首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular-weight properties of three purified proteinase inhibitors from lima bean were studied by using high speed sedimentation equilibrium. Two isoinhibitors [fraction I and II, nomenclature from Jones et al., (18)]do not self-associate at moderate pH and concentration (<4 g/liter). Fraction IV exists as a monomer at pH 2.0 and polymerizes at higher pH values. The molecular-weight data fit a monomer ? dimer equilibrium at pH 7.0, and a monomer ? dimer ? trimer equilibrium at pH 4.65.  相似文献   

2.
1. Pyruvate carboxylase was purified to apparent homogeneity from pig liver mitochondria and shown to be free of all kinetically contaminating enzymes. 2. The enzyme has a mol. wt. of 520000 and is composed of four subunits, each with a mol. wt. of 130000. 3. The enzyme can exist as the active tetramer, dimer and monomer, although the tetramer appears to be the form in which the enzyme is normally assayed. 4. For every 520000g of the enzyme there are 4mol of biotin, 3mol of zinc and 1mol of magnesium. No significant concentrations of manganese were detected. 5. Analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis indicates three polypeptide chains per monomer unit, each with a mol. wt. of 47000. 6. The amino acid analysis, stoicheiometry of the reaction and the activity of the enzyme as a function of pH are also presented. 7. The enzyme is activated by a variety of univalent cations but not by Tris(+) or triethanolamine(+). 8. The activity of the enzyme is dependent on the presence of acetyl-CoA; the low rate in the absence of added acetyl-CoA is not due to an enzyme-bound acyl-CoA. The dissociation constant for enzyme-bound acetyl-CoA is a marked function of pH.  相似文献   

3.
1. Filtrates from cultures of different ages of Botryodiplodia theobromae Pat. were fractionated by gel filtration, ion-exchange chromatography and polyacrylamide-gel electrophoresis. 2. Five cellulases (C1, C2, C3, C4 and C5) were found, and their molecular weights, estimated by gel filtration, were 46000–48000 (C1), 30000–35000 (C2), 15000–18000 (C3), 10000–11000 (C4) and 4800–5500 (C5). 3. Cellulase C5 was absent from old culture filtrates. 4. Cellulase C1 had little or no activity on CM-cellulose (viscometric assay), but degraded cotton flock and Whatman cellulose powder to give cellobiose only. 5. The other components (C2–C5) produced cellobiose and smaller amounts of glucose and cellotriose from cellulosic substrates and were more active in lowering the viscosity of CM-cellulose. 6. The ratio of activities assayed by viscometry and by the release of reducing sugars from CM-cellulose increased with decrease in the molecular weights of cellulases C2–C5. 7. Cellobiose inhibited the activities of the cellulases, but glucose stimulated at low concentrations although it inhibited at high concentrations. 8. A high-molecular-weight β-glucosidase (component B1, mol.wt. 350000–380000) predominated in filtrates from young cultures, but a low-molecular-weight enzyme (B4, mol.wt. 45000–47000) predominated in older filtrates. 9. Intermediate molecular species of β-glucosidase (B2, mol.wt. 170000–180000; B3, mol.wt. 83000–87000) were also found. 10. Cellulases C2–C5 acted in synergism with C1, particularly in the presence of β-glucosidase.  相似文献   

4.
We purified a secreted fungal laccase from filtrates of Gaeumannomyces graminis var. tritici cultures induced with copper and xylidine. The active protein had an apparent molecular mass of 190 kDa and yielded subunits with molecular masses of 60 kDa when denatured and deglycosylated. This laccase had a pI of 5.6 and an optimal pH of 4.5 with 2,6-dimethoxyphenol as its substrate. Like other, previously purified laccases, this one contained several copper atoms in each subunit, as determined by inductively coupled plasma spectroscopy. The active enzyme catalyzed the oxidation of 2, 6-dimethoxyphenol (Km = 2.6 x 10(-5) +/- 7 x 10(-6) M), catechol (Km = 2.5 x 10(-4) +/- 1 x 10(-5) M), pyrogallol (Km = 3.1 x 10(-4) +/- 4 x 10(-5) M), and guaiacol (Km = 5.1 x 10(-4) +/- 2 x 10(-5) M). In addition, the laccase catalyzed the polymerization of 1, 8-dihydroxynaphthalene, a natural fungal melanin precursor, into a high-molecular-weight melanin and catalyzed the oxidation, or decolorization, of the dye poly B-411, a lignin-like polymer. These findings indicate that this laccase may be involved in melanin polymerization in this phytopathogen's hyphae and/or in lignin depolymerization in its infected plant host.  相似文献   

