首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
We have previously demonstrated that inflammatory compounds that increase nitric oxide (NO) synthase expression have a biphasic effect on the level of the NO messenger cGMP in astrocytes. In this work, we demonstrate that NO-dependent cGMP formation is involved in the morphological change induced by lipopolysaccharide (LPS) in cultured rat cerebellar astroglia. In agreement with this, dibutyryl-cGMP, a permeable cGMP analogue, and atrial natriuretic peptide, a ligand for particulate guanylyl cyclase, are both able to induce process elongation and branching in astrocytes resulting from a rapid, reversible and concentration-dependent redistribution of glial fibrillary acidic protein (GFAP) and actin filaments without significant change in protein levels. These effects are also observed in astrocytes co-cultured with neurons. The cytoskeleton rearrangement induced by cGMP is prevented by the specific protein kinase G inhibitor Rp-8Br-PET-cGMPS and involves downstream inhibition of RhoA GTPase since is not observed in cells transfected with constitutively active RhoA. Furthermore, dibutyryl-cGMP prevents RhoA-membrane association, a step necessary for its interaction with effectors. Stimulation of the cGMP-protein kinase G pathway also leads to increased astrocyte migration in an in vitro scratch-wound assay resulting in accelerated wound closure, as seen in reactive gliosis following brain injury. These results indicate that cGMP-mediated pathways may regulate physio-pathologically relevant responses in astroglial cells.  相似文献   

2.
It is generally accepted that G protein-coupled receptors stimulate soluble guanylyl cyclase (sGC)-mediated cGMP production indirectly, by increasing nitric oxide (NO) synthase activity in a calcium- and kinase-dependent manner. Here we show that normal and GH(3) immortalized pituitary cells expressed alpha(1)beta(1)-sGC heterodimer. Activation of adenylyl cyclase by GHRH, pituitary adenylate cyclase-activating polypeptide, vasoactive intestinal peptide, and forskolin increased NO and cGMP levels, and basal and stimulated cGMP production was abolished by inhibition of NO synthase activity. However, activators of adenylyl cyclase were found to enhance this NO-dependent cGMP production even when NO was held constant at basal levels. Receptor-activated cGMP production was mimicked by expression of a constitutive active protein kinase A and was accompanied with phosphorylation of native and recombinant alpha(1)-sGC subunit. Addition of a protein kinase A inhibitor, overexpression of a dominant negative mutant of regulatory protein kinase A subunit, and substitution of Ser(107)-Ser(108) N-terminal residues of alpha(1)-subunit with alanine abolished adenylyl cyclase-dependent cGMP production without affecting basal and NO donor-stimulated cGMP production. These results indicate that phosphorylation of alpha(1)-subunit by protein kinase A enlarges the NO-dependent sGC activity, most likely by stabilizing the NO/alpha(1)beta(1) complex. This is the major pathway by which adenylyl cyclase-coupled receptors stimulate cGMP production.  相似文献   

