首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Refuse-derived fuels (RDF) pellets manufactured in Japan have been reported to contain a relatively high number of viable bacterial cells, and these bacteria generated a large amount of hydrogen gas during fermentation under wet conditions. In this study, we compared hydrogen gas generation from RDF pellets manufactured in Japan and in Germany and found that a large amount of hydrogen gas was generated from the Japanese RDF pellets but not from the German ones. This difference can be explained by the absence and presence of a biodegradation process before molding of raw garbage into RDF pellets. That is, the German process includes a biodegradation (or biological drying) process with forced aeration for a week, and this appears to reduce BOD in the garbage. Denaturing gradient gel electrophoresis analysis of 16S rRNA gene followed by DNA sequencing indicated that microbiotas of the RDF pellets manufactured in Japan and in Germany were very different.  相似文献   

2.
Refuse-derived fuels (RDF) pellets manufactured in Japan have been reported to contain a relatively high number of viable bacterial cells, and these bacteria generated a large amount of hydrogen gas during fermentation under wet conditions. In this study, we compared hydrogen gas generation from RDF pellets manufactured in Japan and in Germany and found that a large amount of hydrogen gas was generated from the Japanese RDF pellets but not from the German ones. This difference can be explained by the absence and presence of a biodegradation process before molding of raw garbage into RDF pellets. That is, the German process includes a biodegradation (or biological drying) process with forced aeration for a week, and this appears to reduce BOD in the garbage. Denaturing gradient gel electrophoresis analysis of 16S rRNA gene followed by DNA sequencing indicated that microbiotas of the RDF pellets manufactured in Japan and in Germany were very different.  相似文献   

3.
An explosion has recently occurred at a silo containing refuse-derived fuels (RDF) in Japan. There is a possibility that microorganisms are involved in generation of combustible gas from RDF and this study was aimed at showing the presence of bacteria that can ferment RDF pellets. All RDF samples tested contained a relatively high number of viable bacterial cells, 1.4x10(5) to 3.2x10(6) viable cells/g. These bacteria in the RDF samples fermented them to generate heat and hydrogen gas.  相似文献   

4.
Anaerobic fermentative biohydrogen production, the conversion of organic substances especially from organic wastes to hydrogen gas, has become a viable and promising means of producing sustainable energy. Successful biological hydrogen production depends on the overall performance (results of interactions) of bacterial communities, i.e., mixed cultures in reactors. Mixed cultures might provide useful combinations of metabolic pathways for the processing of complex waste material ingredients, thereby supporting the more efficient decomposition and hydrogenation of biomass than pure bacteria species would. Therefore, understanding the relationships between variations in microbial composition and hydrogen production efficiency is the first step in constructing more efficient hydrogen-producing consortia, especially when complex and non-sterilized organic wastes are used as feeding substrates. In this review, we describe recent discoveries on bacterial community composition obtained from dark fermentation biohydrogen production systems, with emphasis on the possible roles of microorganisms that co-exist with common hydrogen producers.  相似文献   

5.
AIMS: Changes in fermentation pattern during the treatment of organic wastes containing solid materials by thermophilic anaerobic microflora were investigated with respect to product formation and bacterial community structure during hydrogen production. METHODS AND RESULTS: Anaerobic microflora enriched from sludge compost was cultivated using artificial garbage slurry in a continuous flow-stirred tank reactor. Product formation varied depending on pH and hydraulic retention time (HRT) applied. Community analysis by terminal restriction fragment length polymorphism and clone library analysis of polymerase chain reaction-amplified bacterial 16S rDNA indicated that difference in the fermentative product distribution could be caused by different populations of micro-organisms in the microflora. CONCLUSION: Hydrogen fermentation with acetate/butyrate formation was optimized at <1.0 d HRT at pH 5.0 and 6.0. Thermoanaerobacterium thermosaccharolyticum was the dominant hydrogen-producing micro-organism. Conversely, unidentified organisms became dominant after 4.0 d HRT at pH 7.0 and 8.0, where relatively high-solubilization efficiency of solid materials was observed with no production of hydrogen. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report describing product formation in the fermentation of solid organic wastes by a mixed population of micro-organisms. Various fermentation patterns including hydrogen fermentation were characterized and evaluated from engineering and microbial aspects.  相似文献   

