首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uncoupler resistance presents a potential challenge to the conventional chemiosmotic coupling mechanism. InE. coli, an adaptive response to uncouplers was found in cell growing under conditions requiring oxidative phosphorylation. It is suggested that uncoupler-resistant mutants described in the earlier literature might represent a constitutive state of expression of this low energy shock adaptive response. In the environment, bacteria are confronted by nonclassical uncoupling factors such as organic solvents, heat, and extremes of pH. It is suggested that the low energy shock response will aid the cell in coping with the effects of natural uncoupling factors. The genetic analysis of uncoupler resistance has only recently began, and is yielding interesting and largely unexpected results. InBacillus subtilis, a mutation in fatty acid desaturase causes an increased content of saturated fatty acids in the membrane and increased uncoupler resistance. The protonophoric efficiency of uncouplers remains unchanged in the mutants, inviting nonorthodox interpretations of the mechanism of resistance. InE. coli, two loci conferring resistance to CCCP and TSA were cloned and were found to encode multidrug resistance pumps. Resistance to one of the uncouplers, TTFB, remained unchanged in strains mutated for the MDRs, suggesting a resistance mechanism different from uncoupler extrusion.  相似文献   

2.
A profile of free fatty acid (FFA) specificity in Acanthamoeba castellanii mitochondrial uncoupling is described. The FFA uncoupling specificity was observed as different abilities to stimulate resting respiration, to decrease resting membrane potential, and to decrease oxidative phosphorylation efficiency. Tested unsaturated FFA (C18–20) were more effective as uncouplers and protonophores when compared to tested saturated FFA (C8–18), with palmitic acid (C16:0) as the most active. As FFA efficiency in mitochondrial uncoupling is related to physiological changes of fatty acid composition (and thereby FFA availability) during growth of amoeba cells, it could be a way to regulate the activity of an uncoupling protein and thereby the efficiency of oxidative phosphorylation during a cell life of this unicellular organism. Aleksandra Swida and Małgorzata Czarna contributed equally to this work.  相似文献   

3.
Limited uncoupling of oxidative phosphorylation is known to be beneficial in various laboratory models of diseases. The search for cationic uncouplers is promising as their protonophorous effect is self-limiting because these uncouplers lower membrane potential which is the driving force for their accumulation in mitochondria. In this work, the penetrating cation Rhodamine 19 butyl ester (C4R1) was found to decrease membrane potential and to stimulate respiration of mitochondria, appearing to be a stronger uncoupler than its more hydrophobic analog Rhodamine 19 dodecyl ester (C12R1). Surprisingly, C12R1 increased H+ conductance of artificial bilayer lipid membranes or induced mitochondria swelling in potassium acetate with valinomycin at concentrations lower than C4R1. This paradox might be explained by involvement of mitochondrial proteins in the uncoupling action of C4R1. In experiments with HeLa cells, C4R1 rapidly and selectively accumulated in mitochondria and stimulated oligomycin-sensitive respiration as a mild uncoupler. C4R1 was effective in preventing oxidative stress induced by brain ischemia and reperfusion in rats: it suppressed stroke-induced brain swelling and prevented the decline in neurological status more effectively than C12R1. Thus, C4R1 seems to be a promising example of a mild uncoupler efficient in treatment of brain pathologies related to oxidative stress.  相似文献   

4.
In liver mitochondria fatty acids act as protonophoric uncouplers mainly with participation of internal membrane protein carriers — ADP/ATP and aspartate/glutamate antiporters. In this study the values of recoupling effects of carboxyatractylate and glutamate (or aspartate) were used to assess the degree of participation of ADP/ATP and aspartate/glutamate antiporters in uncoupling activity of fatty acids. These values were determined from the ability of these recoupling agents to suppress the respiration stimulated by fatty acids and to raise the membrane potential reduced by fatty acids. Increase in palmitic and lauric acid concentration was shown to increase the degree of participation of ADP/ATP antiporter and to decrease the degree of participation of aspartate/glutamate antiporter in uncoupling to the same extent. These data suggest that fatty acids are not only inducers of uncoupling of oxidative phosphorylation, but that they also act the regulators of this process. The linear dependence of carboxyatractylate and glutamate recoupling effects ratio on palmitic and lauric acids concentration was established. Comparison of the effects of fatty acids (palmitic, myristic, lauric, capric, and caprylic having 16, 14, 12, 10, and 8 carbon atoms, respectively) has shown that, as the hydrophobicity of fatty acids decreases, the effectiveness decreases to a greater degree than the respective values of their specific uncoupling activity. The action of fatty acids as regulators of uncoupling is supposed to consist of activation of transport of their anions from the internal to the external monolayer of the internal membrane with participation of ADP/ATP antiporter and, at the same time, in inhibition of this process with the participation of aspartate/glutamate antiporter.  相似文献   