5.
Further studies of the structure of human placental acid alpha-glucosidase   总被引:2,自引:0,他引:2  
Acid alpha-glucosidase has been purified from human placenta to a specific activity of approximately 6800, (4-methylumbelliferyl-alpha-D-glucoside as a substrate) or 55,400 mumol g-1 min-1 (glycogen or maltose as substrate). The purified enzyme gives rise to multiple protein bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), i.e., a major doublet of 82K and 69K , a minor doublet of 25K and 21K , and a faint band of 100K. All of the molecular weight species stained as glycoproteins with an intensity apparently proportional to their protein content, and were present in enzyme from individuals homozygous for the allozyme alpha-Glu 1. Isoelectric focusing revealed only enzymatically active proteins which, when analysed by SDS-PAGE, gave rise to multiple molecular weight species. Chromatography of I125-labeled, purified enzyme on Bio-Gel P-100 revealed only a radiolabeled, high-molecular-weight species which corresponded with enzyme activity. These findings suggest that, in the native state, the mature enzyme exists as a high-molecular-weight species, which is dissociable in SDS to several low-molecular-weight species. These results are consistent with reports that a 100K primary product of translation is post-translationally modified to yield polypeptides of lower molecular weights, and that all of the molecular species are absent in cells genetically deficient for acid alpha-glucosidase. The possibility that the low-molecular-weight (20- 25K ) protein bands in SDS-gels corresponded to a previously reported low-molecular-weight species generated by treatment with guanidine-HCl was investigated. The I125-labeled, purified acid maltase was dissociated by guanidine into two equal peaks of approximately 64K and 28K molecular weight. Surprisingly, both peaks, when analyzed on SDS-gels, yielded identical and equally intensely staining bands of 64K molecular weight. These results suggest that the mature acid alpha-glucosidase is made up of polypeptides which are bonded in the native state by at least two different types of interaction, one type which is dissociable in SDS and one type which is dissociable in guanidine but not in SDS. The nature and possible function of the 25K polypeptide generated only by guanidine-HCl remains to be determined.  相似文献   

6.
The extracellular adenylate cyclase of Bordetella pertussis was partially purified and found to contain high- and low-molecular-weight species. The high-molecular-weight form had a variable molecular weight with a peak at about 700,000. The smaller species had a molecular weight of 60 to 70,000 as determined by gel filtration. The low-molecular-weight form could be derived from the high-molecular-weight species. The high-molecular-weight complex purified from the cellular supernatant was highly stimulated by calmodulin, while the low-molecular-weight enzyme was much less stimulated. Active enzyme could be recovered from sodium dodecyl sulfate (SDS) gels at positions corresponding to molecular weights of about 50,000 and 65,000. Active low-molecular-weight enzyme recovered from SDS gels migrated with a molecular weight of about 50,000, which coincides with a coomassie blue-stained band. However, when both high- and low-molecular weight preparations were analyzed in 8 M urea isoelectrofocusing gels, the enzyme activity recovered did not comigrate with stained protein bands. The enzyme recovered from denaturing isoelectrofocusing or SDS gels was activated by calmodulin, indicating a direct interaction of calmodulin and enzyme. The high-molecular-weight form of the enzyme showed increasing activity with calmodulin concentrations ranging from 0.1 to 500 nM, while the low-molecular-weight form was fully activated by calmodulin at 20 nM. Adenylate cyclase on the surface of living cells was activated by calmodulin in a manner which resembled that found for the high-molecular-weight form.  相似文献   

7.
Delta-aminolaevulinate dehydratase, the second and rate-limiting enzyme of the haem-biosynthetic pathway, was purified 300-fold from induced cultures of Neurospora crassa. The native enzyme has a mol.wt. of about 350000, whereas the salt-treated enzyme after incubation at 37 degrees C for 10 min has a mol.wt. of about 232000. The mol.wt. of the subunit is about 38000. Antibodies to the purified enzyme were raised in rabbits. By using radiolabelling and immunoprecipitation techniques it was shown that addition of iron and laevulinate to iron-deficient cultures brings about a significant increase in the synthesis of the enzyme, and protoporphyrin, the penultimate end product of the pathway, represses enzyme synthesis.  相似文献   

