首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to extracellular signals, the mechanisms utilized to transduce nuclear apoptotic signals are not well understood. Characterizing these mechanisms is important for predicting how tumors will respond to genotoxic radiation or chemotherapy. The retinoblastoma (Rb) tumor suppressor protein can regulate apoptosis triggered by DNA damage through an unknown mechanism. The nuclear death domain-containing protein p84N5 can induce apoptosis that is inhibited by association with Rb. The pattern of caspase and NF-kappaB activation during p84N5-induced apoptosis is similar to p53-independent cellular responses to DNA damage. One hallmark of this response is the activation of a G(2)/M cell cycle checkpoint. In this report, we characterize the effects of p84N5 on the cell cycle. Expression of p84N5 induces changes in cell cycle distribution and kinetics that are consistent with the activation of a G(2)/M cell cycle checkpoint. Like the radiation-induced checkpoint, caffeine blocks p84N5-induced G(2)/M arrest but not subsequent apoptotic cell death. The p84N5-induced checkpoint is functional in ataxia telangiectasia-mutated kinase-deficient cells. We conclude that p84N5 induces an ataxia telangiectasia-mutated kinase (ATM)-independent, caffeine-sensitive G(2)/M cell cycle arrest prior to the onset of apoptosis. This conclusion is consistent with the hypotheses that p84N5 functions in an Rb-regulated cellular response that is similar to that triggered by DNA damage.  相似文献   

2.
3.
4.
《Cellular signalling》2014,26(9):1765-1773
Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase gene family that contributes to the invasiveness and metastasis in tumor progression. However, the role of LOXL2 in cellular signaling is incompletely understood. In this study, we investigated a possible mechanism of LOXL2 function in tumor metastases in vitro, using a human breast carcinoma cell line. Myristoylated alanine-rich C kinase substrate-like 1 (MARCKSL1), a modulator in the regulation of cellular homeostasis, was identified as a LOXL2 interacting protein. We examined the binding domains that are required for the interaction between LOXL2 and MARCKSL1. The scavenger-receptor domain of LOXL2 was shown to interact with the N-terminal domain of MARCKSL1. Luciferase activity was noticeably reduced by the transfection of MARCKSL1 in a dose-dependent manner. In addition, over-expression of LOXL2 activates cell growth by inhibiting MARCKSL1-induced apoptosis. The effect of LOXL2 on cell cycle and apoptosis-related components was also confirmed through the silencing of LOXL2 expression. LOXL2 activates the FAK/Akt/mTOR signaling pathways, and MARCKSL1 suppresses LOXL2-induced oncogenesis. These insights supply evidence that LOXL2 promotes cell proliferation and inhibits apoptotic cell death. Taken together, our results indicate an underlying mechanism for an increase of LOXL2-related activity in breast tumor cells.  相似文献   

5.
6.
冠状病毒感染调控细胞凋亡机制研究进展   总被引:3,自引:0,他引:3  
冠状病毒是常见的感染人类和动物并造成健康危害的主要病原性微生物之一,冠状病毒感染细胞后,细胞产生免疫应答,病毒为了在细胞内转录翻译和装配下一代,应对细胞免疫应答的同时,还参与到许多细胞活动中,当细胞特定受体与病毒蛋白结合后,细胞即启动凋亡程序。冠状病毒的许多蛋白在细胞凋亡程序中起促进或抑制凋亡的不同作用,如病毒S蛋白与细胞膜死亡受体作用诱导细胞启动外在凋亡途径,病毒感染细胞后产生的M、S蛋白引起细胞内质网应激、Ca2+失衡,诱导细胞启动内在凋亡途径,而E蛋白则抑制细胞凋亡的发生。本文综述了冠状病毒对侵染细胞的促凋亡或抑制凋亡作用及其作用机制,通过了解病毒不同蛋白在各种凋亡途径中的不同作用,希望为人工干预调控细胞研究提供思路,为冠状病毒感染防控提供理论支持。  相似文献   

7.
8.
9.
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on apoptosis. Superoxide dismutase (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. We investigated the effects of the manganese (III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP), a cell-permeable SOD mimetic, on ionizing radiation-induced apoptosis. Upon exposure to 2 Gy of gamma-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 5 microM MnTMPyP for 2 h with regard to apoptotic parameters, cellular redox status, mitochondria function, and oxidative damage to cells. MnTMPyP effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular reactive oxygen species were higher and the [NADPH]/[NADP(+)+NADPH] ratio was lower in control cells compared to MnTMPyP-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of reactive oxygen species, and the reduction of ATP production were significantly higher in control cells compared to MnTMPyP-treated cells. MnTMPyP pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that MnTMPyP may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of reactive oxygen species.  相似文献   

