首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two digalactosyl D-chiro-inositols and two trigalactosyl D-chiro-inositols, members of the fagopyritol A series and fagopyritol B series, were isolated from buckwheat (Fagopyrum esculentum Moench) seeds. Structures of the first three were determined by 1H and 13C NMR. Fagopyritol B2 is alpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1-->2) -1D-chiro-inositol, and fagopyritol A2 is alpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1-->3)- 1D-chiro-inositol. Fagopyritol A3, a trigalactosyl D-chiro-inositol, is alpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1 -->6) -alpha-D-galactopyranosyl-(1-->3)- 1 D-chiro-inositol. From analysis of hydrolysis products, the second trigalactosyl D-chiro-inositol, fagopyritol B3, isalpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1-->6) -alpha-D-galactopyranosyl-(1-->2)-1D-chiro-inositol.  相似文献   

2.
Yang F  Du Y 《Carbohydrate research》2002,337(6):485-491
Oligosaccharide derivatives from sanqi, a Chinese herbal medicine derived from Panax notoginseng, methyl beta-D-galactopyranosyl-(1-->3)-[alpha-L-arabinofuranosyl-(1-->6)]-alpha-D-galactopyranoside, diosgenyl beta-D-galactopyranosyl-(1-->3)-[alpha-L-arabinofuranosyl-(1-->6)]-alpha-D-galactopyranoside, and methyl beta-D-galactopyranosyl-(1-->3)-[alpha-L-arabinofuranosyl-(1-->6)]-alpha-D-galactopyranosyl-(1-->4)-beta-D-galactopyranosyl-(1-->3)-[alpha-L-arabinofuranosyl-(1-->6)]-alpha-D-galactopyranoside, were synthesized under standard glycosylation conditions. An unexpected alpha-(1-->4) linkage was formed predominantly in the presence of neighboring participation group during regioselective synthesis of hexasaccharide via 3+3 strategy.  相似文献   

3.
The exopolysaccharide from the lactic acid bacterium Lactobacillus rhamnosus strain KL37C isolated from human intestinal flora was prepared by sonication of bacterial cell mass suspended in water followed by centrifugation and cold ethanol precipitation of the supernatant. The polysaccharide material was purified by gel permeation chromatography on an TSK HW-50 column and characterised using chemical and enzymatic methods. On the basis of sugar and methylation analysis and 1H, 13C, 1D and 2D NMR spectroscopy the exopolysaccharide was shown to be composed of the following pentasaccharide repeating unit:-->3)-alpha-D-Glcp-(1-->2)-beta-D-Galf-(1-->6)-alpha-D-Galp-(1-->6)-alpha-D-Glcp-(1-->3)-beta-D-Galf-(1-->  相似文献   

4.
1,6-alpha-D-Mannosidase from Aspergillus phoenicis was purified by anion-exchange chromatography, chromatofocussing and size-exclusion chromatography. The apparent molecular weight was 74 kDa by SDS-PAGE and 81 kDa by native-PAGE. The isoelectric point was 4.6. 1,6-alpha-D-Mannosidase had a temperature optimum of 60 degrees C, a pH optimum of 4.0-4.5, a K(m) of 14 mM with alpha-D-Manp-(1-->6)-D-Manp as substrate. It was strongly inhibited by Mn(2+) and did not need Ca(2+) or any other metal cofactor of those tested. The enzyme cleaves specifically (1-->6)-linked mannobiose and has no activity towards any other linkages, p-nitrophenyl-alpha-D-mannopyranoside or baker's yeast mannan. 1,3(1,6)-alpha-D-Mannosidase from A. phoenicis was purified by anion-exchange chromatography, chromatofocussing and size-exclusion chromatography. The apparent molecular weight was 97 kDa by SDS-PAGE and 110 kDa by native-PAGE. The 1,3(1,6)-alpha-D-mannosidase enzyme existed as two charge isomers or isoforms. The isoelectric points of these were 4.3 and 4.8 by isoelectric focussing. It cleaves alpha-D-Manp-(1-->3)-D-Manp 10 times faster than alpha-D-Manp-(1-->6)-D-Manp, has very low activity towards p-nitrophenyl-alpha-D-mannopyranoside and baker's yeast mannan, and no activity towards alpha-D-Manp-(1-->2)-D-Manp. The activity towards (1-->3)-linked mannobiose is strongly activated by 1mM Ca(2+) and inhibited by 10mM EDTA, while (1-->6)-activity is unaffected, indicating that the two activities may be associated with different polypeptides. It is also possible that one polypeptide may have two active sites catalysing distinct activities.  相似文献   