3.
During spermatogenesis, extensive restructuring of cell junctions takes place in the seminiferous epithelium to facilitate germ cell movement. However, the mechanism that regulates this event remains largely unknown. Recent studies have shown that nitric oxide (NO) likely regulates tight junction (TJ) dynamics in the testis via the cGMP/protein kinase G (cGMP-dependent protein kinase, PRKG) signaling pathway. Due to the proximity of TJ and adherens junctions (AJ) in the testis, in particular at the blood-testis barrier, it is of interest to investigate if NO can affect AJ dynamics. Studies using Sertoli-germ cell cocultures in vitro have shown that the levels of NOS (nitric oxide synthase), cGMP, and PRKG were induced when anchoring junctions were being established. Using an in vivo model in which adult rats were treated with adjudin [a molecule that induces adherens junction disruption, formerly called AF-2364, 1-(2,4-dichlorobenzyl)-IH-indazole-3-carbohydrazide], the event of AJ disruption was also associated with a transient iNOS (inducible nitric oxide synthase, NOS2) induction. Immunohistochemistry has illustrated that NOS2 was intensely accumulated in Sertoli and germ cells in the epithelium during adjudin-induced germ cell loss, with a concomitant accumulation of intracellular cGMP and an induction of PRKG but not cAMP or protein kinase A (cAMP-dependent protein kinase, PRKA). To identify the NOS-mediated downstream signaling partners, coimmunoprecipitation was used to demonstrate that NOS2 and eNOS (endothelial nitric oxide synthase, NOS3) were structurally associated with the N-cadherin (CDH2)/beta-catenin (CATNB)/actin complex but not the nectin-3 (poliovirus receptor-related 3, PVRL 3)/afadin (myeloid/lymphoid or mixed lineage-leukemia tranlocation to 4 homolog, MLLT4) nor the integrin beta1 (ITB1)-mediated protein complexes, illustrating the spatial vicinity of NOS with selected AJ-protein complexes. Interestingly, CDH2 and CATNB were shown to dissociate from NOS during the adjudin-mediated AJ disruption, implicating the CDH2/CATNB protein complex is the likely downstream target of the NO signaling. Furthermore, PRKG, the downstream signaling protein of NOS, was shown to interact with CATNB in the rat testis. Perhaps the most important of all, pretreatment of testes with KT5823, a specific PRKG inhibitor, can indeed delay the adjudin-induced germ cell loss, further validating NOS/NO regulates Sertoli-germ cell AJ dynamics via the cGMP/PRKG pathway. These results illustrate that the CDH2/CATNB-mediated adhesion function in the testis is regulated, at least in part, via the NOS/cGMP/PRKG/CATNB pathway.  相似文献   

4.
Phosphoinositide 3-kinase (PI3K) and Akt play important roles in platelet activation. However, the downstream mechanisms mediating their functions are unclear. We have recently shown that nitric-oxide (NO) synthase 3 and cGMP-dependent protein kinase stimulate platelet secretion and aggregation. Here we show that PI3K-mediated Akt activation plays an important role in agonist-stimulated platelet NO synthesis and cGMP elevation. Agonist-induced elevation of NO and cGMP was inhibited by Akt inhibitors and reduced in Akt-1 knock-out platelets. Akt-1 knock-out or Akt inhibitor-treated platelets showed reduced platelet secretion and aggregation in response to low concentrations of agonists, which can be reversed by low concentrations of 8-bromo-cGMP or sodium nitroprusside (an NO donor). Similarly, PI3K inhibitors diminished elevation of cGMP and inhibited platelet secretion and the second wave platelet aggregation, which was also partially reversed by 8-bromo-cGMP. These results indicate that the NO-cGMP pathway is an important downstream mechanism mediating PI3K and Akt signals leading to platelet secretion and aggregation. Conversely, the PI3K-Akt pathway is the major upstream mechanism responsible for activating the NO-cGMP pathway in platelets. Thus, this study delineates a novel platelet activation pathway involving sequential activation of PI3K, Akt, nitric-oxide synthase 3, sGC, and cGMP-dependent protein kinase.  相似文献   

5.
Pancreastatin (PST), a chromogranin A-derived peptide, has an anti-insulin metabolic effect and inhibits growth and proliferation by producing nitric oxide (NO) in HTC rat hepatoma cells. When NO production is blocked, a proliferative effect prevails due to the activation a Galphaq/11-phospholipase C-beta (PLC-beta) pathway, which leads to an increase in [Ca2+]i, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) activation. The aim of the present study was to investigate the NO synthase (NOS) isoform that mediates these effects of PST on HTC hepatoma cells and the possible roles of cyclic GMP (cGMP) and cGMP-dependent protein kinase. DNA and protein synthesis in response to PST were measured as [3H]-thymidine and [3H]-leucine incorporation in the presence of various pharmacological inhibitors: N-monomethyl-L-arginine (NMLA, nonspecific NOS inhibitor), L-NIO (endothelial nitric oxide synthase (eNOS) inhibitor), espermidine (neuronal nitric oxide synthase (nNOS) inhibitor), LY83583 (guanylyl cyclase inhibitor), and KT5823 (protein kinase G inhibitor, (PKG)). L-NIO, similarly to NMLA, reverted the inhibitory effect of PST on hepatoma cell into a stimulatory effect on growth and proliferation. Nevertheless, espermidine also prevented the inhibitory effect of PST, but there was no stimulation of growth and proliferation. When guanylyl cyclase activity was blocked, there was again a reversion of the inhibitory effect into a stimulatory action, suggesting that the effect of NO was mediated by the production of cGMP. PKG inhibition prevented the inhibitory effect of PST, but there was no stimulatory effect. Therefore, the inhibitory effect of PST on growth and proliferation of hepatoma cells may be mainly mediated by eNOS activation. In turn, the effect of NO may be mediated by cGMP, whereas other pathways in addition to PKG activation seem to mediate the inhibition of DNA and protein synthesis by PST in HTC hepatoma cells.  相似文献   

