首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent transfer of a homing endonuclease gene   总被引:1,自引:0,他引:1       下载免费PDF全文
The myxomycete Didymium iridis (isolate Panama 2) contains a mobile group I intron named Dir.S956-1 after position 956 in the nuclear small subunit (SSU) rRNA gene. The intron is efficiently spread through homing by the intron-encoded homing endonuclease I-DirI. Homing endonuclease genes (HEGs) usually spread with their associated introns as a unit, but infrequently also spread independent of introns (or inteins). Clear examples of HEG mobility are however sparse. Here, we provide evidence for the transfer of a HEG into a group I intron named Dir.S956-2 that is inserted into the SSU rDNA of the Costa Rica 8 isolate of D.iridis. Similarities between intron sequences that flank the HEG and rDNA sequences that flank the intron (the homing endonuclease recognition sequence) suggest that the HEG invaded the intron during the recent evolution in a homing-like event. Dir.S956-2 is inserted into the same SSU site as Dir.S956-1. Remarkably, the two group I introns encode distantly related splicing ribozymes with phylogenetically related HEGs inserted on the opposite strands of different peripheral loop regions. The HEGs are both interrupted by small spliceosomal introns that must be removed during RNA maturation.  相似文献   

2.
The sporadic distribution of nuclear group I introns among different fungal lineages can be explained by vertical inheritance of the introns followed by successive losses, or horizontal transfers from one lineage to another through intron homing or reverse splicing. Homing is mediated by an intron-encoded homing endonuclease (HE) and recent studies suggest that the introns and their associated HE gene (HEG) follow a recurrent cyclical model of invasion, degeneration, loss, and reinvasion. The purpose of this study was to compare this model to the evolution of HEGs found in the group I intron at position S943 of the nuclear ribosomal DNA of the lichen-forming fungus Pleopsidium. Forty-eight S943 introns were found in the 64 Pleopsidium samples from a worldwide screen, 22 of which contained a full-length HEG that encodes a putative 256-amino acid HE, and 2 contained HE pseudogenes. The HEGs are divided into two closely related types (as are the introns that encode them) that differ by 22.6% in their nucleotide sequences. The evolution of the Pleopsidium intron-HEG element shows strong evidence for a cyclical model of evolution. The intron was likely acquired twice in the genus and then transmitted via two or three interspecific horizontal transfers. Close geographical proximity plays an important role in intron-HEG horizontal transfer because most of these mobile elements were found in Europe. Once acquired in a lineage, the intron-HEG element was also vertically transmitted, and occasionally degenerated or was lost. [Reviewing Editor: Dr. Manyuan Long]  相似文献   

3.
The spread of LAGLIDADG homing endonuclease genes in rDNA   总被引:5,自引:0,他引:5       下载免费PDF全文
Group I introns that encode homing endonuclease genes (HEGs) are highly invasive genetic elements. Their movement into a homologous position in an intron-less allele is termed homing. Although the mechanism of homing is well understood, the evolutionary relationship between HEGs and their intron partners remains unclear. Here we have focused on the largest family of HEGs (encoding the protein motif, LAGLIDADG) to understand how HEGs and introns move in rDNA. Our analysis shows the phylogenetic clustering of HEGs that encode a single copy of the LAGLIDADG motif in neighboring, but often evolutionarily distantly related, group I introns. These endonucleases appear to have inserted into existing introns independent of ribozymes. In contrast, our data support a common evolutionary history for a large family of heterologous introns that encode HEGs with a duplicated LAGLIDADG motif. This finding suggests that intron/double-motif HEG elements can move into heterologous sites as a unit. Our data also suggest that a subset of the double-motif HEGs in rDNA originated from the duplication and fusion of a single-motif HEG encoded by present-day ribozymes in LSU rDNA.  相似文献   