5.
Hua YF  Zhang M  Fu CX  Chen ZH  Chan GY 《Carbohydrate research》2004,339(13):2219-2224
A heteropolysaccharide obtained from an aqueous extract of dried stem of Dendrobium officinale Kimura and Migo by anion-exchange chromatography and gel-permeation chromatography, was investigated by chemical techniques and NMR spectroscopy, and is demonstrated to be a 2-O-acetylglucomannan, composed of mannose, glucose, and arabinose in 40.2:8.4:1 molar ratios. It has a backbone of (1-->4)-linked beta-d-mannopyranosyl residues and beta-d-glucopyranosyl residues, with branches at O-6 consisting of terminal and (1-->3)-linked Manp, (1-->3)-linked Glcp, and a small proportion of arabinofuranosyl residues at the terminal position. The acetyl groups are substituted at O-2 of (1-->4)-linked Manp and Glcp. The main repeating unit of the polysaccharides is reported.  相似文献   

6.
Li B  Wei XJ  Sun JL  Xu SY 《Carbohydrate research》2006,341(9):1135-1146
A fucoidan, obtained from the hot-water extract of the brown seaweed, Hizikia fusiforme, was separated into five fractions by DEAE Sepharose CL-6B and Sepharose CL-6B column chromatography. All five fractions contained predominantly fucose, mannose and galactose and also contained sulfate groups and uronic acid. The fucoidans had MWs from 25 to 950 kDa. The structure of fraction F32 was investigated by desulfation, carboxyl-group reduction, partial hydrolysis, methylation analysis and NMR spectroscopy. The results showed that the sugar composition of F32 was mainly fucose, galactose, mannose, xylose and glucuronic acid; sulfate was 21.8%, and the MW was 92.7 kDa. The core of F32 was mainly composed of alternating units of -->2)-alpha-D-Man(1--> and -->4)-beta-D-GlcA(1-->, with a minor portion of -->4)-beta-D-Gal(1--> units. The branch points were at C-3 of -->2)-Man-(1-->, C-2 of -->4)-Gal-(1--> and C-2 of -->6)-Gal-(1-->. About two-thirds of the fucose units were at the nonreducing ends, and the remainder were (1-->4)-, (1-->3)- and (1-->2)-linked. About two-thirds of xylose units were at the nonreducing ends, and the remainder were (1-->4)-linked. Most of the mannose units were (1-->2)-linked, and two-thirds of them had a branch at C-3. Galactose was mainly (1-->6)-linked. The absolute configurations of the sugar residues were alpha-D-Manp, alpha-L-Fucp, alpha-D-Xylp, beta-D-Galp and beta-D-GlcpA. Sulfate groups in F32 were at C-6 of -->2,3)-Man-(1-->, C-4 and C-6 of -->2)-Man-(1-->, C-3 of -->6)-Gal-(1-->, C-2, C-3 or C-4 of fucose, while some fucose had two sulfate groups. There were no sulfate groups in either the GlcA or xylose residues.  相似文献   

7.
Park NY  Baek NI  Cha J  Lee SB  Auh JH  Park CS 《Carbohydrate research》2005,340(6):1089-1096
The gene encoding beta-glycosidase of the hyperthermophilic archaea Sulfolobus shibatae (SSG) was expressed in Escherichia coli. Recombinant SSG (referred to as rSSG hereafter) was efficiently purified, and its transglycosylation activity was tested with lactose as a donor and various sugars as acceptors. When sucrose was used as an acceptor, we found a distinct intermolecular transglycosylation product and confirmed its presence by TLC and high performance anion exchange chromatography (HPAEC). The sucrose transglycosylation product was isolated by paper chromatography, and its chemical structure was determined by 1H and 13C NMR. The sucrose transfer product was determined to be beta-D-galactopyranosyl-(1-->6)-alpha-D-glucopyranosyl-beta-d-fructofuranoside with a galactose molecule linked to sucrose via a beta-(1-->6)-glycosidic bond.  相似文献   

