首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To screen stimulators from Chinese medicinal insects for mycelial growth and polysaccharides production of Ganoderma lucidum, G. lucidum was inoculated into the media with and without supplementation of medicinal insect extracts. The ethyl acetate extract of Eupolyphaga sinensis at 55 mg l−1 lead to significant increase in both biomass and intracellular polysaccharides (IPS) concentration from 8.53 ± 0.41 to 14.16 ± 0.43 and 1.28 ± 0.09 to 2.13 ± 0.11 g l−1, respectively. In addition, the ethyl acetate extract of Catharsius molossus at 55 mg l−1 significantly enhanced extracellular polysaccharides (EPS) production; the EPS yield increased from 350.9 ± 14.1 to 475.1 ± 15.3 mg l−1. There were no new components in the two types of polysaccharides obtained by the addition of the insect extracts.  相似文献   

2.
A mycelial formulation of the fungus Myrothecium verrucaria (IMI 361690) containing 0.20% Silwet L-77 surfactant was found to be highly efficacious in controlling the exotic invasive weed kudzu. The mycelium can be rapidly (48–72 h) produced in several media, including an inexpensive soy flour–corn meal medium. Mycelial yields were 2, 10, and 25 g dry weight l−1 in Czapek-Dox, Richard’s V-8, and soy flour–corn meal media, respectively. Scale-up production in soy flour–corn meal medium using laboratory fermenters (10–25 l), resulted in a mycelial formulation that caused 90% mortality of naturally-occurring mature (0.9–1.0 m in height) kudzu within 48 h after application in field experiments. HPLC analyses revealed that the mycelium produced in this liquid culture contained no detectable amounts of the trichothecene mycotoxins roridin A and verrucarin A (limit of detection 2 μg ml−1). This has resulted in a safer, yet effective bioherbicidal product. We anticipate that these findings should improve the probability of EPA registration and subsequent commercial development of this bioherbicide.  相似文献   

3.
Previously, a Saccharomyces cerevisiae strain was engineered for xylose assimilation by the constitutive overexpression of the Orpinomyces xylose isomerase, the S. cerevisiae xylulokinase, and the Pichia stipitis SUT1 sugar transporter genes. The recombinant strain exhibited growth on xylose, under aerobic conditions, with a specific growth rate of 0.025 h−1, while ethanol production from xylose was achieved anaerobically. In the present study, the developed recombinant yeast was adapted for enhanced growth on xylose by serial transfer in xylose-containing minimal medium under aerobic conditions. After repeated batch cultivations, a strain was isolated which grew with a specific growth rate of 0.133 h−1. The adapted strain could ferment 20 g l−1 of xylose to ethanol with a yield of 0.37 g g−1 and production rate of 0.026 g l−1 h−1. Raising the fermentation temperature from 30°C to 35°C resulted in a substantial increase in the ethanol yield (0.43 g g−1) and production rate (0.07 g l−1 h−1) as well as a significant reduction in the xylitol yield. By the addition of a sugar complexing agent, such as sodium tetraborate, significant improvement in ethanol production and reduction in xylitol accumulation was achieved. Furthermore, ethanol production from xylose and a mixture of glucose and xylose was also demonstrated in complex medium containing yeast extract, peptone, and borate with a considerably high yield of 0.48 g g−1.  相似文献   

4.
This study investigated the factors affecting in vitro flowering of Perilla frutescens. The shoots regenerated from cotyledonary and hypocotyl explants cultured on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) and indole-3-acetic acid, each at 0.5 mg l−1, were excised and transferred to MS medium containing 30 g l−1 of sucrose, 8.25 g l−1 of ammonium nitrate, and 1.0 mg l−1 of BA. After 40 d of culture, 86.2% of shoots flowered and most of which self-fertilized in vitro and produced mature fruits with viable seeds. These seeds were germinated and plants were grown to maturity and flowered in soil under greenhouse conditions. The in vitro flowering system reported in this study may facilitate rapid breeding of P. frutescens and offers a model system for studying the physiological mechanism of flowering.  相似文献   