4.
5.
Invasion of a multitude of genetic niches by mobile endonuclease genes   总被引:15,自引:0,他引:15  
Persistence of a mobile DNA element in a population reflects a balance between the ability of the host to eliminate the element and the ability of the element to survive and to disseminate to other individuals. In each of the three biological kingdoms, several families of a mobile DNA element have been identified which encode a single protein that acts on nucleic acids. Collectively termed homing endonuclease genes (HEGs), these elements employ varied strategies to ensure their survival. Some members of the HEG families have a minimal impact on host fitness because they associate with genes having self-splicing introns or inteins that remove the HEGs at the RNA or protein level. The HEG and the intron/intein gene spread throughout the population by a gene conversion process initiated by the HEG-encoded endonuclease called 'homing' in which the HEG and intron/intein genes are copied to cognate alleles that lack them. The endonuclease activity also contributes to a high frequency of lateral transmission of HEGs between species as has been documented in plants and other systems. Other HEGs have positive selection value because the proteins have evolved activities that benefit their host organisms. The success of HEGs in colonizing diverse genetic niches results from the flexibility of the encoded endonucleases in adopting new specificities.  相似文献   

6.
Self-splicing group I introns are being found in an increasing number of bacteriophages. Most introns contain an open reading frame coding for a homing endo-nuclease that confers mobility to both the intron and the homing endonuclease gene (HEG). The frequent occurrence of intron/HEG has raised questions whether group I introns are spread via horizontal transfer between phage populations. We have determined complete sequences for the known group I introns among T-even-like bacteriophages together with sequences of the intron-containing genes td, nrdB, and nrdD from phages with and without introns. A previously uncharacterized phage isolate, U5, is shown to contain all three introns, the only phage besides T4 found with a "full set" of these introns. Sequence analysis of td and nrdB genes from intron-containing and intronless phages provides evidence that recent horizontal transmission of introns has occurred among the phages. The fact that several of the HEGs have suffered deletions rendering them non-functional implies that the homing endonucleases are of no selective advantage to the phage and are rapidly degenerating and probably dependent upon frequent horizontal transmissions for maintenance within the phage populations. Several of the introns can home to closely related intronless phages during mixed infections. However, the efficiency of homing varies and is dependent on homology in regions flanking the intron insertion site. The occurrence of optional genes flanking the respective intron-containing gene can strongly affect the efficiency of homing. These findings give further insight into the mechanisms of propagation and evolution of group I introns among the T-even-like bacteriophages.  相似文献   

7.
The origins of fungal group I introns within nuclear small-subunit (nSSU) rDNA are enigmatic. This is partly because they have never been reported in basal fungal phyla (Zygomycota and Chytridiomycota), which are hypothesized to be ancestral to derived phyla (Ascomycota and Basidiomycota). Here we report group I introns from the nSSU rDNA of two zygomycete fungi, Zoophagus insidians (Zoopagales) and Coemansia mojavensis (Kickxellales). Secondary structure analyses predicted that both introns belong to the IC1 subgroup and that they are distantly related to each other, which is also suggested by different insertion sites. Molecular phylogenetic analyses indicated that the IC1 intron of Z. insidians is closely related to the IC1 intron inserted in the LSU rDNA of the basidiomycete fungus Clavicorona taxophila, which strongly suggests interphylum horizontal transfer. The IC1 intron of C. mojavensis has a low phylogenetic affinity to other fungal IC1 introns inserted into site 943 of nSSU rDNA (relative to E. coli 16S rDNA). It is noteworthy that this intron contains a putative ORF containing a His–Cys box motif in the antisense strand, a hallmark for nuclear-encoded homing endonucleases. Overall, molecular phylogenetic analyses do not support the placement of these two introns in basal fungal IC1 intron lineages. This result leads to the suggestion that fungal IC1 introns might have invaded or been transferred laterally after the divergence of the four major fungal phyla. Received: 8 February 2001 / Accepted: 1 November 2001  相似文献   