6.
The nitric oxide/soluble guanylyl cyclase/cGMP-dependent protein kinase (NO/sGC/PKG) cascade has been shown to affect important functions of circulating neutrophils. We demonstrate that neutrophils isolated from rats treated intraperitoneally with peptone protease cannot use this signaling pathway. Although PKG was detected at both the mRNA and protein levels in peripheral blood neutrophils (PBNs) of control rats, it was expressed neither in PBNs nor in peritoneal exudate neutrophils (PENs) of provoked rats. Also, mRNA of the alpha and beta chains of heterodimeric sGC was present in PBNs, but absent in PENs. Consistently, PBNs responded to activators of sGC with cGMP synthesis, while PENs did not. These results showed that neutrophils recruited by a provoking agent lost PKG and, in the case of PENs, also sGC and thus the capacity to respond to NO with cGMP signaling. We speculate that such downregulation of the sGC/PKG pathway is likely a result of the high activity of inducible NO synthase observed in inflammatory neutrophils.  相似文献   

7.
Nitric oxide (NO) is an important vascular modulator in the development of pulmonary hypertension. NO exerts its regulatory effect mainly by activating soluble guanylate cyclase (sGC) to synthesize cyclic guanosine monophosphate (cGMP). Exposure to hypoxia causes pulmonary hypertension. But in lung disease, hypoxia is commonly accompanied by hypercapnia. The aim of this study was to examine the changes of sGC enzyme activity and cGMP content in lung tissue, as well as the expression of inducible nitric oxide synthase (iNOS) and sGC in rat pulmonary artery after exposure to hypoxia and hypercapnia, and assess the role of iNOS–sGC–cGMP signal pathway in the development of hypoxic and hypercapnic pulmonary hypertension. Male Sprague–Dawley rats were exposed to hypoxia and hypercapnia for 4 weeks to establish model of chronic pulmonary hypertension. Weight‐matched rats exposed to normoxia served as control. After exposure to hypoxia and hypercapnia, mean pulmonary artery pressure, the ratio of right ventricle/left ventricle + septum, and the ratio of right ventricle/body weight were significantly increased. iNOS mRNA and protein levels were significantly increased, but sGC α1 mRNA and protein levels were significantly decreased in small pulmonary arteries of hypoxic and hypercapnic exposed rat. In addition, basal and stimulated sGC enzyme activity and cGMP content in lung tissue were significantly lower after exposure to hypoxia and hypercapnia. These results demonstrate that hypoxia and hypercapnia lead to the upregulation of iNOS expression, downregulation of sGC expression and activity, which then contribute to the development of pulmonary hypertension. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Nitric oxide (NO) is an important vascular modulator in the development of pulmonary hypertension. NO exerts its regulatory effect mainly by activating soluble guanylate cyclase (sGC) to synthesize cyclic guanosine monophosphate (cGMP). Exposure to hypoxia causes pulmonary hypertension. But in lung disease, hypoxia is commonly accompanied by hypercapnia. The aim of this study was to examine the changes of sGC enzyme activity and cGMP content in lung tissue, as well as the expression of inducible nitric oxide synthase (iNOS) and sGC in rat pulmonary artery after exposure to hypoxia and hypercapnia, and assess the role of iNOS-sGC-cGMP signal pathway in the development of hypoxic and hypercapnic pulmonary hypertension. Male Sprague-Dawley rats were exposed to hypoxia and hypercapnia for 4 weeks to establish model of chronic pulmonary hypertension. Weight-matched rats exposed to normoxia served as control. After exposure to hypoxia and hypercapnia, mean pulmonary artery pressure, the ratio of right ventricle/left ventricle+septum, and the ratio of right ventricle/body weight were significantly increased. iNOS mRNA and protein levels were significantly increased, but sGC α(1) mRNA and protein levels were significantly decreased in small pulmonary arteries of hypoxic and hypercapnic exposed rat. In addition, basal and stimulated sGC enzyme activity and cGMP content in lung tissue were significantly lower after exposure to hypoxia and hypercapnia. These results demonstrate that hypoxia and hypercapnia lead to the upregulation of iNOS expression, downregulation of sGC expression and activity, which then contribute to the development of pulmonary hypertension.  相似文献   