5.
The effect of ATP/ADP-antiporter inhibitors on palmitate-induced uncoupling was studied in heart muscle mitochondria and inside-out submitochondrial particles. In both systems palmitate is found to decrease the respiration-generated membrane potential. In mitochondria, this effect is specifically abolished by carboxyatractylate (CAtr) a non-penetrating inhibitor of antiporter. In submitochondrial particles, CAtr does not abolish the palmitate-induced potential decrease. At the same time, bongkrekic acid, a penetrating inhibitor of the antiporter, suppresses the palmitate effect on the potential both in mitochondria and particles. Palmitoyl-CoA which is known to inhibit the antiporter in mitochondria as well as in particles decreases the palmitate uncoupling efficiency in both these systems. These data are in agreement with the hypothesis that the ATP/ADP-antiporter is involved in the action of free fatty acids as natural uncouplers of oxidative phosphorylation.  相似文献   

6.
Study of the uncoupling effect of various saturated fatty acids (from caprylic to palmitic) revealed that the glutamate recoupling effect was more pronounced in the case of short chain fatty acids, whereas recoupling of mitochondria by carboxyatractylate was more effective in the case of long chain fatty acids. The overall recoupling effect, however, did not depend on the fatty acid chain length. Besides carboxyatractylate, glutamate and aspartate also exhibited a recoupling effect under uncoupling by lauryl sulfate. The uncoupling effect of lauryl sulfate was markedly weaker in the presence of DNP or laurate (but not FCCP) which were added in concentrations causing twofold increase in mitochondrial respiration. In the presence of lauryl sulfate the uncoupling action of laurate and DNP was insensitive to carboxyatractylate and glutamate. With laurate and DNP as uncouplers increasing the pH from 7.0 to 7.8 potentiated the recoupling effect of carboxyatractylate and attenuated the recoupling effect of glutamate. In the case of uncoupling by lauryl sulfate similar changes in the recoupling effect of carboxyatractylate and glutamate were observed only in the presence of 10 microM tetraphenylphosphonium. Thus, when uncoupling is induced by fatty acids, DNP, and lauryl sulfate, the ADP/ATP and aspartate/glutamate antiporters function as two parallel and independent pathways for mitochondrial membrane potential dissipation. We suggest that the role of the ADP/ATP antiporter in uncoupling includes proton capture from the intermembrane space with subsequent protonation of uncoupler anions, their transport as neutral molecules on the internal side, and deprotonation followed by proton release into the matrix and transfer of the uncoupler anion in the reverse direction. During uncoupling the aspartate/glutamate antiporter cyclically carries the uncoupler anion with simultaneous proton transfer from the intermembrane space into the matrix.  相似文献   

7.
Bernhard Kadenbach 《BBA》2003,1604(2):77-94
This article reviews parameters of extrinsic uncoupling of oxidative phosphorylation (OxPhos) in mitochondria, based on induction of a proton leak across the inner membrane. The effects of classical uncouplers, fatty acids, uncoupling proteins (UCP1-UCP5) and thyroid hormones on the efficiency of OxPhos are described. Furthermore, the present knowledge on intrinsic uncoupling of cytochrome c oxidase (decrease of H+/e stoichiometry=slip) is reviewed. Among the three proton pumps of the respiratory chain of mitochondria and bacteria, only cytochrome c oxidase is known to exhibit a slip of proton pumping. Intrinsic uncoupling was shown after chemical modification, by site-directed mutagenesis of the bacterial enzyme, at high membrane potential ΔΨ, and in a tissue-specific manner to increase thermogenesis in heart and skeletal muscle by high ATP/ADP ratios, and in non-skeletal muscle tissues by palmitate. In addition, two mechanisms of respiratory control are described. The first occurs through the membrane potential ΔΨ and maintains high ΔΨ values (150-200 mV). The second occurs only in mitochondria, is suggested to keep ΔΨ at low levels (100-150 mV) through the potential dependence of the ATP synthase and the allosteric ATP inhibition of cytochrome c oxidase at high ATP/ADP ratios, and is reversibly switched on by cAMP-dependent phosphorylation. Finally, the regulation of ΔΨ and the production of reactive oxygen species (ROS) in mitochondria at high ΔΨ values (150-200 mV) are discussed.  相似文献   

