the septo-hippocampal pathway and striatum, both well identified as rich in cholinergic neurons. AF64A caused a rapid but transient increase in ChAT mRNA (167%, P < 0.05) and ChAT activity (164%, P < 0.01) in the septum. By day 7 post treatment, there was a significant decrease in ChAT mRNA (42.5% of control, P < 0.05) in the septum although the ChAT activity still stayed high. This decreased ChAT mRNA level in the septum lasted for at least four weeks, and was paralleled by a long-lasting decrease in ChAT activity in the hippocampus. In the striatum, on the other hand, there were no observed changes in either ChAT activity or ChAT mRNA. These data suggest that the long term effect of AF64A on the septo-hippocampal cholinergic pathway may, at least in part, be due to an action of AF64A on gene expression in the cholinergic neuron. The difference in the response to AF64A between the septo-hippocampal and striatal cholinergic systems might be due to their difference in neuron types.  相似文献   

9.
Abstract: In this study, we examined the effects of nerve growth factor (NGF) administration on cholinergic enzyme activity in both normal and ethylcholine mustard aziridinium (AF64A)-treated rats. Choline acetyltransferase (ChAT) and acetylcholinesterase activity were measured in the hippocampus and septum of rats chronically administered NGF (0.36–2.85 µg/day) into the lateral ventricle for 14 days. In both normal and AF64A-treated rats, NGF increased cholinergic enzyme activity in a dose-dependent manner. Furthermore, although NGF increased ChAT activity in normal rats by 147%, it had a greater effect in AF64A-treated rats, increasing ChAT activity as much as 273%. NGF increased acetylcholinesterase activity in normal rats by only 125% but produced a 221% increase in this activity in AF64A-treated rats. These data indicate that AF64A produces an increased sensitivity to NGF in cholinergic neurons.  相似文献   

10.
1. The effects of ethylcholine mustard aziridinium ion (AF64A) on the cholinergic neurotransmission in the sixth abdominal ganglion of the cockroach were studied electrophysiologically and morphologically. 2. The pre- and post-synaptic compound action potentials (CAPs) elicited via electrical stimulation of the presynaptic fibers were recorded extracellularly. 3. The amplitude of both CAPs was depressed by AF64A (50-400 microM) in a concentration- and time-dependent manner. 4. At a high concentration, they were abolished but 100 microM of carbachol still evoked the postsynaptic event. 5. Electron microscopic observation of AF64A-treated ganglia showed that nerve terminals containing small lucent vesicles could not be observed but those containing dense core or large granular vesicles changed only slightly in shape. 6. These results suggest that AF64A is selectively neurotoxic for the presynaptic cholinergic neurons in the sixth abdominal ganglion of the cockroach.  相似文献   

11.
Z Pittel  A Fisher  E Heldman 《Life sciences》1989,44(20):1437-1448
The effect of ethylcholine aziridinium ion (AF64A) after an intracerebroventricular (icv) injection was compared to that obtained after an intravascular administration. Reductions in choline acetyltransferase (ChAT) and acetylcholinesterase activities in the hippocampus but not in the cerebral cortex or the corpus striatum were observed 10 days after bilateral injection of AF64A into the rat cerebroventricles (3 nmol/side). However, when AF64A was injected into the carotid artery (1 mumol/kg) following a unilateral opening of the blood-brain barrier by a hypertonic treatment, a significant decrease in ChAT activity was observed in the ipsilateral side of the cerebral cortex but not in hippocampus, corpus striatum, or cerebellum. High-affinity choline transport was reduced significantly 11 days after an icv injection of AF64A in all the above mentioned brain regions, and recovered 60 days post injection in the cerebral cortex and in the corpus striatum but not in the hippocampus. Our results suggest that in various brain regions, AF64A causes various degrees of damage to cholinergic neurons, depending on the quantity of the toxin that reaches the target tissue.  相似文献   