9.
Lanteri ML  Lamattina L  Laxalt AM 《Planta》2011,234(4):845-855
The second messenger nitric oxide (NO), phosphatidic acid (PA) and reactive oxygen species (ROS) are involved in the plant defense response during plant–pathogen interactions. NO has been shown to participate in PA production in response to the pathogen-associated molecular pattern xylanase in tomato cell suspensions. Defense responses downstream of PA include ROS production. The goal of this work was to study the signaling mechanisms involved in PA production during the defense responses triggered by xylanase and mediated by NO in the suspension-cultured tomato cells. We analyzed the participation of protein kinases, guanylate cyclase and the NO-mediated posttranslational modification S-nitrosylation, by means of pharmacology and biochemistry. We showed that NO, PA and ROS levels are significantly diminished by treatment with the general protein kinase inhibitor staurosporine. This indicates that xylanase-induced protein phosphorylation events might be the important components leading to NO formation, and hence for the downstream regulation of PA and ROS levels. When assayed, a guanylate cyclase inhibitor or a cGMP analog did not alter the PA accumulation. These results suggest that a cGMP-mediated pathway is not involved in xylanase-induced PA formation. Finally, the inhibition of protein S-nitrosylation did not affect NO formation but compromised PA and ROS production. Data collectively indicate that upon xylanase perception, cells activate a protein kinase pathway required for NO formation and that, S-nitrosylation-dependent mechanisms are involved in downstream signaling leading to PA and ROS.  相似文献   

10.
Most of the available data on the nitric oxide (NO) pathway in the vasculature is derived from studies performed with cells isolated from conduit arteries. We investigated the expression and regulation of components of the NO synthase (NOS)-NO-cGMP pathway in endothelial cells from the mesenteric vascular bed. Basally, or in response to bradykinin, cultured mesenteric endothelial cells (MEC) do not release NO and do not express endothelial NOS protein. MEC treated with cytokines, but not untreated cells, express inducible NOS (iNOS) mRNA and protein, increase nitrite release, and stimulate cGMP accumulation in reporter smooth muscle cells. Pretreatment of MEC with genistein abolished the cytokine-induced iNOS expression. On the other hand, exposure of MEC to the microtubule depolymerizing agent colchicine did not affect the cytokine-induced increase in nitrite formation and iNOS protein expression, whereas it inhibited the induction of iNOS in smooth muscle cells. Collectively, our findings demonstrate that MEC do not express endothelial NOS but respond to inflammatory stimuli by expressing iNOS, a process that is blocked by tyrosine kinase inhibition but not by microtubule depolymerization.  相似文献   