8.
Glucose kinase catalyzes the ATP-dependent phosphorylation of glucose. Streptomyces peucetius var. caesius glucose kinase was purified 292-fold to homogeneity. The enzyme has cytosolic localization and is composed of four identical subunits, each of 31 kDa. The purified enzyme easily dissociates into dimers. However, in the presence of 100 mM glucose the enzyme maintains its tetrameric form. Maximum activity was found at 42 degrees C and pH 7.5. Isoelectric focusing of the enzyme showed a pl of 8.4. The N- and C-terminal amino acid sequences were MGLTIGVD and VYFAREPDPIM, respectively. The kinetic mechanism of S. peucetius var. caesius glucose kinase appears to be a rapid equilibrium ordered type, i.e., ordered addition of substrates to the enzyme, where the first substrate is d-glucose. The K(m) values for d-glucose and MgATP(2-) were 1.6 +/- 0.2 and 0.8 +/- 0.1 mM, respectively. Mg(2+) in excess of 10 mM inhibits enzyme activity.  相似文献   

9.
An enzyme having both UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) pyrophosphorylase activities was purified to homogeneity from Bifidobacterium bifidum. The molecular weight of the enzyme was about 200,000 and it appeared to be composed of four identical subunits. The purified enzyme showed almost the same reactivity towards UDP-Glc and UDP-Gal, and showed about 10% of this activity towards UDP-xylose at 8 mM. The enzyme required magnesium ions for maximum activity. The apparent equilibrium constants were about 2.5 for UDP-Glc pyrophosphorolysis and 1.1 for UDP-Gal pyrophosphorolysis. The enzyme activities were inhibited by various nucleotides (product or substrate analogs). Some sugar phosphates, such as fructose 6-P, erythrose 4-P, and 3-phosphoglycerate, stimulated the activities. These properties are discussed in relation to the significance of the enzyme in galactose metabolism of B. bifidum.  相似文献   

10.
We describe the detailed biochemical characterization of CYP74C3 (cytochrome P450 subfamily 74C3), a recombinant plant cytochrome P450 enzyme with HPL (hydroperoxide lyase) activity from Medicago truncatula (barrel medic). Steady-state kinetic parameters, substrate and product specificities, RZ (Reinheitszahl or purity index), molar absorption coefficient, haem content, and new ligands for an HPL are reported. We show on the basis of gel filtration, sedimentation velocity (sedimentation coefficient distribution) and sedimentation equilibrium (molecular mass) analyses that CYP74C3 has low enzyme activity as a detergent-free, water-soluble, monomer. The enzyme activity can be completely restored by re-activation with detergent micelles, but not detergent monomers. Corresponding changes in the spin state equilibrium, and probably co-ordination of the haem iron, are novel for cytochrome P450 enzymes and suggest that detergent micelles have a subtle effect on protein conformation, rather than substrate presentation, which is sufficient to improve substrate binding and catalytic-centre activity by an order of magnitude. The kcat/K(m) of up to 1.6x10(8) M(-1) x s(-1) is among the highest recorded, which is remarkable for an enzyme whose reaction mechanism involves the scission of a C-C bond. We carried out both kinetic and biophysical studies to demonstrate that this effect is a result of the formation of a complex between a protein monomer and a single detergent micelle. Association with a detergent micelle rather than oligomeric state represents a new mechanism of activation for membrane-associated cytochrome P450 enzymes. Highly concentrated and monodispersed samples of detergent-free CYP74C3 protein may be well suited for the purposes of crystallization and structural resolution of the first plant cytochrome P450 enzyme.  相似文献   

11.
Lysyl oxidase of bovine aorta was resolved into four enzymically active species by elution from DEAE-cellulose with a salt gradient in 6m-urea, consistent with purification results obtained with enzyme of other tissues [Stassen (1976) Biochim. Biophys. Acta438, 49-60]. In the present study, each of the four peaks of activity was purified to apparent homogeneity by subsequent chromatography on gel-filtration media in 6m-urea. Each enzyme is eluted as a species with mol.wt. approx. 30000 under these conditions, although lysyl oxidase polymerizes to a series of multimers with molecular weights ranging up to 1000000 in the absence of urea. The apparent subunit molecular weight of each enzyme species determined by electrophoresis in sodium dodecyl sulphate and 8m-urea is approx. 32000-33000. The amino acid compositions of the purified forms of lysyl oxidase are similar to each other, although sufficient differences exist to conclude that each is a unique molecular species. Incorporation of alpha-toluenesulphonyl fluoride into the purification scheme does not alter the resolution of enzyme into four species, suggesting that proteolysis during isolation is not the basis of the heterogeneity. The similar sensitivities of each form of enzyme to chelating agents and to semicarbazide and isoniazid indicate that each requires the participation of a metal ion, presumably Cu(2+), and of a carbonyl compound for enzyme function. The present study describes a method for the purification of multiple species of lysyl oxidase and reveals that significant chemical differences exist between the different enzyme forms.  相似文献   