8.
For the first time, glucosylation of alpha-butyl- and alpha-octylglucopyranoside was achieved using dextransucrase (DS) of various specificities, and alternansucrase (AS) from Leuconostoc mesenteroides. All the glucansucrases (GS) tested used alpha-butylglucopyranoside as acceptor; in particular, DS produced alpha-D-glucopyranosyl-(1-->6)-O-butyl-alpha-D-glucopyranoside and alpha-D-glucopyranosyl-(1-->6)-alpha-D-glucopyranosyl-(1-->6)-O-butyl-alpha-D-glucopyranoside. In contrast, alpha-octylglucopyranoside was glucosylated only by AS which was shown to be the most efficient catalyst. The conversion rates, obtained with this enzyme at sucrose to acceptor molar ratio of 2:1 reached 81 and 61% for alpha-butylglucopyranoside and alpha-octylglucopyranoside, respectively. Analyses obtained from liquid chromatography coupled with mass spectrometry revealed that different series of alpha-alkylpolyglucopyranosides regioisomers of increasing polymerization degree can be formed depending on the specificity of the catalyst.  相似文献   

9.
A rhamnogalacturonan I polysaccharide was isolated from potato (Solanum tuberosum cv. Posmo) tuber cell walls and characterised by enzymatic digestion with an endo-beta-1 --> 4-galactanase and an endo-alpha-1 --> 5-arabinanase, individually or in combination. The reaction products were separated using size-exclusion chromatography and further analysed for monosaccharide composition and presence of epitopes using the LM5 anti-beta-1 --> 4-galactan and LM6 anti-alpha-1 --> 5-arabinan monoclonal antibodies. The analyses point to distinct structural features of potato tuber rhamnogalacturonan I, such as the abundance of beta-1 --> 4-galactan side chains that are poorly substituted with short arabinose-containing side chains, the presence of alpha-1 --> 5-arabinan side chains substituted with beta-1 --> 4-galactan oligomers (degree of polymerisation > 4), and the presence of alpha-1 --> 5-arabinans that resist enzymatic degradation. A synergy between the enzymes was observed towards the degradation of arabinans but not towards the degradation of galactans. The effect of the enzymes on isolated RG I is discussed in relation to documented effects of enzymes heterologously expressed in potato tubers. In addition, a novel and rapid method for the determination of the monosaccharide and uronic acid composition of cell wall polysaccharides using high-performance anion exchange chromatography with pulsed amperometric detection is described.  相似文献   

10.
The exopolysaccharide, Botryosphaeran, produced by the ligninolytic, ascomyceteous fungus Botryosphaeria sp., was isolated from the extracellular fluid by precipitation with ethanol, and purified by gel permeation chromatography to yield a carbohydrate-rich fraction (96%) composed mainly of glucose (98%). Infra-red and 13C NMR spectroscopy showed that all the glucosidic linkages were in the beta-configuration. Data from methylation analysis and Smith degradation indicated that Botryosphaeran was a (1-->3)-beta-D-glucan with approx 22% side branching at C-6. The products obtained from partial acid hydrolysis demonstrated that the side branches consisted of single (1-->6)-beta-linked glucosyl, and (1-->6)-beta-linked gentiobiosyl residues.  相似文献   

11.
Cao W  Li XQ  Liu L  Wang M  Fan HT  Li C  Lv Z  Wang X  Mei Q 《Carbohydrate research》2006,341(11):1870-1877
Two water-soluble glucans (designated APS-1cI and APS-1cII) were extracted from the roots of Angelica sinensis (Oliv.) Diels and further purified by anion-exchange and gel-filtration chromatography. Their molecular weights were determined to be 1.7 x 10(5) and 3.9 x 10(4)Da, respectively. The structures of the purified glucans were investigated by a combination of chemical and instrumental analysis, such as methylation analysis, periodate oxidation, GC-MS, as well as FTIR and NMR spectroscopy ((1)H, (13)C, H-H COSY, HSQC, HMBC, TOCSY and NOESY). The data obtained indicated that APS-1cI was a linear alpha-glucan composed of only (1-->6)-alpha-D-Glcp, and APS-1cII had a repeating unit consisting of (1-->4)-alpha-D-Glcp and (1-->6)-alpha-D-Glcp in a molar ratio of 4:1. Such glucans isolated from A. sinensis (Oliv.) Diels have not been previously reported.  相似文献   