8.
Intrinsic and extrinsic uncoupling of oxidative phosphorylation   总被引:17,自引:0,他引:17  
This article reviews parameters of extrinsic uncoupling of oxidative phosphorylation (OxPhos) in mitochondria, based on induction of a proton leak across the inner membrane. The effects of classical uncouplers, fatty acids, uncoupling proteins (UCP1-UCP5) and thyroid hormones on the efficiency of OxPhos are described. Furthermore, the present knowledge on intrinsic uncoupling of cytochrome c oxidase (decrease of H(+)/e(-) stoichiometry=slip) is reviewed. Among the three proton pumps of the respiratory chain of mitochondria and bacteria, only cytochrome c oxidase is known to exhibit a slip of proton pumping. Intrinsic uncoupling was shown after chemical modification, by site-directed mutagenesis of the bacterial enzyme, at high membrane potential DeltaPsi, and in a tissue-specific manner to increase thermogenesis in heart and skeletal muscle by high ATP/ADP ratios, and in non-skeletal muscle tissues by palmitate. In addition, two mechanisms of respiratory control are described. The first occurs through the membrane potential DeltaPsi and maintains high DeltaPsi values (150-200 mV). The second occurs only in mitochondria, is suggested to keep DeltaPsi at low levels (100-150 mV) through the potential dependence of the ATP synthase and the allosteric ATP inhibition of cytochrome c oxidase at high ATP/ADP ratios, and is reversibly switched on by cAMP-dependent phosphorylation. Finally, the regulation of DeltaPsi and the production of reactive oxygen species (ROS) in mitochondria at high DeltaPsi values (150-200 mV) are discussed.  相似文献   

9.
A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C(12)R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H(+) ions was generated in the presence of C(12)R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C(12)R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C(12)R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C(12)R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease.  相似文献   

10.
The release of cytochrome c from intermembrane space of mitochondria into cytosol is one of the critical events in apoptotic cell death. The important anti-apoptotic oncoprotein Bcl-2 inhibits this process. In the present study it was shown that apoptosis and release of cytochrome c induced by staurosporine or by tumor necrosis factor- in HeLa cells were not affected by inhibitors of respiration (rotenone, myxothiazol, antimycin A) or by uncouplers (CCCP, DNP) that decrease the membrane potential at the inner mitochondrial membrane. The inhibitors of respiration and the uncouplers did not affect also the anti-apoptotic activity of Bcl-2.  相似文献   

11.
Summary The minimum requirement for unsaturated fatty acids was investigated inE. coli using a mutant impaired in the synthesis of vaccenic acid. Exogenously supplied palmitic acid was incorporated by this mutant which led to a reduction in the proportion of cellular unsaturated fatty acids. Growth was impaired as the level of saturated fatty acids approached 76% at 37°C and 60% at 30°C. The basis of this growth inhibition was investigated. Most transport systems and enzymes examined remained active in palmitate-grown cells although the specific activities of glutamate uptake and succinic dehydrogenase were depressed 50%. Fluorescent probes of membrane organization indicated that fluidity decreased with palmitate incorportation. Temperature scans with parinaric acid indicated that rigid lipid domains exist in palmitategrown cells at their respective growth temperature. Freeze-fracture electron microscopy confirmed the presence of phase separations (particle-free areas) in palmitate-grown cells held at their growth temperature prior to quenching. The extent of this separation into particle-free and particle-enriched domains was equivalent to that induced by a shift to 0°C in control cells. The incorporation of palmitate increased nucleotide leakage over threefold. The cytoplasmic enzyme -galactosidase was released into the surrounding medium as the concentration of unsaturated fatty acid approached the minimum for a particular growth temperature. Lysis was observed as a decrease in turbidity when cells which had been grown with palmitate were shifted to a lower growth temperature. From these results we propose that leakage and partial lysis are the major factors contributing to the apparent decrease in growth rate caused by the excessive incorporation of palmitate. Further, we propose that membrane integrity may determine the minimum requirement for unsaturated fatty acids inE. coli rather than a specific effect on membrane transport and/or membrane-bound enzymes.  相似文献   