12.
Human placental protein methylase--I. Purification and characterization.   总被引:1,自引:0,他引:1  
1. Protein methylase I (S-adenosylmethionine[:]protein-arginine N-methyltransferase; EC 2.1.1.23) which methylates protein-bound arginine residues has been purified from human term placenta 400-fold with an approximate yield of 6%. 2. When histone was used as in vitro substrate, the methylation products were found to be NG-mono-, NG, NG-di- and NG, N'G-dimethylarginine. The enzyme was found to be sensitive toward Cu2+ with Ki value of 8 x 10(-5) M. The Km value for S-adenosyl-L-methionine was 5 x 10(-6) M. 3. When this partially purified protein methylase I was incubated with isolated human placental nuclei and S-adenosyl-L-[methyl-3H]methionine, the major endogenous [methyl-3H]-labeled proteins were protein species of 23, 38, 45 and 68 kDa, the 23 kDa species being the most predominant. 4. The endogenous enzyme activity during the pregnancy increased significantly, reaching more than 4 times the initial activity at the end of term.  相似文献   

13.
Endo-beta-mannosidase, which hydrolyzes the Manbeta1-4GlcNAc linkage in the trimannosyl core structure of N-glycans, was recently purified to homogeneity from lily (Lilium longiflorum) flowers as a heterotrimer [Ishimizu, T., Sasaki, A., Okutani, S., Maeda, M., Yamagishi, M., and Hase, S. (2004) J. Biol. Chem. 279, 38555-38562]. Here, we describe the substrate specificity of the enzyme and cloning of its cDNA. The purified enzyme hydrolyzed pyridylaminated (PA-) Man(n)Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc (n = 0-2) to Man(n)Manalpha1-6Man and GlcNAcbeta1-4GlcNAc-PA. It did not hydrolyze PA-sugar chains containing Manalpha1-3Manbeta and/or Xylbeta1-2Manbeta. The best substrate among the PA-sugar chains tested was Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc-PA with a K(m) value of 1.2 mM. However, the enzyme displayed a marked preference for the corresponding glycopeptide, Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc-peptide (K(m) value 75 microM). These results indicate that the substrate recognition by the enzyme involves the peptide portion attached to the N-glycan. Sequence information on the purified enzyme was used to clone the corresponding cDNA. The monocotyledonous lily enzyme (952 amino acids) displays 68% identity to its dicotyledonous (Arabidopsis thaliana) homologue. Our results show that the heterotrimeric enzyme is encoded by a single gene that gives rise to three polypeptides following posttranslational proteolysis. The enzyme is ubiquitously expressed, suggesting that it has a general function such as processing or degrading N-glycans.  相似文献   

14.
The enzyme 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase (EC 2.3.1.67) was purified from rat spleen approx. 1500-fold in 1.6% yield. The specific activity of the purified enzyme was 0.317 +/- 0.089 mumol/min per mg of protein (mean +/- S.D., n = 6). The Km for the substrate acetyl-CoA was 137 +/- 13 microM and the pH optimum was about 8. Incubation of the purified enzyme was 1-O-[3H]octadecyl-2-lyso-sn-glycero-3-phosphocholine followed by electrophoresis resulted in the incorporation of radioactivity into a protein of Mr 29,000. The enzyme was most active towards 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine as substrate, 1-palmitoyl-2-lyso-glycero-3-phosphocholine being a poor substrate. In addition, the enzyme preferred acetyl-CoA to palmitoyl-CoA or oleoyl-CoA as substrate.  相似文献   