8.
9.
10.
Botryosphaeria dothidea is a widespread and economically important pathogen on various fruit trees, and it often causes die-back and canker on limbs and fruit rot. In characterizing intraspecies genetic variation within this fungus, group I introns, rich in rDNA of fungi, may provide a productive region for exploration. In this research, we analysed complete small subunit (SSU) ribosomal DNA (rDNA) sequences of 37 B. dothidea strains, and found four insertions, designated Bdo.S943, Bdo.S1199-A, Bdo.S1199-B and Bdo.S1506, at three positions. Sequence analysis and structure prediction revealed that both Bdo.S943 and Bdo.S1506 belonged to subgroup IC1 of group I introns, whereas Bdo.S1199-A and Bdo.S1199-B corresponded to group IE introns. Moreover, Bdo.S1199-A was found to host an open reading frame (ORF) for encoding the homing endonuclease (HE), whereas Bdo.S1199-B, an evolutionary descendant of Bdo.S1199-A, included a degenerate HE. The above four introns were novel, and were the first group I introns observed and characterized in this species. Differential distribution of these introns revealed that all strains could be separated into four genotypes. Genotype III (no intron) and genotype IV (Bdo.S1199-B) were each found in only one strain, whereas genotype I (Bdo.S1199-A) and genotype II (Bdo.S943 and Bdo.S1506) occurred in 95% of the strains. There is a correlation between B. dothidea genotypes and hosts or geographic locations. Thus, these newly discovered group I introns can help to advance understanding of genetic differentiation within B. dothidea.  相似文献   

11.
Group I introns were discovered inserted at the same position in the nuclear small-subunit ribosomal DNA (nuc-ssu-rDNA) in several species of homobasidiomycetes (mushroom-forming fungi). Based on conserved intron sequences, a pair of intron-specific primers was designed for PCR amplification and sequencing of intron-containing rDNA repeats. Using the intron-specific primers together with flanking rDNA primers, a PCR assay was conducted to determine presence or absence of introns in 39 species of homobasidiomycetes. Introns were confined to the genera Panellus, Clavicorona, and Lentinellus. Phylogenetic analyses of nuc-ssu-rDNA and mitochondrial ssu-rDNA sequences suggest that Clavicorona and Lentinellus are closely related, but that Panellus is not closely related to these. The simplest explanation for the distribution of the introns is that they have been twice independently gained via horizontal transmission, once on the lineage leading to Panellus, and once on the lineage leading to Lentinellus and Clavicorona. BLAST searches using the introns from Panellus and Lentinellus as query sequences retrieved 16 other similar group I introns of nuc-ssu-rDNA and nuclear large-subunit rDNA (nuc-lsu-rDNA) from fungal and green algal hosts. Phylogenetic analyses of intron sequences suggest that the mushroom introns are monophyletic, and are nested within a clade that contains four other introns that insert at the same position as the mushroom introns, two from different groups of fungi and two from green algae. The distribution of host lineages and insertion sites among the introns suggests that horizontal and vertical transmission, homing, and transposition have been factors in intron evolution. As distinctive, heritable features of nuclear rDNAs in certain lineages, group I introns have promise as phylogenetic markers. Nevertheless, the possibility of horizontal transmission and homing also suggest that their use poses certain pitfalls.   相似文献   

12.

Background  

Group I introns are found in the nuclear small subunit ribosomal RNA gene (SSU rDNA) of some species of the genus Porphyra (Bangiales, Rhodophyta). Size polymorphisms in group I introns has been interpreted as the result of the degeneration of homing endonuclease genes (HEG) inserted in peripheral loops of intron paired elements. In this study, intron size polymorphisms were characterized for different Porphyra spiralis var. amplifolia (PSA) populations on the Southern Brazilian coast, and were used to infer genetic relationships and genetic structure of these PSA populations, in addition to cox 2-3 and rbc L-S regions. Introns of different sizes were tested qualitatively for in vitro self-splicing.  相似文献   