6.
Aims: To investigate the synergetic effect of pH and biochemical components on bacterial community structure during mesophilic anaerobic degradation of solid wastes with different origins, and under acidic or neutral conditions. Methods and Results: The bacterial community in 16 samples of solid wastes with different biochemical compositions and origins was evaluated during mesophilic anaerobic degradation at acidic and neutral pH. Denaturing gradient gel electrophoresis (DGGE) and single‐strand conformation polymorphism (SSCP) were used to compare the communities. Multivariate analysis of the DGGE and SSCP results revealed that most of the dominant microbes were dependent on the content of easily degradable carbohydrates in the samples. Furthermore, the dominant microbes were divided into two types, those that preferred an acid environment and those that preferred a neutral environment. A shift in pH was found to change their preference for medium substrates. Although most of the substrates with similar origin and biochemical composition had similar microbial diversity during fermentation, some microbes were found only in substrates with specific origins. For example, two microbes were only found in substrate that contained lignocellulose and animal protein without starch. These microbes were related to micro‐organisms that are found in swine manure, as well as in other intestinal or oral niches. In addition, the distribution of fermentation products was less sensitive to the changes in pH and biochemical components than the microbial community. Conclusions: Bacterial diversity during anaerobic degradation of organic wastes was affected by both pH and biochemical components; however, pH exerted a greater effect. Significance and Impact of the Study: The results of this study reveal that control of pH may be an effective method to produce a stable bacterial community and relatively similar product distribution during anaerobic digestion of waste, regardless of variation in the waste feedstocks.  相似文献   

7.
The metabolism of hydrogen evolved from HUP? legume nodules can alter bacterial community structures in the rhizosphere. Our earlier experiments demonstrated increased hydrogen uptake and appearance of white spots within bacterial colonies in H2-treated soil. We were also able to isolate hydrogen-oxidizing bacteria from soil samples exposed to hydrogen, but not from samples exposed to air. To further understand the effect of hydrogen metabolism on soil microbial communities, in this study 16S rRNA terminal restriction fragment (TRF) profiles of different soil samples exposed to hydrogen gas under laboratory, greenhouse, and field conditions were analyzed. Relationships between soil bacterial community structures from hydrogen-treated soil samples and controls, illustrated by UPGMA (unpaired group mathematical averages) dendrograms, indicated a significant contribution of hydrogen metabolism to the variation in bacterial community. The intensity variation of TRF peaks includes both hydrogen-utilizing bacteria, whose growth were stimulated by hydrogen exposure, and other bacterial species whose growth was inhibited. Comparison of TRF profiles between laboratory and greenhouse samples showed that T-RFLP is a useful technique in the detection of root-related effects on soil bacterial community structure.  相似文献   

8.
Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost was reported for the first time. Batch tests were carried out to analyze influences of several environmental factors on biohydrogen production from wheat straw wastes. The performance of biohydrogen production using the raw wheat straw and HCl pretreated wheat straw was then compared in batch fermentation tests. The maximum cumulative hydrogen yield of 68.1 ml H2/g TVS was observed at 126.5 h, the value is about 136-fold as compared with that of raw wheat straw wastes. The maximum hydrogen production rate of 10.14 ml H2/g TVS h was obtained by a modified Gompertz equation. The hydrogen content in the biogas was 52.0% and there was no significant methane observed in this study. In addition, biodegradation characteristics of the substrate were also discussed. The experimental results showed that the pretreatment of the substrate plays a key role in the conversion of the wheat straw wastes into biohydrogen by the composts generating hydrogen.  相似文献   