12.
Ethylcholine mustard aziridinium ion (AF64A, MEChMAz) has been proposed as a cholinergic neuron-specific neurotoxin. We report that in further studies on its mechanism of action incubation of the cholinergic neuroblastoma X glioma cell line, NG-108-15, with 100 microM AF64A resulted in a rapid decrease in cellular choline acetyltransferase (ChAT) activity which preceded cytotoxicity. Thus, a 60-85% decrease in ChAT activity was measured within 5 h of AF64A exposure, whereas cell lysis (measured as the release of the cytosolic enzyme lactate dehydrogenase into the medium) did not become apparent until 18 h of AF64A exposure. This led us to examine the effects of AF64A on partially purified ChAT. We report a concentration- and time-dependent inhibition of partially purified ChAT by AF64A that could not be reversed by dialysis but could be prevented by coincubation of the enzyme and AF64A with choline but not with acetyl-coenzyme A. We present kinetic evidence that choline and AF64A compete for the same site on the enzyme. In addition, thiosulfate, which inactivates the aziridinium ion, eliminated AF64A's capacity to inhibit the enzyme. AF64A also irreversibly inhibited partially purified choline kinase and acetylcholinesterase but not lactate dehydrogenase, alcohol dehydrogenase, carboxypeptidase A, or chymotrypsinogen, enzymes that do not use choline as a substrate or product. Thus, the data suggest that AF64A acts as an irreversible active site directed inhibitor of ChAT and possibly other enzymes recognizing choline.  相似文献   

13.
Summary Ethylcholine mustard aziridinium ion (AF64A) is a neurotoxin which is specific for cholinergic nerve terminals. Besides its effects on elements of the acetylcholine system, we observed that, after 2 and 8 days, a single 20-nmol intracerebroventricular dose altered the Timm's staining of certain regions of the central nervous system and reduced the tissue levels of trace metals. In the hippocampal formation, there was a considerable decrease in the staining of the neuropil of the stratum radiatum and stratum oriens, which contain cholinergic nerve terminals. A reduction in staining was also demonstrated in the perikarya of cortical pyramidal cells. The diminished trace-metal level in both regions was confirmed by quantitative measurements of zinc and copper levels. A similar reduction was not observed at a lower dose (8 nmol) of the cholinotoxin. The results led to the conclusion that AF64A may cause the decrease of the trace-metal content of the postsynaptic neurons through an indirect mechanism.  相似文献   

14.
S A Stwertka  G L Olson 《Life sciences》1986,38(12):1105-1110
The putative specific cholinergic neurotoxin AF64A was prepared by a micro-scale procedure which afforded the neurotoxin in greater than 95% purity and was microinjected unilaterally into the striatum of male albino rats. The AF64A-injected animals displayed amphetamine- and apomorphine-induced ipsilateral turning indicating disruption of normal striatal pathways. These turning effects were absent in the control injected animals. Histological examinations of the brains revealed that AF64A in amounts as low as 1 nmole produced regions of necrosis in the striatum in some cases extending along the cannula tract up to and including the cortex. These results indicate that the striatum is highly sensitive to relatively low doses of AF64A, and that consideration should be given to the possibility of gross tissue damage when interpreting behavioral data.  相似文献   

15.
AF64A is a toxin which can diminish irreversibly cholinergic transmission invivo (1, 2). Disruption of neurotransmitter function invivo is specific to the cholinergic system when AF64A is administered in nanomolar quantities (3, 4). The mechanisms involved appear to be mediated presynaptically (2). The neurochemical and behavioral consequences of AF64A administration are reminiscent of similar measures in patients with Alzheimer's disease (5,6). Consequently, we have suggested tentatively that the AF64A treated animal may be explored as a potential animal model of this debilitating disease state (7). In this report we provide a brief overview of our recent findings using this compound invivo, attempt to correlate these findings with those of others with similar aziridinium agents invitro, and propose a possible mechanism of action of AF64A invivo, based on recent observations made in our laboratories.  相似文献   

16.
S Eliash  G Urca  S Cohen 《Life sciences》1988,42(17):1669-1674
The aim of this study was to ascertain whether drug-induced cholinergic hypofunction in the posterior hypothalamus would affect the development and the maintenance of hypertension in hypertensive rats. Spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats were treated with AF64A, a neurotoxin which can irreversibly inhibit cholinergic transmission in vivo. AF64A or saline was injected bilaterally into the posterior hypothalamus of rats of two age groups: normotensive one month-old rats whose blood pressure was subsequently measured at the age of three months and hypertensive three month-old rats, whose blood pressure was measured four weeks later. In both age groups there was a significant fall in mean arterial blood pressure in SHR but not WKY rats. In SHR injected at the age of one month, there was a fall of at least 15.9 mm Hg, while in the rats injected at the age of three months there was a fall of 14.3 mm Hg. Heart rate in either strain was not affected. When AF64A was injected into the anterior hypothalamus of one month-old SHR, no antihypertensive effect was observed in these rats at the age of three months. These results show that cholinergic stimulation in the posterior hypothalamus may play a role in both the development and maintenance of hypertension in SHR.  相似文献   