15.
Gel filtration applied to the study of lipases and other esterases   总被引:5,自引:3,他引:2       下载免费PDF全文
1. Sephadex G-100 and G-200 gel-filtration columns were calibrated for molecular-weight estimation with proteins of known molecular weights, and used to study the composition of several lipase or esterase preparations. 2. Enzymes from cow's milk, rat adipose tissue and pig pancreas were detected in the column effluents by their ability to liberate free acid from emulsified tributyrin at pH 8·5. 3. Four tributyrinases were detected in preparations from individual cow's milks. Molecular weights 62000, 75000 and 112000 were estimated for three of them, but although the fourth may be of unusually low molecular weight an estimate was not possible. 4. Extracts of rat adipose tissue apparently contained six tributyrinases (molecular weights 39000, 47000, 55000, 68000, 75000 and 200000) but the relative amounts of these enzymes varied widely from rat to rat. 5. Tributyrinase activity in juice expressed from pig pancreatic tissue was due mainly to one enzyme (molecular weight 42000). On the other hand, activity in extracts of acetone-dried pancreas was confined to material of molecular weight > 106, which may be an aggregated form of the lower-molecular-weight enzyme. 6. Activity in fractionated wheat-germ extracts was assayed with emulsified triacetin substrate, and was evidently due to one enzyme (molecular weight 51000). 7. Some problems arising in the application of gel filtration to the study of lipase–esterase systems were indicated.  相似文献   

16.
Glutamine synthetase from ovine brain has been found to exist in vivo and in vitro as a Mn4E complex, where E is octameric enzyme [F. C. Wedler, R. B. Denman, and W. G. Roby (1982) Biochemistry 24, 6389-6396]. Previously observed anomolous effects of added metal ions and protein concentration on the observed specific activity in vitro can now be explained in terms of association-dissociation of the native octamer. In the absence of glycerol, added to stabilize the enzyme for long-term storage, activity decreases sharply below 4 micrograms/ml (20 nM octamer) in assay mixtures due to dissociation of octamer to tetramer and thence to inactive monomer. No dimeric species were detectable under any conditions. The octameric species Mn4EMn4 could be activated further by Mn(II) to form a species Mn4EMn4Mn8 that has a specific activity of ca. 900 U/mg in the transferase assay. Enzyme with one Mn(II)/subunit, Mn4EMn4, associated to octamers more extensively than Mn4E. At the low concentrations of enzyme at which the tetramer predominates, addition of substrates alone or in pairs caused partial reassociation to octamers, the most effective combinations being ATP and glutamate, ADP and L-glutamine, or ATP and L-methionine sulfoximine. Analysis of the data by the methods of Kurganov or Thomes and co-workers indicate that the tetramer/octamer equilibrium has a Kd value of ca. 2.5 X 10(-6) M, comparable to values calculated for other enzyme systems. The specific activities for octamer and monomer in the Mg(II)-dependent transferase assay were calculated to be 200 +/- 20 and 0 U/mg, respectively. Direct determination of the specific activity of pure tetramer is hampered by its substrate-promoted reassociation to octamer under assay conditions. Tetramers, produced by 2 M urea and then immobilized on CNBr-activated Sepharose 4B, exhibited a specific activity that was 86% of that of the identically treated octamers. This indicates a specific activity of ca. 172 (+/- 20) for tetramers in solution. Light-scattering experiments showed that, with 1.7-2.0 Mn(II) bound per subunit, the octameric enzyme octamers can associate further to an oligomeric species (Mn4EMn4Mn8)n, where n greater than or equal to 5. This oligomerization also was promoted strongly by lanthanide ions. Mg(II), however, caused only the association of tetramer to octamer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The high Km cyclic nucleotide phosphodiesterase of Saccharomyces cerevisiae was purified by an improved procedure. Its amino acid composition is reported. Its pI is 5.85 +/- 0.1. Sedimentation equilibrium analysis of the native enzyme gave Mr = 88,000 +/- 6,000, whilst gel electrophoresis in the presence of dodecyl sulfate gave a molecular weight of 43,000, indicating that the enzyme is a dimer. Preparations of 94 +/- 4% purity contained about 2.4 atoms of zinc/43,000 daltons. Inactivation of the enzyme by 8-hydroxyquinoline was accompanied by removal of about 2 zinc atoms per monomer. Partially inactivated enzyme regained activity during dialysis against zinc, or, with less effect, cobalt salts. 8-Hydroxyquinoline (Ki = 1.1 mM) and 1,10-phenanthroline (Ki = 0.6 mM) were competitive inhibitors. The enzyme was also inhibited by the nonchelating 1,7-and 4,7-phenanthrolines and by thiols and KCN, but not by NaN3. These inhibitors probably act by binding to, but not chelating, enzyme-bound zinc.  相似文献   