9.
Fermentation residues (consisting of incompletely fermented fiber, adherent bacterial cells, and a glycocalyx material that enhanced bacterial adherence) were obtained by growing the anaerobic cellulolytic bacteria Ruminococcus albus 7 or Clostridium thermocellum ATCC 27405 on a fibrous fraction derived from lucerne (Medicago sativa L.). The dried residue was able to serve as an effective co-adhesive for phenol–formaldehyde (PF) bonding of aspen veneer sheets to one another. Testing of the resulting plywood panels revealed that the adhesive, formulated to contain 30% of its total dry weight as fermentation residue, displayed shear strength and wood failure values under both wet and dry conditions that were comparable with those of industry standards for PF that contained much smaller amounts of fillers or extenders. By contrast, PF adhesives prepared with 30% of dry weight as either unfermented lucerne fiber or conventional fillers or extenders rather than as fermentation residues, displayed poor performance, particularly under wet conditions.  相似文献   

10.
In this study, we evaluated the effectiveness of lake sediment as inoculum for hydrogen production through dark fermentation in a repeated batch process. In addition, we investigated the effect of heat treatment, applied to enrich hydrogen-producing bacteria, on the bacterial composition and metabolism. Denaturing gradient gel electrophoresis and molecular cloning, both performed using the 16S rDNA gene as target gene, were used to monitor the structure of the bacterial community. Hydrogen production and bacterial metabolism were analysed via gas chromatography and high-performance liquid chromatography. Both treated and non-treated inocula were able to produce high amounts of hydrogen. However, statistical analysis showed a clear difference in their bacterial composition and metabolism. The heat treatment favoured the growth of different Clostridia sp., in particular of Clostridium bifermentans, allowing the production of a constant amount of hydrogen over prolonged time. These cultures showed both butyrate and ethanol fermentation types. Absence of heat treatment allowed species belonging to the genera Bacillus, Sporolactobacillus and Massilia to outgrow Clostridia sp. with a reduction in hydrogen production and a significant metabolic change. Our data indicate that lake sediment harbours bacteria that can efficiently produce hydrogen over prolonged fermentation time. Moreover, we could show that the heat treatment stabilizes the bacterial community composition and the hydrogen production.  相似文献   

11.
Metabolic acidosis can result from accumulation of organic acids in the blood due to anaerobic metabolism or intestinal bacterial fermentation of undigested substrate under certain conditions. These conditions include short-bowel syndrome, grain overfeeding of ruminants and, as recently reported, severe gastroenteritis. Measuring fermentation products such as short-chain fatty acids (SCFAs) and lactic acid in various biological samples is integral to the diagnosis of bacterial overgrowth. Stereospecific measurement of D- and L-lactic acid is necessary for confirmation of the origin and nature of metabolic acidosis. In this paper, methods for the separation of SCFAs and lactic acid are reviewed. Analysis of the organic acids involved in carbohydrate metabolism has been achieved by enzymatic methods, gas chromatography, high-performance liquid chromatography and capillary electrophoresis. Sample preparation techniques developed for these analytes are also discussed.  相似文献   

12.
The fate of representative fermentation products (acetate, propionate, butyrate, lactate, and ethanol) in hot spring cyanobacterial mats was investigated. The major fate during incubations in the light was photoassimilation by filamentous bacteria resembling Chloroflexus aurantiacus. Some metabolism of all compounds occurred under dark aerobic conditions. Under dark anaerobic conditions, only lactate was oxidized extensively to carbon dioxide. Extended preincubation under dark anaerobic conditions did not enhance anaerobic catabolism of acetate, propionate, or ethanol. Acetogenesis of butyrate was suggested by the hydrogen sensitivity of butyrate conversion to acetate and by the enrichment of butyrate-degrading acetogenic bacteria. Accumulation of fermentation products which were not catabolized under dark anaerobic conditions revealed their importance. Acetate and propionate were the major fermentation products which accumulated in samples collected at temperatures ranging from 50 to 70°C. Other organic acids and alcohols accumulated to a much lesser extent. Fermentation occurred mainly in the top 4 mm of the mat. Exposure to light decreased the accumulation of acetate and presumably of other fermentation products. The importance of interspecies hydrogen transfer was investigated by comparing fermentation product accumulation at a 65°C site, with naturally high hydrogen levels, and a 55°C site, where active methanogenesis prevented significant hydrogen accumulation. There was a greater relative accumulation of reduced products, notably ethanol, in the 65°C mat.  相似文献   