11.
12.
SUMMARY The gas nitric oxide (NO), and in some cases its downstream second messenger, cyclic guanosine monophosphate (cGMP) function in different taxa to regulate the timing of life-history transitions. Increased taxonomic sampling is required to foster conclusions about the evolution and function of NO/cGMP signaling during life-history transitions. We report on the function and localization of NO and cGMP signaling during metamorphosis of the nudibranch Phestilla sibogae . Pharmacological manipulation of NO or cGMP production in larvae modulated responses to a natural settlement cue from the coral Porites compressa in a manner that suggest inhibitory function for NO/cGMP signaling. However, these treatments were not sufficient to induce metamorphosis in the absence of cue, a result unique to this animal. We show that induction of metamorphosis in response to the settlement cue is associated with a reduction in NO production. We documented the expression of putative NO synthase (NOS) and the production of cGMP during larval development and observed no larval cells in which NOS and cGMP were both detected. The production of cGMP in a bilaterally symmetrical group of cells fated to occupy the distal tip of rhinophores is correlated with competence to respond to the coral settlement cue. These results suggest that endogenous NO and cGMP are involved in modulating responses of P. sibogae to a natural settlement cue. We discuss these results with respect to habitat selection and larval ecology.  相似文献   

13.
Mammalian Ste20-like protein kinase 3 (Mst3) is a key player in inducing apoptosis in a variety of cell types and has recently been shown to participate in the signaling pathway of hypoxia-induced apoptosis of human trophoblast cell line 3A-sub-E (3A). It is believed that oxidative stress may occur during hypoxia and induce the expression of Mst3 in 3A cells via the activation of c-Jun N-terminal protein kinase 1 (JNK1). This hypothesis was demonstrated by the suppressive effect of dl-α-lipoic acid, a reactive oxygen species scavenger, in hypoxia-induced responses of 3A cells such as Mst3 expression, nitrotyrosine formation, JNK1 activation and apoptosis. Similar results were also observed in trophoblasts of human placental explants in both immunohistochemical studies and immunoblot analyses. These suggested that the activation of Mst3 might trigger the apoptotic process in trophoblasts by activating caspase 3 and possibly other apoptotic pathways. The role of nitric oxide synthase (NOS) and NADPH oxidase (NOX) in hypoxia-induced Mst3 up-regulation was also demonstrated by the inhibitory effect of N(G)-nitro-l-arginine and apocynin, which inhibits NOS and NOX, respectively. Oxidative stress was postulated to be induced by NOS and NOX in 3A cells during hypoxia. In conclusion, hypoxia induces oxidative stress in human trophoblasts by activating NOS and NOX. Subsequently, Mst3 is up-regulated and plays an important role in hypoxia-induced apoptosis of human trophoblasts.  相似文献   

14.
In the present study, the role of nitric oxide (NO) generated by endothelial nitric oxide synthase (NOS-3) in the control of respiration during hypoxia and hypercapnia was assessed using mutant mice deficient in NOS-3. Experiments were performed on awake and anesthetized mutant and wild-type (WT) control mice. Respiratory responses to 100, 21, and 12% O(2) and 3 and 5% CO(2)-balance O(2) were analyzed. In awake animals, respiration was monitored by body plethysmography along with O(2) consumption (VO(2)) and CO(2) production (VCO(2)). In anesthetized, spontaneously breathing mice, integrated efferent phrenic nerve activity was monitored as an index of neural respiration along with arterial blood pressure and blood gases. Under both experimental conditions, WT mice responded with greater increases in respiration during 12% O(2) than mutant mice. Respiratory responses to hyperoxic hypercapnia were comparable between both groups of mice. Arterial blood gases, changes in blood pressure, VO(2), and VCO(2) during hypoxia were comparable between both groups of mice. Respiratory responses to cyanide and brief hyperoxia were attenuated in mutant compared with WT mice, indicating reduced peripheral chemoreceptor sensitivity. cGMP levels in the brain stem during 12% O(2), taken as an index of NO production, were greater in mutant compared with WT mice. These observations demonstrate that NOS-3 mutant mice exhibit selective blunting of the respiratory responses to hypoxia but not to hypercapnia, which in part is due to reduced peripheral chemosensitivity. These results support the idea that NO generated by NOS-3 is an important physiological modulator of respiration during hypoxia.  相似文献   