5.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

6.
Sweet sorghum juice supplemented with 0.5% ammonium sulphate was used as a substrate for ethanol production by Saccharomyces cerevisiae TISTR 5048. In batch fermentation, kinetic parameters for ethanol production depended on initial cell and sugar concentrations. The optimum initial cell and sugar concentrations in the batch fermentation were 1 × 108 cells ml−1 and 24 °Bx respectively. At these conditions, ethanol concentration produced (P), yield (Y ps) and productivity (Q p ) were 100 g l−1, 0.42 g g−1 and 1.67 g l−1 h−1 respectively. In fed-batch fermentation, the optimum substrate feeding strategy for ethanol production at the initial sugar concentration of 24 °Bx was one-time substrate feeding, where P, Y ps and Q p were 120 g l−1, 0.48 g g−1 and 1.11 g l−1 h−1 respectively. These findings suggest that fed-batch fermentation improves the efficiency of ethanol production in terms of ethanol concentration and product yield.  相似文献   

7.
Wei P  Li Z  Lin Y  He P  Jiang N 《Biotechnology letters》2007,29(10):1501-1508
An effective, simple, and convenient method to improve yeast’s multiple-stress tolerance, and ethanol production was developed. After an ethanologenic Saccharomyces cerevisiae strain SC521 was treated by nine cycles of freeze-thaw, a mutant FT9-11 strain with higher multiple-stress tolerance was isolated, whose viabilities under acetic acid, ethanol, freeze-thaw, H2O2, and heat-shock stresses were, respectively, 23-, 26-, 10- and 7-fold more than the parent strain at an initial value 2 × 107 c.f.u. per ml. Ethanol production of FT9-11 was similar (91.5 g ethanol l−1) to SC521 at 30°C with 200 g glucose l−1, and was better than the parent strain at 37°C (72.5 g ethanol l−1), with 300 (111 g ethanol l−1) or with 400 (85 g ethanol l−1) g glucose l−1.  相似文献   

8.
Vo MT  Lee KW  Kim TK  Lee YH 《Biotechnology letters》2007,29(12):1915-1920
The fadBA operon in the fatty acid β-oxidation pathway of P. putida KCTC1639 was blocked to induce a metabolic flux of the intermediates to the biosynthesis of medium chain-length PHA (mcl-PHA). Succinate at 150 mg l−1 stimulated cell growth and also the biosynthesis of medium chain-length-polyhydroxyalkanoate. pH-stat fed-batch cultivation of the fadA knockout mutant P. putida KCTC1639 was carried out for 60 h, in which mcl-PHA reached 8 g l−1 with a cell dry weight of 10.3 g l−1.  相似文献   

9.
Patle S  Lal B 《Biotechnology letters》2007,29(12):1839-1843
Acid, alkaline and enzymatic hydrolysis of agricultural crop wastes were compared for yields of total reducing sugars with the hydrolysates being evaluated for ethanol production using a mixed culture of Zymomonas mobilis and Candida tropicalis. Acid hydrolysis of fruit and vegetable residues gave 49–84 g reducing sugars l−1 and 29–32 g ethanol l−1 was then obtained. Alkaline hydrolysis did not give significant amount of reducing sugars. Enzymatic hydrolysis of fruit and vegetable residues yielded 36–123 g reducing sugars l−1 and 11–54 g ethanol l−1.  相似文献   

10.
Embryo rescue technique was used successfully to produce interspecific hybrids by crossing peach (P. persica) as a female parent with apricot (P. armeniaca) and plum (P. salicica). In those crosses that had ‘Yuhualu’ or ‘Zhonghuashoutao’ as female parents, hybrid embryos aborted from the 7th or 8th week after pollination mainly due to post-pollination incompatibility. An embryo rescue protocol was established to rescue such embryos and recover hybrid plants. Modified half-strength MS medium containing 4 mg l−1 6-BA and 0.5 mg l−1 IBA produced up to 90% germination in the embryos. Modified MS medium with 1.0 mg l−1 6-BA and 1.0 mg l−1 IBA gave the highest bud induction and multiplication whereas modified MS medium containing 0.5 mg l−1 IAA and 0.2 mg l−1 NAA gave the best rooting percentage. All the hybrids obtained using this embryo rescue technique were verified using simple sequence repeat (SSR) markers. A series of pollen treatments were carried out to partially overcome pre-pollination incompatibility, and it was found accidentally that pollen treatment with electrostatic field not only improved pollen germination but also increased the multiplication coefficient of embryo-induced shoots.  相似文献   