12.
Duan J  Wang X  Dong Q  Fang Jn  Li X 《Carbohydrate research》2003,338(12):1291-1297
A water-soluble acidic heteroglycan, DL-3Bb, isolated from the leaves of Diospyros kaki, had [alpha](D)(20) -19.9 degrees (c 0.30, water), and contained rhamnose, arabinose, xylose, galactose and galacturonic acid in the molar ratio of 1.0:4.5:0.7:1.5:1.0. About 44% of the galacturonic acid existed as its methyl ester, and O-acetyl groups (approx 5.7%) were also identified. Its molecular weight was determined to be 9.0x10(5) Da by high-performance gel-permeation chromatography. Its structural features were elucidated by a combination of methylation analysis, periodate oxidation, two steps of partial acid hydrolysis, and 1H and 13C NMR spectroscopy and ESI mass spectrometry. The data obtained indicated that DL-3Bb possessed a backbone of a disaccharide of [-->4)-alpha-GalAp-(1-->2)-alpha-Rhap-(1-->], with approx 58.7% substitution at O-4 of the rhamnopyranosyl residues by beta-(1-->4)-linked xylopyranosyl residues, and by beta-(1-->3) and beta-(1-->6)-linked galactopyranosyl (galactan) residues. The side chains were further substituted by arabinofuranosyl residues at O-2 by beta-(1-->4)-linked xylopyranosyl residues and at O-3 by beta-(1-->6)-linked galactopyranosyl residues. Preliminary tests in vitro revealed that it could stimulate LPS-induced B lymphocyte proliferation, but not for ConA-induced T lymphocyte proliferation. It was proposed that the acid-labile arabinofuranosyl residues in the side chains would not be needed for the expression of the enhancement of the immunological activity, and that the presence of GalAp in the backbone has an important, but not crucial effect on the expression of the activity.  相似文献   

13.
The aqueous extract of the edible green microalgae Chlorella pyrenoidosa is of interest because of its immunostimulatory activity. Some components in the extract have been identified previously, namely a unique type of arabinogalactan and a galactofuran. Further fractionation of this extract was accomplished by treating the aqueous solution of the fraction precipitated by addition of 1.5vol of 95% ethanol with cetyltrimethylammonium bromide. The residue obtained by concentration of the supernatant was fractionated further by anion-exchange chromatography and size-exclusion chromatography on Sephadex G-100. Two fractions from the latter column were retained, of which one was a starch-like alpha-(1-->4)-linked d-glucan with some alpha-(1-->6) branches, and the other contained a starch plus a mixture of beta-(1-->2)-d-glucans. ESI mass spectrometry was used to show that the mixture contained both cyclic and linear beta-(1-->2)-d-glucans in a cyclic:linear ratio of 64:36, based on intensities of mass spectral peaks. For the cyclic beta-(1-->2)-d-glucans, ring sizes ranged from 18 to 35 monosaccharides with the ring containing 21 glucose units (54% of the cyclic glucans) being greater than three times more abundant than the next most abundant component, the ring containing 22 glucose units (15%). No rings containing 20 glucose units were present. This is the first observation of cyclic beta-(1-->2)-d-glucans in algae, as far as we are aware. For the linear beta-(1-->2)-d-glucans, the component containing 20 glucoses was most abundant (35% of the linear glucans), while the component containing 21 glucose units was the next most abundant (17%). These relatively low-molecular-weight glucans had low immunostimulatory activity.  相似文献   

14.
A lectin was isolated and purified from the culture filtrate of the plant pathogenic fungus Macrophomina phaseolina by a combination of ammonium sulfate precipitation, affinity chromatography on fetuin-Sepharose 4B and ion-exchange chromatography on DEAE-A 50. The lectin designated MPL was homogeneous by PAGE and HPLC and a monomeric protein with a molecular weight of approximately 34 kDa as demonstrated by SDS-PAGE. It is a glycoprotein and agglutinated human erythrocytes regardless of the human blood type. Neuraminidase treatment of erythrocytes reduced the agglutination activity of the lectin. It is thermally stable and exhibits maximum activity between pH 6 and 7.2. Its carbohydrate binding specificity was investigated both by hapten inhibition of hemagglutination and by enzyme-conjugated lectin inhibition assay. Although, M. phaseolina lectin bound sialic acid, it exhibited binding affinity towards neuraminyl oligosaccharides of N-linked glycoproteins, alpha-Neu5Ac-(2-->3)-beta-Gal-(1-->4)-GlcNAc being maximum.  相似文献   