10.
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase family member that plays a central role in cytokine- and stress-induced apoptosis by activating c-Jun N-terminal kinase and p38 signaling cascades. ASK1-induced apoptotic activity is up-regulated by two cellular factors, Daxx and TRAF2, through direct protein-protein interactions. Daxx and TRAF2 are death receptor-associated proteins in Fas and tumor necrosis factor-alpha pathways, respectively. Recent studies suggest that calcium signaling may regulate ASK1 pathway. Here we report that human D53L1, a member of the tumor protein D52 family involved in cell proliferation and calcium signaling, up-regulates the ASK1-induced apoptosis. The human D53L1 physically interacts with the C-terminal regulatory domain of ASK1 and promotes ASK1-induced apoptotic activity by activating caspase signaling in mammalian cells. In luciferase reporter assays, hD53L1 activates c-Jun N-terminal kinase-mediated transactivation in the presence of ASK1. Expression of hD53L1 enhances autophosphorylation and kinase activity of ASK1 but has no effect on ASK1 oligomerization that is necessary for kinase activity and on binding of ASK1 to MKK6, a downstream factor of ASK1. Taken together, these results suggest that activation of ASK1 by hD53L1 may provide a novel mechanism for ASK1 regulation.  相似文献   

11.
Programmed cell death is an important process in the regulation of cellular proliferation, rest, differentiation and death. It is a genetically controlled process with characteristic biochemical and morphological features. Apoptosis directly regulates tumorigenesis and its induction could be a useful method of cancer therapy. Cancer cells could be influenced by some factors which induce apoptosis. We investigated the influence of tyrphostins, that specifically inhibits protein tyrosine kinases and stops the cell cycle in apoptosis of the colon adenocarcinoma cell line LS180. We used them at the concentration of 1-10 microM for 24 and 48 hours. We detected apoptosis using techniques that monitor either biochemical and morphological features of this process, such as staining with 7-amino-actinomycin D, staining with Grünwald-Giemsa, TUNEL reaction, in situ hybridization and with immunoperoxidase staining procedures. We examined the expression of genes and proteins connected with programmed cell death (p53, c-myc, p21, bcl-2). We estimated the results by cytophotometry and documented them by colour photography. We found that tyrphostin rapidly inhibits the cell cycle, particularly at the concentration of 5 microM. The expression of genes and proteins was strongly correlated with the increased apoptotic cell death conforming to the results of TUNEL and staining methods.  相似文献   

12.
The Rb protein is the product of the retinoblastoma susceptibility gene and loss of Rb function is detected in many types of human cancers. Rb plays important roles in the regulation of cell proliferation, differentiation, senescence, and apoptotic cell death. Here we show that Rb can physically interact with c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK), thereby inhibiting intracellular signals mediated by JNK/SAPK. Both in vitro binding and in vitro kinase studies suggest that a carboxyl-terminal domain of Rb containing amino acids 768-928 might be crucial for inhibiting JNK/SAPK. In comparison, Rb did not affect enzymatic activity of either extracellular signal-regulated kinase 1 or p38. Ectopically expressed Rb also abrogated the apoptotic cell death induced by ultraviolet radiation or the activation of MEKK1, an upstream kinase that can stimulate the JNK/SAPK cascade. JNK/SAPK inhibition highlights a novel function of Rb, which may provide a new mechanism by which Rb regulates cell death. JNK/SAPK is a major protein kinase that can be stimulated in response to a variety of cellular stresses. Our results, therefore, suggest that Rb, by inhibiting JNK/SAPK, may act as a negative regulator in stress-activated intracellular signaling cascades.  相似文献   

13.
14.
15.
During development, many cells are specifically eliminated. Therefore, programmed cell death must be understood to fully elucidate embryogenesis. Retinoic acid (RA) and bone morphogenetic protein (BMP) 4 induce rapidly dividing P19 embryonal carcinoma cells to undergo apoptosis. RA alone minimally induces apoptosis, while BMP4 alone induces none. RA and BMP4 exposure also elevates the number of cells in the G1 phase of the cell cycle. Because many cell cycle proteins control both proliferation and apoptosis, we determined the role of these proteins in inducing apoptosis. Although the mRNA levels of cyclins D1 and D2 are reduced in cells undergoing apoptosis, the protein levels are not. In contrast, RA and BMP4 induce the Cdk inhibitor p27. This protein binds Cdk4 in RA- and BMP4-treated cells and inhibits Cdk4-dependent kinase activity. We used p27 antisense oligonucleotides to rescue the P19 cells from RA and BMP4 apoptosis thus proving that p27 is necessary. The Cdk4 substrate, retinoblastoma (Rb) protein, is also induced in apoptotic cells. Consistent with the decreased kinase activity of the apoptotic cells, this Rb protein is hypophosphorylated and presumably active. These data support the hypothesis that RA and BMP4 together induce the p27 protein leading to Rb activation and ultimately apoptosis.  相似文献   