11.
Two wild strains of Zymomonas mobilis were isolated (named as ML1 and ML2) from sugar cane molasses obtained from different farms of Santander, Colombia. Initially, selection of the best ethanol-producer strains was carried out using ethanol production parameters obtained with a commercial strain Z. mobilis DSM 3580. Three isolated strains were cultivated in a culture medium containing yeast extract, peptone, glucose and salts, at pH 6 and 32°C with stirring rate of 65 rpm during 62 h. The best results of ethanol production were obtained with the native strain ML1, reaching a maximum ethanol concentration of 79.78 g l−1. ML1 and ML2 strains were identified as Z. mobilis, according to the morphology, biochemical tests and molecular characterization by PCR of specific DNA sequences from Z. mobilis. Subsequently, the effect of different nitrogen sources on production of ethanol was evaluated. The best results were obtained using urea at a 0.73 g/l. In this case, maximum concentration of ethanol was 83.81 g l−1, with kinetic parameters of yield of ethanol on biomass (YP/X) = 69.01(g g−1), maximum volumetric productivity of ethanol (Qpmax) = 2.28 (g l−1 h−1), specific productivity of ethanol (qP) = 3.54 (h−1) and specific growth rate (μ) = 0.12 h−1. Finally, we studied the effect of different culture conditions (pH, temperature, stirring, C/N ratio) with a Placket-Burman′s experimental design. This optimization indicated that the most significant variables were temperature and stirring. In the best culture conditions a significant increase in all variables of response was achieved, reaching a maximum ethanol concentration of 93.55 g l−1.  相似文献   

12.
Glutaminase-free l-asparaginase is known to be an excellent anticancer agent. In the present study, statistically based experimental designs were applied to maximize the production of glutaminase-free l-asparaginase from Pectobacterium carotovorum MTCC 1428. Nine components of the medium were examined for their significance on the production of l-asparaginase using the Plackett–Burman experimental design. The medium components, viz., glucose, l-asparagine, KH2PO4, and MgSO4·7H2O, were screened based on their high confidence levels (P < 0.04). The optimum levels of glucose, l-asparagine, KH2PO4, and MgSO4·7H2O were found to be 2.076, 5.202, 1.773, and 0.373 g L−1, respectively, using the central composite experimental design. The maximum specific activity of l-asparaginase in the optimized medium was 27.88 U mg−1 of protein, resulting in an overall 8.3-fold increase in the production compared to the unoptimized medium.  相似文献   

13.
Production of lactic acid from glucose by immobilized cells of Lactococcus lactis IO-1 was investigated using cells that had been immobilized by either entrapment in beads of alginate or encapsulation in microcapsules of alginate membrane. The fermentation process was optimized in shake flasks using the Taguchi method and then further assessed in a production bioreactor. The bioreactor consisted of a packed bed of immobilized cells and its operation involved recycling of the broth through the bed. Both batch and continuous modes of operation of the reactor were investigated. Microencapsulation proved to be the better method of immobilization. For microencapsulated cells at immobilized cell concentration of 5.3 g l−1, the optimal production medium had the following initial concentrations of nutrients (g l−1): glucose 45, yeast extract 10, beef extract 10, peptone 7.5 and calcium chloride 10 at an initial pH of 6.85. Under these conditions, at 37 °C, the volumetric productivity of lactic acid in shake flasks was 1.8 g l−1 h−1. Use of a packed bed of encapsulated cells with recycle of the broth through the bed, increased the volumetric productivity to 4.5 g l−1 h−1. The packed bed could be used in repeated batch runs to produce lactic acid.  相似文献   