15.
Hemicellulose polymers were isolated from Argania spinosa leaf cell walls by sequential extractions with alkali. The structure of the two main polymers, xylan and xyloglucan, was investigated by enzyme degradation with specific endoglycosidases followed by analysis of the resulting fragments by high performance anion exchange chromatography (HPAEC) and matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS). The results show that A. spinosa xylan is composed of a beta-(1-->4)-linked-D-xylopyranose backbone substituted with 4-O-methyl-D-glucuronic acid residues. Xyloglucan oligosaccharide subunits were generated by treatment with an endo-(1-->4)-beta-D-glucanase of the xyloglucan-rich hemicellulosic fractions. MALDI-TOF mass spectra and HPAE-PAD chromatography of the pool of endoglucanase-generated xyloglucan oligomers indicated that A. spinosa cell wall contains a XXXG-type xyloglucan. In addition to XXXG, XXFG, XLXG/XXLG, XLFG fragments previously characterised in various plants, a second group of XXXG-type fragments was detected. The primary structure of the major subunit was determined by a combination of sugar analysis, methylation analysis, post-source decay (PSD) fragment analysis of MALDI-TOF MS and 1H NMR spectroscopy. This fragment, termed XUFG, contains a novel beta-D-Xylp-(1-->2)-alpha-D-Xylp side chain linked to C-6 of the second glucose unit from the nonreducing end of the cellotetraose sequence.  相似文献   

16.
1. Eight glycerophosphoglycolipids were isolated from six Gram-positive bacteria. Besides sn-glycero-1-phospho-beta-gentiobiosyldiacylglycerol (i) and sn-glycero-1-phospho-alpha-kojibiosyldiacylglycerol (ii), three novel structures have been established: 1,2-di-O-acyl-3-O-[6-(sn-glycero-1-phospho)-alpha-D-glucopyranosyl-(1 leads to 2)-(6-O-acyl-alpha-D-glucopyranosyl)]glycerol (iii), 1,2-di-O-acyl-3-O-[6-(sn-glycero-1-phospho)-beta-D-glucopyranosyl-(1 leads to 6)-alpha-D-galactopyranosyl-(1 leads to 2)-alpha-D-glucopyranosyl]glycerol (iv), and 1,2-di-O-acyl-3-O-[6-(sn-glycero-1-phospho)-beta-D-glucopyranosyl-(1 leads to 6)-alpha-D-galactopyranosyl-(1 leads to 2)-(6-O-acyl-alpha-D-glucopyranosyl)]glycerol (v). 2. Compound i was isolated from Bacillus licheniformis, Bacillus subtilis and Staphylococcus aureus, compound ii from a group B Streptococcus, compounds ii and iii from Streptococcus lactis, compounds iv and v from Lactobacillus casei. Lactobacillus plantarum contained besides compounds iv and v a glycerophosphate derivative of 1,2-di-O-acyl-3-O-[alpha-D-galactopyranosyl (1 leads to 2)-alpha-D-glucopyranosyl]glycerol. 3. Identical structural features of the described glycerophosphoglycolipids and the corresponding lipoteichoic acids are discussed.  相似文献   

17.
To elucidate the interaction between substrate inhibition and substrate transglycosylation of retaining glycoside hydrolases (GHs), a steady-state kinetic study was performed for the GH family 3 glucan (1-->3)-beta-glucosidase from the white-rot fungus Phanerochaete chrysosporium, using laminarioligosaccharides as substrates. When laminaribiose was incubated with the enzyme, a transglycosylation product was detected by thin-layer chromatography. The product was purified by size-exclusion chromatography, and was identified as a 6-O-glucosyl-laminaribiose (beta-D-Glcp-(1-->6)-beta-D-Glcp-(1-->3)-D-Glc) by 1H NMR spectroscopy and electrospray ionization mass spectrometry analysis. In steady-state kinetic studies, an apparent decrease of laminaribiose hydrolysis was observed at high concentrations of the substrate, and the plots of glucose production versus substrate concentration were thus fitted to a modified Michaelis-Menten equation including hydrolytic and transglycosylation parameters (K(m), K(m2), k(cat), k(cat2)). The rate of 6-O-glucosyl-laminaribiose production estimated by high-performance anion-exchange chromatography coincided with the theoretical rate calculated using these parameters, clearly indicating that substrate inhibition of this enzyme is fully explained by substrate transglycosylation. Moreover, when K(m), k(cat), and affinity for glucosyl-enzyme intermediates (K(m2)) were estimated for laminarioligosaccharides (DP=3-5), the K(m) value of laminaribiose was approximately 5-9 times higher than those of the other oligosaccharides (DP=3-5), whereas the K(m2) values were independent of the DP of the substrates. The kinetics of transglycosylation by the enzyme could be well interpreted in terms of the subsite affinities estimated from the hydrolytic parameters (K(m) and k(cat)), and a possible mechanism of transglycosylation is proposed.  相似文献   