13.
During a recent phylogenetic study, group I introns were noted that interrupt the nuclear small subunit ribosomal RNA (SSU rDNA) gene in species of Ceratocystiopsis. Group I introns were found to be inserted at the following rDNA positions: S943, S989, and S1199. The introns have been characterized and phylogenetic analysis of the host gene and the corresponding intron data suggest that for S943 vertical transfer and frequent loss appear to be the most parsimonious explanation for the distribution of nuclear SSU rDNA introns among species of Ceratocystiopsis. The SSU rDNA data do suggest that a recent proposal of segregating the genus Ophiostoma sensu lato into Ophiostoma sensu stricto, Grosmannia, and Ceratocystiopsis has some merit but may need further amendments, as the SSU rDNA suggests that Ophiostoma s. str. may now represent a paraphyletic grouping.  相似文献   

14.
Group I introns are relatively common within nuclear ribosomal DNA of eukaryotic microorganisms, especially in myxomycetes. Introns at position S516 in the small subunit ribosomal RNA gene are particularly common, but have a sporadic occurrence in myxomycetes. Fuligo septica, Badhamia gracilis, and Physarum flavicomum, all members of the family Physaraceae, contain related group IC1 introns at this site. The F. septica intron was studied at the molecular level and found to self-splice as naked RNA and to generate full-length intron RNA circles during incubation. Group I introns at position S516 appear to have a particularly widespread distribution among protists and fungi. Secondary structural analysis of more than 140 S516 group I introns available in the database revealed five different types of organization, including IC1 introns with and without His-Cys homing endonuclease genes, complex twin-ribozyme introns, IE introns, and degenerate group I-like introns. Both intron structural and phylogenetic analyses indicate a multiple origin of the S516 introns during evolution. The myxomycete introns are related to S516 introns in the more distantly related brown algae and Acanthamoeba species. Possible mechanisms of intron transfer both at the RNA- and DNA-levels are discussed in order to explain the observed widespread, but scattered, phylogenetic distribution.  相似文献   

15.
The two group I introns Nae.L1926 and Nmo.L2563, found at two different sites in nuclear LSU rRNA genes of Naegleria amoebo-flagellates, have been characterized in vitro. Their structural organization is related to that of the mobile Physarum intron Ppo.L1925 (PpLSU3) with ORFs extending the L1-loop of a typical group IC1 ribozyme. Nae.L1926, Nmo.L2563 and Ppo.L1925 RNAs all self-splice in vitro, generating ligated exons and full-length intron circles as well as internal processed excised intron RNAs. Formation of full-length intron circles is found to be a general feature in RNA processing of ORF-containing nuclear group I introns. Both Naegleria LSU rDNA introns contain a conserved polyadenylation signal at exactly the same position in the 3' end of the ORFs close to the internal processing sites, indicating an RNA polymerase II-like expression pathway of intron proteins in vivo. The intron proteins I-NaeI and I-NmoI encoded by Nae.L1926 and Nmo.L2563, respectively, correspond to His-Cys homing endonucleases of 148 and 175 amino acids. I-NaeI contains an additional sequence motif homologous to the unusual DNA binding motif of three antiparallel beta sheets found in the I-PpoI endonuclease, the product of the Ppo.L1925 intron ORF.  相似文献   

16.
Pp LSU3 is a mobile group I intron in the extrachromosomal nuclear ribosomal DNA (rDNA) of Physarum polycephalum. As found for other mobile introns, Pp LSU3 encodes a site-specific endonuclease, I-Ppo, which mediates "homing" to unoccupied target sites in Physarum rDNA. The recognition sequence for this enzyme is conserved in all eucaryotic nuclear rDNAs. We have introduced this intron into a heterologous species, Saccharomyces cerevisiae, in which nuclear group I introns have not been detected. The expression of Pp LSU3, under control of the inducible GAL10 promoter, was found to be lethal as a consequence of double-strand breaks in the rDNA. However, surviving colonies that are resistant to the lethal effects of I-Ppo because of alterations in the rDNA at the cleavage site were recovered readily. These survivors are of two classes. The first comprises cells that acquired one of three types of point mutations. The second comprises cells in which Pp LSU3 became inserted into the rDNA. In both cases, each resistant survivor appears to carry the same alterations in all approximately 150 rDNA repeats. When it is embedded in yeast rDNA, Pp LSU3 leads to the synthesis of I-Ppo and appears to be mobile in appropriate genetic crosses. The existence of yeast cells carrying a mobile intron should allow dissection of the steps that allow expression of the highly unusual I-Ppo gene.  相似文献   