13.
Short-chain fatty acids (SCFAs) can be produced by primary and waste activated sludge anaerobic fermentation. The yield and product spectrum distribution of SCFAs can be significantly affected by different initial pH values. However, most studies have focused on the physical and chemical aspects of SCFA production by waste activated sludge fermentation at different pH values. Information on the bacterial community structures during acidogenic fermentation is limited. In this study, comparisons of the bacterial communities during the co-substrate fermentation of food wastes and sewage sludge at different pH values were performed using the barcoded Illumina paired-end sequencing method. The results showed that different pH environments harbored a characteristic bacterial community, including sequences related to Lactobacillus, Prevotella, Mitsuokella, Treponema, Clostridium, and Ureibacillus. The most abundant bacterial operational taxonomic units in the different pH environments were those related to carbohydrate-degrading bacteria, which are associated with constituents of co-substrate fermentation. Further analyses showed that during organic matter fermentation, a core microbiota composed of Firmicutes, Proteobacteria, and Bacteroidetes existed. Comparison analyses revealed that the bacterial community during fermentation was significantly affected by the pH, and that the diverse product distribution was related to the shift in bacterial communities.  相似文献   

14.
The conversion of sustainable energy crops using microbiological fermentation to biofuels and bioproducts typically uses submerged-state processes. Alternatively, solid-state fermentation processes have several advantages when compared to the typical submerged-state processes. This study compares the use of solid-state versus submerged-state fermentation using the mesophilic anaerobic bacterium Clostridium phytofermentans in the conversion of switchgrass to the end products of ethanol, acetate, and hydrogen. A shift in the ratio of metabolic products towards more acetate and hydrogen production than ethanol production was observed when C. phytofermentans was grown under solid-state conditions as compared to submerged-state conditions. Results indicated that the end product concentrations (in millimolar) obtained using solid-state fermentation were higher than using submerged-state fermentation. In contrast, the total fermentation products (in weight of product per weight of carbohydrates consumed) and switchgrass conversion were higher for submerged-state fermentation. The conversion of xylan was greater than glucan conversion under both fermentation conditions. An initial pH of 7 and moisture content of 80 % resulted in maximum end products formation. Scanning electron microscopy study showed the presence of biofilm formed by C. phytofermentans growing on switchgrass under submerged-state fermentation whereas bacterial cells attached to surface and no apparent biofilm was observed when grown under solid-state fermentation. To our knowledge, this is the first study reporting consolidated bioprocessing of a lignocellulosic substrate by a mesophilic anaerobic bacterium under solid-state fermentation conditions.  相似文献   

15.
高效产氢菌株Enterococcus sp. LG1的分离及产氢特性   总被引:1,自引:0,他引:1  
采用Hungate厌氧培养技术分别从厌氧污泥、好氧污泥及河底泥中分离出12株厌氧产氢细菌,并对其中的Enterococcus sp.LG1(注册号:EU258743)进行了研究.结果表明,该株细菌为专性厌氧菌,经革兰氏染色结果为阴性.通过16S rDNA碱基测序和比对证实,该菌株是目前尚未报道过的1个新菌种,初步确定其细菌学上的分类地位.同时,以灭菌预处理的污泥为底物培养基,对该菌的产氢能力及污泥发酵过程中底物性质变化(SCOD、可溶性蛋白质、总糖和pH值等)进行了探讨.实验结果显示,产氢茵Enterococcus sp.LG1的发酵过程中只有H2和CO2产生,无CH4产生.产气量最高为36.48 mL/g TCOD,氢气含量高达73.5%,为已报道文献中以污泥为底物发酵制氢中之最高.根据污泥发酵产物分析得知,该菌的发酵类行为典型的丁酸型发酵.  相似文献   