17.
The aziridinium ion of ethylcholine (AF64A) is a neurotoxin that has demonstrated selectivity for cholinergic neurons. Unilateral stereotaxic injection of AF64A into the caudate-putamen of rats, resulted in a decrease in dopamine D-2 receptors as evidenced by a decrease in [3H]-sulpiride binding. Dopamine D-1 receptors, labeled with [3H]-SCH 23390, were unchanged. The efficacy of the lesion was demonstrated by the reduction of Na+-dependent high affinity choline uptake sites labeled with [3H]-hemicholinium-3. These data indicate that a population of D-2 receptors are postsynaptic on cholinergic interneurons within the striatum of rat brain.  相似文献   

18.
Intracerebroventricular injection of ethylcholine aziridinium (AF64A) (2 nmol/ventricle) induced a considerable decrease in the level of acetylcholine (ACh) in hippocampus (from 21.14 +/- 0.84 to 10.04 +/- 0.59 pmol/mg of tissue; p less than 0.001) 4 days after application. The reduction of cholinergic function was accompanied by a decrease in the level of noradrenaline (NA) (from 1.96 +/- 0.08 to 1.41 +/- 0.06 pmol/mg of tissue; p less than 0.001). Two days after administration of AF64A (1 or 2 nmol/ventricle), the dose-dependent decrease in NA level was associated with an increase in the level of its major metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), resulting in a considerable increase in the MHPG/NA molar ratio (from 0.84 +/- 0.06 to 1.62 +/- 0.17; p less than 0.002). Chronic treatment of AF64A-injected rats with clonidine (0.02-0.2 mg/kg, i.p., every 8-12 h) had no significant effect on the loss of ACh content, whereas the decrease in NA content in hippocampus was completely prevented. Clonidine induced aggressive behavior in the AF64A-treated rats, in contrast to sedation in vehicle-injected rats. The response to clonidine under these experimental conditions and the increased MHPG/NA molar ratio in response to AF64A suggest that the transient loss of NA content following AF64A administration results from increased NA release. The increased noradrenergic activity in hippocampus may be linked to the reduction of tonic inhibitory cholinergic input. These results are discussed in relation to possible implications for senile dementia of the Alzheimer type.  相似文献   

19.
Ethylcholine mustard aziridinium ion (AF64A) was administered via intracerebroventricular injection to rats. Unilateral injection of 40 nmol AF64A resulted in pronounced toxicity with an 80% mortality rate. Administration of 10 nmol unilaterally resulted in a significant reduction in both acetylcholine content and ouabain stimulated acetylcholine release in the hippocampus 2, 4 and 7 days after treatment. Non-specific changes in hippocampal levels of dopamine, noradrenaline and 5-hydroxytryptamine were also observed.Bilateral injection of 5 nmol AF64A was more effective than a unilateral 10 nmol injection in reducing acetylcholine release from hippocampus 4 and 7 days after treatment. Hippocampal acetylcholine content was also reduced (to 35% of control). In contrast, there was less effect on acetylcholine content in striatum and frontal cortices, and acetylcholine release from these areas was not decreased. Although there was a transient reduction in hippocampal 5-hydroxytryptamine content 4 days after treatment, this had recovered to control levels within 7 days. 5-Hydroxytryptamine levels in striatum or cortex were not affected, nor were there any changes in noradrenaline or dopamine contents in the areas studied.This study indicates that, in the correct dose range, AF64A can exert selective effects on cholinergic systems, particularly in the hippocampus. The selective cholinotoxicity of this compound makes it a useful tool in developing animal models of cholinergic dysfunction.  相似文献   

20.
We have attempted to design novel neurotoxins based on the use of hemicholinium derivatives. Three compounds were tested for their neurochemical effects on cholinergic, gabaergic and catecholaminergic markers in the hippocampus, striatum and cortex following intracerebroventricular administration. The effects were compared with those of the non-specific alkylating agent (nitrogen mustard) and the previously reported ethylcholine mustard aziridinium ion (AF 64A). The results indicate that only one of these derivatives (HcM-9) exhibits comparable neurotoxic effects on cholinergic markers with a similar pattern of specificity to that of AF 64A. In addition, HcM-9 showed less overall toxicity, this being reflected in a higher survival rate. The present results indicate that hemicholinium derivatives could be good substrates for further molecular modifications, thus a step towards the design of a more specific cholinergic neurotoxin.Special Issue dedicated to Prof. Eduardo De Robertis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号