18.
We have purified to near homogeneity a site-specific, double-stranded DNA endonuclease (I-Sce II) encoded by intron 4 alpha (aI4 alpha) of the yeast mitochondrial coxI gene. Our purification starts with a high salt extract of mitochondria isolated from a yeast strain that overproduces the enzyme because of a block in splicing of aI4 alpha. The final step of purification is an affinity column consisting of covalently bound double-stranded DNA multimers of a synthetic sequence, 5'-TTGGTCATCCAGAAGTAT-3', which contains the I-Sce II cleavage/recognition site. Typical yields of enzyme are 3-5% with a specific activity of approximately 500,000 units/mg, where 1 unit of activity cleaves 50 ng of DNA substrate/h at 30 degrees C. I-Sce II has a monomer molecular mass of 31 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Active enzyme purifies as a 55-kDa species, which we presume to be a homodimer. I-Sce II monomer comigrates with an in vivo synthesized mitochondrial translation product made in the strain that overproduces the enzyme. We conclude that I-Sce II is derived by proteolytic processing of a precursor polypeptide, p62, encoded by an in-frame fusion of coxI exons 1-4 with the downstream aI4 alpha reading frame. I-Sce II is most active at pH 7.5 and at 20-30 degrees C. Endonuclease activity is sensitive to salt and is dependent upon Mg2+ or Mn2+, but is unaffected by inclusion of ATP or GTP. I-Sce II is the first intron-encoded protein to be purified and characterized from yeast mitochondria.  相似文献   

19.
The binding of [3H]cGMP to purified beef lung cGMP-dependent protein kinase (cG kinase) was examined using two methods of membrane filtration which avoided loss of bound [3H]cGMP. The enzyme bound 1.6-2.0 mol of [3H]cGMP/mol of monomer. If the kinase was saturated with [3H]cGMP and then excess unlabeled cGMP was added, [3H]cGMP dissociated from the enzyme as two approximately equal components (Sites 1 and 2). When 8-bromo-cGMP or cIMP was added to the [3H]cGMP-binding reaction at a concentration sufficient to competitively inhibit binding by greater than 50%, the relative amount of the slower or faster component, respectively, of [3H]cGMP dissociation decreased during the cGMP chase. The data indicated that the cG kinase, like its cAMP-dependent protein kinase homologue, possesses two highly conserved intrachain cyclic nucleotide-binding sites which have different dissociation rates and analog specificity. The Ka of the kinase for cGMP was about 20-fold lower using histone instead of heptapeptide as substrate. Aging of the enzyme caused conversion to a higher Ka form of the kinase and an apparent increase in the Site 1 cGMP dissociation rate. Using fresh enzyme and heptapeptide as substrate, Site 1 occupation occurred at lower concentrations of cGMP than did Site 2 occupation, and was associated with an increase in protein kinase activity. However, kinase activity appeared to correlate better with total cGMP binding than with binding to either of the two sites, and the activation by cGMP exhibited positive cooperativity (n = 1.57). It is suggested that both intrachain sites are involved in protein kinase activation. E2 + 4 cGMP in equilibrium E2 . cGMP4 The cG kinase could be photoaffinity-labeled using 8-azido-[32P]cAMP. When the labeled cG kinase was trypsin-treated followed by sodium dodecyl sulfate-slab gel electrophoresis, a single major peptide of approximate Mr = 12,000 was resolved.  相似文献   

20.
1. GAMMA-Glutamylcyclotransferase was purified 10000-fold from human erythrocytes. 2. The purification steps involved fractionation with (NH4)(2)SO(4) and chromatography on Sephadex G-75, DEAE-cellulose and hydroxyapatite. The purified enzyme was found to be homogeneous on density-gradient polyacrylamide-gel electrophoresis. 3. The maximum reaction rate was observed at pH9.0 and the apparent Km value for gamma-glutamyl-L-alanine was 2.2mM. 4. The molecular weight (25250) of the purified enzyme agreed well with the value (25500) in fresh haemolysates, indicating no apparent structural modification of the enzyme during purification. However, rapid processing of the blood through the initial (NH4)(2)SO(4) and Sephadex-chromatography steps was required to prevent formation of a high-molecular-weight aggregate with substantially lower specific activity. 5. gamma-Glutamylcyclotransferase catalyses the formation of 5-oxoproline from gamma-glutamyl dipeptides. The role of this enzyme in erythrocytes is of particular interest, because gamma-glutamyl-L-cysteine serves as a substrate for both gamma-glutamylcyclotransferase and glutathione synthetase. Thus the cyclotransferase could modulate glutathione synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号