12.
Bacillus sp. ORAs2 and Pseudomonas sp. ORAs5, two arsenic-resistant bacterial strains previously isolated from sediments of the Orbetello Lagoon, Italy, were tested for their adaptation to mixed contaminants on the level of membrane fatty acid composition. The two bacterial strains were characterized by high levels of arsenic resistance, and Pseudomonas sp. ORAs5 was also shown to be solvent-tolerant. The bacterial strains were exposed to mixtures of two toxic compounds: arsenic at fixed concentrations and toluene in variable amounts or, alternatively, toluene at constant values along with arsenic added at variable concentrations. Both strains react to the contaminants by changing the composition of their membrane fatty acids. Bacillus sp. strain ORAs2 showed a correlation between growth rate decreases and fatty acids degree of saturation increases in both cases, although pointedly in the presence of 1, 2, and 3 mM of toluene and different additions of arsenic, counteracting membranes fluidity induced by toxic compounds. In Pseudomonas sp. ORAs5, adaptive changes in membrane composition was observed both in terms of increases in the degree of saturation and in the trans/cis ratio of unsaturated fatty acids in the presence of varying toluene and constant arsenic concentrations, whereas only minor changes occurred with increasing arsenic and constant toluene concentrations. Thus, on the level of membrane composition, Bacillus sp. ORAs2 showed a higher potential for adaptation to the presence of mixed pollutants, suggesting its probable suitability for bioremediation purposes.  相似文献   

13.
The effect of fatty acids and mitochondria-targeted lipophilic cations (SkQ1, SkQ3, MitoQ, and C12TPP) on tightly-coupled mitochondria from yeasts Dipodascus (Endomyces) magnusii and Yarrowia lipolytica was investigated. Micromolar concentrations of saturated and unsaturated fatty acids were found to decrease the membrane potential, which was recovered almost totally by ATP and BSA. At low, micromolar concentrations, mitochondria-targeted lipophilic cations are “relatively weak, mild uncouplers”, at higher concentrations they inhibit respiration in state 3, and at much higher concentrations they induce swelling of mitochondria, possibly due to their prooxidant and detergent action. At very low, not uncoupling concentrations, mitochondria-targeted lipophilic cations profoundly promote (potentiate) the uncoupling effect of fatty acids. It is conceivable that the observed uncoupling effect of lipophilic cations can be, at least partially, due to their interactions with the endogenous pool of fatty acids.  相似文献   

14.
15.
Sequence alignment of conserved signature motifs predicts the existence of the uncoupling protein 5 (UCP5)/brain mitochondrial carrier protein (BMCP1) homologue in Drosophila melanogaster. Here we demonstrate the functional characterization of the Drosophila melanogaster UCP5 protein (DmUCP5) in the heterologous yeast system, the first insect UCP reported to date. We show that physiological levels of DmUCP5 expression are responsible for an increase in state 4 respiration rates and a decrease in mitochondrial membrane potential. Furthermore, similar to UCP1, UCP2, and UCP3, the uncoupling activity of DmUCP5 is augmented by fatty acids and inhibited by the purine nucleotide GDP. Thus, DmUCP5 shares the mechanisms known to regulate the UCPs characterized to date. A lack of growth inhibition observed in DmUCP5 expressing yeast is consistent with the notion that physiological uncoupling has a minimal effect on cell growth. Finally, semiquantitative RT-PCR analysis shows a distinctive pattern of DmUCP5 expression predominantly localized in the adult head, similar to the expression pattern of its mammalian homologues. The conserved regulation of the expression of this gene from mammals to fruit flies suggests a role for UCP5 in the brain.  相似文献   

16.
Peter Schönfeld  Lech Wojtczak 《BBA》2007,1767(8):1032-1040
Long-chain nonesterified (“free”) fatty acids (FFA) can affect the mitochondrial generation of reactive oxygen species (ROS) in two ways: (i) by depolarisation of the inner membrane due to the uncoupling effect and (ii) by partly blocking the respiratory chain. In the present work this dual effect was investigated in rat heart and liver mitochondria under conditions of forward and reverse electron transport. Under conditions of the forward electron transport, i.e. with pyruvate plus malate and with succinate (plus rotenone) as respiratory substrates, polyunsaturated fatty acid, arachidonic, and branched-chain saturated fatty acid, phytanic, increased ROS production in parallel with a partial inhibition of the electron transport in the respiratory chain, most likely at the level of complexes I and III. A linear correlation between stimulation of ROS production and inhibition of complex III was found for rat heart mitochondria. This effect on ROS production was further increased in glutathione-depleted mitochondria. Under conditions of the reverse electron transport, i.e. with succinate (without rotenone), unsaturated fatty acids, arachidonic and oleic, straight-chain saturated palmitic acid and branched-chain saturated phytanic acid strongly inhibited ROS production. This inhibition was partly abolished by the blocker of ATP/ADP transfer, carboxyatractyloside, thus indicating that this effect was related to uncoupling (protonophoric) action of fatty acids. It is concluded that in isolated rat heart and liver mitochondria functioning in the forward electron transport mode, unsaturated fatty acids and phytanic acid increase ROS generation by partly inhibiting the electron transport and, most likely, by changing membrane fluidity. Only under conditions of reverse electron transport, fatty acids decrease ROS generation due to their uncoupling action.  相似文献   