14.
Jatropha curcas contains high amounts of oil in its seed and has been considered for bio-diesel production. A transformation procedure for J. curcas has been established for the first time via Agrobacterium tumefaciens infection of cotyledon disc explants. The results indicated that the efficiency of transformation using the strain LBA4404 and phosphinothricin for selection was an improvement over that with the strain EHA105 and hygromycin. About 55% of the cotyledon explants produced phosphinothricin-resistant calluses on Murashige and Skoog (MS) medium supplemented with 1.5 mg l−1 benzyladenine (BA), 0.05 mg l−1 3–indolebutyric acid (IBA), 1 mg l−1 phosphinothricin and 500 mg l−1 cefotaxime after 4 weeks. Shoots were regenerated following transfer of the resistant calli to shoot induction medium containing 1.5 mg l−1 BA, 0.05 mg l−1 IBA, 0.5 mg l−1 gibberellic acid (GA3), 1 mg l−1 phosphinothricin and 250 mg l−1 cefotaxime, and about 33% of the resistant calli differentiated into shoots. Finally, the resistant shoots were rooted on 1/2 MS media supplemented with 0.3 mg l−1 IBA at a rate of 78%. The transgenic nature of the transformants was demonstrated by the detection of β-glucuronidase activity in the primary transformants and by PCR and Southern hybridization analysis. 13% of the total inoculated explants produced transgenic plants after approximately 4 months. The procedure described will be useful for both, the introduction of desired genes into J. curcas and the molecular analysis of gene function.  相似文献   

15.
Summary Dendrobium candidum Wall. Ex Lindl. is an important species used in the formulation of Shih-hu, a Chinese traditional medicine. An efficient protocol for in vitro propagation of D. candidum using the axenic nodal segments of the shoots, originated from the in vitro germinated seedlings, was developed. The seeds from 120-d-old capsules after pollination were first germinated on half-strength Murashige and Skoog (MS) basal medium supplemented with 30 g l−1 sucrose. After 4 mo., the seedlings were subcultured on a similar medium supplemented with 1 ml l−1 HYPONeX, 80 g l−1 potato homogenate and 2 g l−1 activated charcoal for further growth. Axenic nodal segments excised from 9-mo.-old seedlings were cultured on the medium in the presence of 2 mg l−1 benzyladenine (BA) and 0.1 mg l−1 naphthaleneacetic acid (NAA). After 75 d, 73.2% of the explants gave rise to buds/shoots. The elongated shoots were rooted on the medium containing 0.2 mg l−1 NAA and the plantlets were successfully acclimatized in soil.  相似文献   

16.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

17.
High poly(3-hydroxybutyrate) (PHB) content and volumetric productivity were achieved by fed-batch culture of Halomonas boliviensis using a defined medium. Initial shake flask cultivations in a minimal medium revealed that the growth of H. boliviensis was supported only when the medium was supplemented with aspartic acid, glycine, or glutamine. Addition of 0.1% (w/v) glutamine in the medium resulted in the highest cell dry weight (CDW; 3.9 g l−1). Glutamine was replaced by the less expensive monosodium glutamate (MSG) in the medium without any notable change in the final cell density. Effect of initial concentrations of NH4Cl and K2HPO4 on cell growth and PHB accumulation by H. boliviensis was then analyzed using a fed-batch fermentation system. The best conditions for PHB production by H. boliviensis were attained using 0.4% (w/v) NH4Cl and 0.22% (w/v) K2HPO4 and adding MSG intermittently to the fermentor. Poly(3-hydroxybutyrate) content and CDW reached 90 wt.% and 23 g l−1, respectively, after 18 h of cultivation. In order to increase CDW and PHB content, MSG, NH4Cl, and K2HPO4 were initially fed to the fermentor to maintain their concentrations at 2%, 0.4%, and 0.22% (w/v), respectively, and subsequently their feed was suppressed. This resulted in a CDW of 44 g l−1, PHB content of 81 wt.%, and PHB volumetric productivity of 1.1 g l−1 h−1.  相似文献   