16.
Hydrogen gas produced during colonic fermentation is excreted in breath and flatus, or removed by hydrogen-consuming bacteria such as methanogens and sulphate-reducing bacteria. However, recent research has shown that H2 is also consumed by equol-producing bacteria during the reduction of daidzein into equol. In this study, the interactions between methanogens, sulphate-reducing, and equol-producing bacteria were investigated under in vitro simulated intestinal conditions. In the presence of daidzein, the equol-producing bacterial consortium EPC4 gave rise to equol production in cultures of Methanobrevibacter smithii or Desulfovibrio sp. as well as in faecal samples with methanogenic or sulphate-reducing abilities. Moreover, this supplementation significantly (P < 0.001) decreased the methanogenesis and sulphidogenesis. The attenuation did not occur in the absence of a daidzein source. Additionally, there was no influence of soy germ powder, daidzein or equol as such, excluding a possible inhibition by these compounds. Finally, a stronger decrease was observed with increasing amounts of EPC4 and a constant equol production, suggesting that the observed effect was only partly caused by the action of daidzein as a hydrogen sink. These findings are of relevance since abdominal discomfort such as bloating and flatulence, are related to colonic gas production, whereas equol has potential health benefits.  相似文献   

17.
Green algae are the only known eukaryotes with both oxygenic photosynthesis and a hydrogen metabolism. Recent physiological and genetic discoveries indicate a close connection between these metabolic pathways. The anaerobically inducible hydA genes of algae encode a special type of highly active [Fe]-hydrogenase. Electrons from reducing equivalents generated during fermentation enter the photosynthetic electron transport chain via the plastoquinone pool. They are transferred to the hydrogenase by photosystem I and ferredoxin. Thus, the [Fe]-hydrogenase is an electron 'valve' that enables the algae to survive under anaerobic conditions. During sulfur deprivation, illuminated algal cultures evolve large quantities of hydrogen gas, and this promises to be an alternative future energy source.  相似文献   

18.
Hydrogen is a promising energy source that is believed to replace the conventional energy sources e.g. fossil fuels over years. Hydrogen production methods can be divided into conventional production methods which depend mainly on fossil fuels and alternative production methods including electrolysis of water, biophotolysis and fermentation hydrogen production from organic waste materials. Compared to the conventional methods, the alternative hydrogen production methods are less energy intensive and negative-value substrates i.e. waste materials can be used to produce hydrogen. Among the alternative methods, fermentation process including dark and photo-fermentation has gained more attention because these processes are simple, waste materials can be utilized, and high hydrogen yields can be achieved. The fermentation process is affected by several parameters such as type of inoculum, pH, temperature, substrate type and concentration, hydraulic retention time, etc. In order to achieve optimum hydrogen yields and maximum substrate degradation, the operating conditions of the fermentation process must be optimized. In this review, two routes for biohydrogen production as dark and photo-fermentation are discussed. Dark/photo-fermentation technology is a new approach that can be used to increase the hydrogen yield and improve the energy recovery from organic wastes.  相似文献   

19.
Fermentative biohydrogen production: trends and perspectives   总被引:1,自引:1,他引:0  
Biologically produced hydrogen (biohydrogen) is a valuable gas that is seen as a future energy carrier, since its utilization via combustion or fuel cells produces pure water. Heterotrophic fermentations for biohydrogen production are driven by a wide variety of microorganisms such as strict anaerobes, facultative anaerobes and aerobes kept under anoxic conditions. Substrates such as simple sugars, starch, cellulose, as well as diverse organic waste materials can be used for biohydrogen production. Various bioreactor types have been used and operated under batch and continuous conditions; substantial increases in hydrogen yields have been achieved through optimum design of the bioreactor and fermentation conditions. This review explores the research work carried out in fermentative hydrogen production using organic compounds as substrates. The review also presents the state of the art in novel molecular strategies to improve the hydrogen production.  相似文献   

20.
The ability of five bacterial strains, i.e., Brevibacterium ammoniagenes ATCC 6872, Brevibacterium flavum ATCC 14067, Brevibacterium 22, Corynebacterium ATCC 21084, Micrococcus glutamicus ATCC 13032, to utilize exogenous precursors (nicotinamide and adenine or ATP) was investigated during NAD synthesis under fermentation conditions and during incubation of acetone-dried cells. It was found that dry cells of Brevibacterium three strains were most active. However, under fermentation conditions Br. flavum ATCC 14067 and Brevibacterium 22 accumulated NAD in the amounts 3J4 times lower than the well-known producer Br. ammoniagenes ATCC 6872. One of the possible factors responsible for the low yield of NAD by Brevibacterium 22 under fermentation conditions can be the reduced ribose synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号