17.
Although the activation of phospholipase A2 (PLA2) in ras-transformed cells has been well documented, the mechanisms underlying this activation are poorly understood. In this study we tried to elucidate whether the membrane phospholipid composition and physical state influence the activity of membrane-associated PLA2 in ras-transformed fibroblasts. For this purpose membranes from non-transfected and ras-transfected NIH 3T3 fibroblasts were enriched with different phospholipids by the aid of partially purified lipid transfer protein. The results showed that of all tested phospholipids only phosphatidylcholine (PC) increased PLA2 activity in the control cells, whereas in their transformed counterparts both PC and phosphatidic acid (PA) induced such effect. Further we investigated whether the activatory effect was due only to the polar head of these phospholipids, or if it was also related to their acyl chain composition. The results demonstrated that the arachidonic acid-containing PC and PA molecules induced a more pronounced increase of membrane-associated PLA2 activity in ras-transformed cells compared to the corresponding palmitatestearate- or oleate- containing molecular species. However, we did not observe any specific effect of the phospholipid fatty acid composition in non-transformed NIH 3T3 fibroblasts. In ras-transformed cells incubated with increasing concentrations of arachidonic acid, PLA2 activity was altered in parallel with the changes of the cellular content of this fatty acid. The role of phosphatidic and arachidonic acids as specific activators of PLA2 in ras-transformed cells is discussed with respect to their possible role in the signal transduction pathways as well as in the processes of malignant transformation of cells.  相似文献   

18.
Increased hydrogen peroxide (H2O2) production was observed in duodenal mitochondria obtained from broiler chickens with low feed efficiency (FE). As a decrease in mitochondrial membrane potential (Deltapsi(m)) due to mild uncoupling of oxidative phosphorylation reduces reactive oxygen species production, this study was conducted to evaluate the effect of uncoupling on Deltapsi(m) and H2O2 production in duodenal mitochondria isolated from broilers with low (0.48+/-0.02) and high (0.68+/-0.01) FE. Membrane potential and H2O2 production were measured fluorometrically and in the presence of different levels of an uncoupler, carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP). The Deltapsi(m) was higher (P相似文献   

19.
In order to determine the share of protonophoric activity in the uncoupling action of lipophilic cations a number of analogues of butyltriphenylphosphonium with substitutions in phenyl rings (C4TPP-X) were studied on isolated rat liver mitochondria and model lipid membranes. An increase in the rate of respiration and a decrease in the membrane potential of isolated mitochondria were observed for all the studied cations, the efficiency of these processes was significantly enhanced in the presence of fatty acids and correlated with the octanol-water partition coefficient of the cations. The ability of C4TPP-X cations to induce proton transport across the lipid membrane of liposomes loaded with a pH-sensitive fluorescent dye increased also with their lipophilicity and depended on the presence of palmitic acid in the liposome membrane. Of all the cations, only butyl[tri(3,5-dimethylphenyl)]phosphonium (C4TPP-diMe) was able to induce proton transport by the mechanism of formation of a cation-fatty acid ion pair on planar bilayer lipid membranes and liposomes. The rate of oxygen consumption by mitochondria in the presence of C4TPP-diMe increased to the maximum values corresponding to conventional uncouplers; for all other cations the maximum uncoupling rates were significantly lower. We assume that the studied cations of the C4TPP-X series, with the exception of C4TPP-diMe at low concentrations, cause nonspecific leak of ions through lipid model and biological membranes which is significantly enhanced in the presence of fatty acids.  相似文献   

20.
G. H. Krause 《Planta》1978,138(1):73-78
Uncoupling concentrations (about 1 mol l-1) of desaspidin or carbonyl cyanide-4-trifluoromethoxyphenyl hydrazone reverse the slow light-induced, Mg2+-dependent quenching of fluorescence of chlorophyll a in isolated (intact and broken) spinach chloroplasts. Likewise, uncoupling inhibits the light-induced increase of the Mg2+ concentration in the stroma of intact chloroplasts, as determined with Eriochrome Blue SE. Addition of higher amounts of the uncouplers to the chloroplasts leads to a slow, light-dependent fluorescence lowering which appears to be promoted by high light intensities and is not reversed in the dark. The reversal of the fluorescence quenching by uncoupling is interpreted to reflect exchange of protons for Mg2+ ions at negative sites of the inner thylakoid face, caused by the collapse of the proton gradient across the membrane. The secondary fluorescence lowering caused by high levels of the uncouplers and high light intensities is suggested to be related to an inhibition of non-cyclic photosynthetic electron transport.Abbreviation FCCP carbonyl cyanide-4-trifluoromethoxyphenyl hydrazone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号