18.
Three D-glucans were isolated from the mycelium of the fungus Botryosphaeria rhodina MAMB-05 by sequential extraction with hot-water and hot aqueous KOH (2% w/v) followed by ethanol precipitation. Following their purification by gel permeation chromatography on Sepharose CL-4B, the structural characteristics of the D-glucans were determined by FT-IR and 13C NMR spectroscopy and, after methylation, by GC-MS. The hot-water extract produced a fraction designated Q1A that was a beta-(1-->6)-D-glucan with the following structure: [Formula: see text] The alkaline extract, when subjected to repeated freeze-thawing, yielded two fractions: K1P (insoluble) that comprised a beta-(1-->3)-D-glucan with beta-D-glucose branches at C-6 with the structure: [Formula: see text] and K1SA (soluble) consisting of a backbone chain of alpha-(1-->4)-linked D-glucopyranosyl residues substituted at O-6 with alpha-D-glucopyranosyl residues: [Formula: see text]  相似文献   

19.
Alkali extraction and methylation analyses in the 1970s revealed that the cell walls of the yeast Schizosaccharomyces pombe contain a (1-->3)-alpha-d-glucan, a (1-->3)-beta-d-glucan, a (1-->6)-beta-d-glucan, and a alpha-galactomannan. To refine the structures of these polysaccharides, cell-wall glucans of S. pombe were extracted, fractionated, and analyzed by NMR spectroscopy. S. pombe cells were treated with 3% NaOH, and alkali-soluble and insoluble fractions were prepared. The alkali-insoluble fraction was treated with 0.5M acetic acid or Zymolyase 100T to yield an alkali-insoluble, acetic acid-insoluble fraction, an alkali-insoluble, Zymolyase-insoluble fraction, and an alkali-insoluble, Zymolyase-soluble fraction. (13)C NMR and 2D-NMR spectra disclosed that the cell wall of S. pombe is composed of three types of glucans, specifically, a (1-->3)-alpha-d-glucan, a (1-->3)-beta-d-glucan, which may either be linear or slightly branched, and a highly branched (1-->6)-beta-d-glucan, in addition to alpha-galactomannan. The highly branched (1-->6)-beta-d-glucan was identified by selective periodate degradation of side-chain glucose as a highly (1-->3)-beta-branched (1-->6)-beta-d-glucan with more branches than that of Saccharomyces cerevisiae. Flexibility of these polysaccharides in the cell wall was analyzed by (13)C NMR spectra in D(2)O. The data collectively indicate that (1-->3)-alpha- and (1-->3)-beta-d-glucans are rigid and contribute to the cell shape, while the highly branched (1-->6)-beta-d-glucan and alpha-galactomannan are flexible.  相似文献   

20.
LPS of NTHi comprises a conserved tri-l-glycero-D-manno-heptosyl inner-core moiety (l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-alpha-Kdop) in which addition of PEtn to the central heptose (HepII) in strain Rd is controlled by the gene lpt6. It was recently shown that NTHi strain 981 contains an additional PEtn linked to O-3 of the terminal heptose of the inner-core moiety (HepIII). In order to establish whether lpt6 is also involved in adding PEtn to HepIII, lpt6 in strain 981 was inactivated. The structure of the LPS of the resulting mutant strain 98llpt6 was investigated by MS and NMR techniques by which it was confirmed that the lpt6 gene product is responsible for addition of PEtn to O-6 of HepII in strain 981. However, it is not responsible for adding PEtn to O-3 of HepIII since the 981lpt6 mutant still had full substitution with PEtn at HepIII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号