17.
The spread of group I introns depends on their association with intron-encoded homing endonucleases. Introns that encode functional homing endonuclease genes (HEGs) are highly invasive, whereas introns that only encode the group I ribozyme responsible for self-splicing are generally stably inherited (i.e., vertical inheritance). A number of recent case studies have provided new knowledge on the evolution of group I introns, however, there are still large gaps in understanding of their distribution on the tree of life, and how they have spread into new hosts and genic sites. During a larger phylogenetic survey of chlorophyceaen green algae, we found that 23 isolates contain at least one group I intron in the rbcL chloroplast gene. Structural analyses show that the introns belong to one of two intron lineages, group IA2 intron-HEG (GIY-YIG family) elements inserted after position 462 in the rbcL gene, and group IA1 introns inserted after position 699. The latter intron type sometimes encodes HNH homing endonucleases. The distribution of introns was analyzed on an exon phylogeny and patterns were recovered that are consistent with vertical inheritance and possible horizontal transfer. The rbcL 462 introns are thus far reported only within the Volvocales, Hydrodictyaceae and Bracteacoccus, and closely related isolates of algae differ in the presence of rbcL introns. Phylogenetic analysis of the intron conserved regions indicates that the rbcL699 and rbcL462 introns have distinct evolutionary origins. The rbcL699 introns were likely derived from ribosomal RNA L2449 introns, whereas the rbcL462 introns form a close relationship with psbA introns.  相似文献   

18.
Ericoid mycorrhizal fungi form symbioses with the roots of members of the Ericales. Although only two genera have been identified in culture, the taxonomic diversity of ericoid symbionts is certainly wider. Genetic variation among 40 ericoid fungal isolates was investigated in this study. PCR amplification of the nuclear small-subunit ribosomal DNA (SSU rDNA) and of the internal transcribed spacer (ITS), followed by sequencing, led to the discovery of DNA insertions of various sizes in the SSU rDNA of most isolates. They reached sizes of almost 1,800 bp and occurred in up to five different insertion sites. Their positions and sizes were generally correlated with morphological and ITS-RFLP grouping of the isolates, although some insertions were found to be optional among isolates of the same species, and insertions were not always present in all SSU rDNA repeats within an isolate. Most insertions were identified as typical group I introns, possessing the conserved motifs characteristic of this group. However, other insertions lack these motifs and form a distinct group that includes other fungal ribosomal introns. Alignments with almost 70 additional sequences from fungal nuclear SSU rDNA introns indicate that introns inserted at the same site along the rDNA gene are generally homologous, but they also suggest the possibility of some horizontal transfers. Two of the ericoid fungal introns showed strong homology with a conserved motif found in endonuclease genes from nuclear rDNA introns.  相似文献   

19.
20.
Many group I introns encode endonucleases that promote intron homing by initiating a double-stranded break-mediated homologous recombination event. In this work we describe intron homing in Bacillus subtilis phages SPO1 and SP82. The introns encode the DNA endonucleases I-HmuI and I-HmuII, respectively, which belong to the H-N-H endonuclease family and possess nicking activity in vitro. Coinfections of B. subtilis with intron-minus and intron-plus phages indicate that I-HmuI and I-HmuII are required for homing of the SPO1 and SP82 introns, respectively. The homing process is a gene conversion event that does not require the major B. subtilis recombination pathways, suggesting that the necessary functions are provided by phage-encoded factors. Our results provide the first examples of H-N-H endonuclease-mediated intron homing and the first demonstration of intron homing initiated by a nicking endonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号