15.
In frogs' isolated urinary bladders, contribution of cytosolic guanylate cyclase and cGMP-dependent protein kinase to regulation of osmotic permeability was studied. ODQ (25-100 microM), an inhibitor of cytosolic guanylate cyclase induced an increase of vasotocin-activated osmotic permeability but had no effect on the hormone-activated transepithelial urea transport. In isolated mucosal epithelial cells ODQ (50 microM) decreased the concentration of intracellular cGMP. In these cells L-NAME (0.5 nM), an inhibitor of NO synthase, also decreased the level of cGMP whereas cAMP was significantly increased. 8-pCPT-cGMP (25 and 50 microM), a permeable cGMP analogue which selectively activates protein kinase G, inhibited vasotocin-induced increase of water transport along osmotic gradient indicating that protein kinase G is involved in regulation of water reabsorption. The data obtained show that NO/cGMP signalling system in the frog urinary bladder appears to be a negative modulator of vasotocin-activated increase of osmotic permeability.  相似文献   

16.
The purpose of this study was to investigate the role of cyclic GMP (cGMP) in the effects of nitric oxide (NO) on urethral striated muscle and its involvement in contractile function. The localization of cGMP, neuronal NO synthase (nNOS), vimentin, and neuronal markers was assessed by immunofluorescence in the sheep and rat urethra and the expression of nNOS was determined in Western blots. Nerve-mediated contractile responses to electrical field stimulation (EFS) were recorded in the sheep urethra. The scant nitrergic innervation of the striated muscle layer suggests that autonomic control of its activity is unlikely. The striated fiber itself may be the source of high levels NO produced by sarcolemmal and/or cytosolic μ or α variant of nNOS. This endogenous NO may provoke high basal production of soluble guanylate cyclase (GC) dependent cGMP, mainly in non-NO producing muscle fibers, which is not further enhanced by NO donors. cGMP co-localizes with neurofilament and PGP 9.5 at muscle endplates. Modulators of the cGMP pathway did not affect nerve-mediated contractile activity induced by EFS, suggesting that cGMP is not a significant mediator of neuromuscular transmission. In addition, NO donors did increase the accumulation of cGMP in dense networks of vimentin immunoreactive interstitial cells of Cajal (ICC), whose function is not yet known. These data suggest that there is a strong but non-regulated production of cGMP under resting conditions, which does not seem to affect contractile function. Modulation of cholinergic neurotransmission by NO through cGMP-independent mechanisms cannot be discarded.  相似文献   

17.
Nitric oxide mediates gravitropic bending in soybean roots   总被引:18,自引:0,他引:18       下载免费PDF全文
Hu X  Neill SJ  Tang Z  Cai W 《Plant physiology》2005,137(2):663-670
Plant roots are gravitropic, detecting and responding to changes in orientation via differential growth that results in bending and reestablishment of downward growth. Recent data support the basics of the Cholodny-Went hypothesis, indicating that differential growth is due to redistribution of auxin to the lower sides of gravistimulated roots, but little is known regarding the molecular details of such effects. Here, we investigate auxin and gravity signal transduction by demonstrating that the endogenous signaling molecules nitric oxide (NO) and cGMP mediate responses to gravistimulation in primary roots of soybean (Glycine max). Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip. Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric, with NO concentrating in the lower side of the root. Removal of NO with an NO scavenger or inhibition of NO synthesis via NO synthase inhibitors or an inhibitor of nitrate reductase reduced both NO accumulation and gravitropic bending, indicating that NO synthesis was required for the gravitropic responses and that both NO synthase and nitrate reductase may contribute to the synthesis of the NO required. Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips. Gravistimulation, NO, and auxin also induced the accumulation of cGMP, a response inhibited by removal of NO or by inhibitors of guanylyl cyclase, compounds that also reduced gravitropic bending. Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor, and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP, a cell-permeable analog of cGMP. These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots.  相似文献   