16.
Growth of human breast adenocarcinoma MCF-7 cells as a tumor on nude mice is dependent on estrogen. It has been shown that estrogen withdrawal (EW) induces a partial regression of the tumor via an inhibition of cell proliferation and an induction of apoptosis. We investigated in this in vivo model the underlying molecular mechanisms of the hormone-dependent regulation of cell cycle machinery and apoptosis. We found that, 2 days after EW, the tumor protein levels of p21 rose, whereas those of Rb proteins decreased in parallel with the decrease in the proportion of tumor cells in S phase and the increase of the tumor apoptotic index. Between 3 and 7 days after EW, apoptosis was inhibited and tumor proliferation returned to the control value. There was a concomitant decline in p21 and an elevation of Rb tumor protein content. Slight variations of cyclin D protein level were observed in MCF-7 tumors over the time course following EW treatment. Bcl-2 overexpression not only inhibited apoptosis induced by EW but also modulated hormone-dependent cell cycle regulation. First, the analysis of phosphorylation status of Rb protein and the measurement of the proportion of tumor cells in S phase indicated that Bcl-2 overexpression results in a decrease of DNA synthesis induced by estradiol. Furthermore, after EW, Bcl-2-induced inhibition of hormone-dependent apoptosis was associated with an inhibition of Rb protein downregulation, a sustained level of p21 protein, and a prolonged inhibition of cell cycle progression. These results suggest that, in human hormone-dependent breast cancers, cross-talk exists between the signaling pathways which lead to regulation of cell cycle progression and apoptosis.  相似文献   

17.
18.
19.
Tissue inhibitors of metalloproteinases (TIMPs) are important regulators of matrix metalloproteinase (MMP) and adamalysin metalloproteinase activity. We previously reported that overexpression of TIMP-3 inhibits MMPs and induces apoptotic cell death in a variety of cell types and demonstrated that apoptosis is mediated through the N terminus of TIMP-3, which harbors the MMP inhibitory domain. However, little is known about the mechanisms underlying TIMP-3-induced apoptosis. Here we demonstrate that overexpression of TIMP-3 induced activation of initiator caspase-8 and -9 and promoted caspase-mediated cleavage of the death substrates poly(ADP-ribose) polymerase and focal adhesion kinase. Furthermore, TIMP-3 induced mitochondrial activation as demonstrated by loss of mitochondrial membrane potential and release of cytochrome c. Intervention studies demonstrated that overexpression of Bcl-2, the anti-apoptotic mitochondrial membrane protein, or CrmA, a viral serpin inhibitor of caspase-8, completely inhibited TIMP-3-induced apoptosis. Furthermore, a dominant-negative Fas-associated death domain mutant inhibited TIMP-3-induced death substrate cleavage and apoptotic death. Taken together, these results indicate that TIMP-3 overexpression induces a type II apoptotic pathway initiated via a Fas-associated death domain-dependent mechanism.  相似文献   

20.
Cell cycle growth arrest is an important cellular response to genotoxic stress. Gadd45, a p53-regulated stress protein, plays an important role in the cell cycle G(2)-M checkpoint following exposure to certain types of DNA-damaging agents such as UV radiation and methylmethane sulfonate. Recent findings indicate that Gadd45 interacts with Cdc2 protein and inhibits Cdc2 kinase activity. In the present study, a series of Myc-tagged Gadd45 deletion mutants and a Gadd45 overlapping peptide library were used to define the Gadd45 domains that are involved in the interaction of Gadd45 with Cdc2. Both in vitro and in vivo studies indicate that the interaction of Gadd45 with Cdc2 involves a central region of the Gadd45 protein (amino acids 65-84). The Cdc2-binding domain of Gadd45 is also required for Gadd45 inhibition of Cdc2 kinase activity. Sequence analysis of the central Gadd45 region reveals no homology to inhibitory motifs of known cyclin-dependent kinase inhibitors, indicating that the Cdc2-binding and -inhibitory domains on Gadd45 are a novel motif. The peptide containing the Cdc2-binding domain (amino acids 65-84) disrupted the Cdc2-cyclin B1 protein complex, suggesting that dissociation of this complex results from a direct interaction between the Gadd45 and Cdc2 proteins. GADD45-induced cell cycle G(2)-M arrest was abolished when its Cdc2 binding motif was disrupted. Importantly, a short term survival assay demonstrated that GADD45-induced cell cycle G(2)-M arrest correlates with GADD45-mediated growth suppression. These findings indicate that the cell cycle G(2)-M growth arrest mediated by GADD45 is one of the major mechanisms by which GADD45 suppresses cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号