18.
Nitric oxide (NO) is thought to play an important role in the regulation of neonatal pulmonary vasculature. It has been suggested that neonates with pulmonary hypertension have a defective NO pathway. Therefore, we measured in 1-day-old piglets exposed to hypoxia (fraction of inspired O(2) = 0.10) for 3 or 14 days to induce pulmonary hypertension 1) the activity of NO synthase (NOS) via conversion of L-arginine to L-citrulline and the concentration of the NO precursor L-arginine in isolated pulmonary vessels, 2) the vasodilator response to the NO donor 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1) and the cGMP analog 8-bromo-cGMP in isolated perfused lungs, and 3) the production of cGMP in response to SIN-1 in isolated perfused lungs. After 3 days of exposure to hypoxia, endothelial NOS (eNOS) activity was unaffected, whereas, after 14 days of hypoxia, eNOS activity was decreased in the cytosolic fraction of pulmonary artery (P < 0.05) but not of pulmonary vein homogenates. Inducible NOS activity was decreased in the cytosolic fraction of pulmonary artery homogenates after both 3 (P < 0.05) and 14 (P < 0.05) days of hypoxia but was unchanged in pulmonary veins. Pulmonary artery levels of L-arginine were unaffected by hypoxic exposure. After 3 days of exposure to hypoxia, the reduction in the dilator response to SIN-1 (P < 0.05) coincided with a decrease in cGMP production (P < 0.005), suggesting that soluble guanylate cyclase activity may be altered. When the exposure was prolonged to 14 days, dilation to SIN-1 remained decreased (P < 0.05) and, although cGMP production normalized, the dilator response to 8-bromo-cGMP decreased (P < 0.05), suggesting that, after prolonged exposure to hypoxia, cGMP-dependent mechanisms may also be impaired. In conclusion, neonatal hypoxia-induced pulmonary hypertension is associated with multiple disruptions in the NO pathway.  相似文献   

19.
L-glutamate, N-methyl-D-aspartate (NMDA), kainate, quisqualate and sodium nitroprusside increased cyclic GMP (cGMP) level on rat whole brain cell culture. The accumulation of cGMP evoked by L-glutamate was inhibited by a NMDA antagonist MK-801, an inhibitor of guanylate cyclase methylene blue and two nitric oxide (NO) synthase inhibitors NG-monomethyl-L-arginine (L-NMMA) and L-NG-nitroarginine (NO2Arg). The inhibition of L-NMMA on cGMP level was reversed partially by addition of L-arginine. Although MK-801 was able to protect cells from neuronal injury induced by L-glutamate or by 5 h hypoxia, L-NMMA and NO2Arg were ineffective. The present study suggests that cGMP elevation mediated by NO following activation by L-glutamate is not involved in neuronal cell injury.  相似文献   

20.
Bone resorption by osteoclasts is modified by agents that affect cyclic guanosine monophosphate (cGMP), but their relative physiological roles, and what components of the process are present in osteoclasts or require accessory cells such as osteoblasts, are unclear. We studied cGMP regulation in avian osteoclasts, and in particular the roles of nitric oxide and natriuretic peptides, to clarify the mechanisms involved. C-type natriuretic peptide drives a membrane guanylate cyclase, and increased cGMP production in mixed bone cells. However, C-type natriuretic peptide did not increase cGMP in purified osteoclasts. By contrast, osteoclasts did produce cGMP in response to nitric oxide (NO) generators, sodium nitroprusside or 1-hydroxy-2-oxo-3,3-bis(3-aminoethyl)-1-triazene. These findings indicate that C-type natriuretic peptide and NO modulate cGMP in different types of bone cells. The activity of the osteoclast centers on HCI secretion that dissolves bone mineral, and both NO generators and hydrolysis-resistant cGMP analogues reduced bone degradation, while cGMP antagonists increased activity. NO synthase agonists did not affect activity, arguing against autocrine NO production. Osteoclasts express NO-activated guanylate cyclase and cGMP-dependent protein kinase (G-kinase). G-kinase reduced membrane HCI transport activity in a concentration-dependent manner, and phosphorylated a 60-kD osteoclast membrane protein, which immunoprecipitation showed is not an H+-ATPase subunit. We conclude that cGMP is a negative regulator of osteoclast activity. cGMP is produced in response to NO made by other cells, but not in response to C-type natriuretic peptide. G-kinase modulates osteoclast membrane HCI transport via intermediate protein(s) and may mediate cGMP effects in osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号