18.
Broussonetia papyrifera is well-known for its bark fibers, which are used for making paper, cloth, rope etc. This is the first report of a successful genetic transformation protocol for B. papyrifera using Agrobacterium tumefaciens. Callus was initiated at a frequency of about 100% for both leaf and petiole explants. Shoots formed on these calli with a success rate of almost 100%, with 14.08 and 8.36 shoots regenerating from leave-derived and petiole-derived callus, respectively. For genetic transformation, leaf explants of B. papyrifera were incubated with A. tumefaciens strain LBA4404 harboring the binary vector pCAMBIA 1301 which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene (gus-int) as a reporter gene. Following co-cultivation, leaf explants were cultured on Murashige and Skoog (Physiol Plant 15:473, 1962) (MS) medium supplemented with 1.5 mg l−1 benzyladenine (BA) and 0.05 mg l−1 indole-3-butyric acid (IBA) (CI medium) containing 5 mg l−1 hygromycin and 500 mg l−1 cefotaxime, in the dark. Hygromycin-resistant calli were induced from leaf explants 3 weeks thereafter. Regenerating shoots were obtained after transfer of the calli onto MS medium supplemented with 1.5 mg l−1 BA, 0.05 mg l−1 IBA, and 0.5 mg l−1 gibberellic acid (GA3) (SI medium), 5 mg l−1 hygromycin and 250 mg l−1 cefotaxime under fluorescent light. Finally, shoots were rooted on half strength MS medium (1/2 MS) supplemented with 10 mg l−1 hygromycin. Transgene incorporation and expression was confirmed by PCR, Southern hybridisation and histochemical GUS assay. Using this protocol, transgenic B. papyrifera plants containing desirable new genes can be obtained in approximately 3 months with a transformation frequency as high as 44%.  相似文献   

19.
A mutant designated as UV-3 was obtained from wild-type Enterobacter aerogenes 10293 through u.v. radiation. The activities of α-acetolactate decarboxylase (Ald), lactate dehydrogenase (Ldh) and diacetyl reductase (Dr) in UV-3 were strongly attenuated, with the lowest activities at pH 7.0–7.5, and temperature between 36 and 39°C. Compared to the wild-type, the yield of diacetyl by UV-3 was increased 18.7-fold, up to 1.05 ± 0.01 g l−1. Acetoin and ethanol productions were decreased by 48.4 and 71.4%, respectively, but acetate yield was increased by 34.6%. Optimum medium for diacetyl production by UV-3 contained 10% glucose, 0.5% peptone, 0.5% yeast extract powder, 0.01% (NH4)2SO4, 0.1% citric acid, 0.2% MnSO4 and 0.2% MgSO4, and this was determined by one-factor-at-a-time approach. Data from the five level central composite designs demonstrated that initial pH of 7.0, temperature of 37°C and rotational speed of 180 rev/min were optimum processing parameters for diacetyl production. The maximum yield of diacetyl could reach 1.35 g l−1 in a 5-l bioreactor. These results showed an enhancement of the non-enzymatic oxidative decarboxylation of α-acetolactate and a decrease in the activities of Ald, Ldh and Dr as a consequence of diacetyl accumulation in UV-3.  相似文献   

20.
In this study, alteration in morphology of submergedly cultured Antrodia camphorata ATCC 200183 including arthroconidia, mycelia, external and internal structures of pellets was investigated. Two optimization models namely response surface methodology (RSM) and artificial neural network (ANN) were built to optimize the inoculum size and medium components for intracellular triterpenoid production from A. camphorata. Root mean squares error, R 2, and standard error of prediction given by ANN model were 0.31%, 0.99%, and 0.63%, respectively, while RSM model gave 1.02%, 0.98%, and 2.08%, which indicated that fitness and prediction accuracy of ANN model was higher when compared to RSM model. Furthermore, using genetic algorithm (GA), the input space of ANN model was optimized, and maximum triterpenoid production of 62.84 mg l−1 was obtained at the GA-optimized concentrations of arthroconidia (1.78 × 105 ml−1) and medium components (glucose, 25.25 g l−1; peptone, 4.48 g l−1; and soybean flour, 2.74 g l−1). The triterpenoid production experimentally obtained using the ANN–GA designed medium was 64.79 ± 2.32 mg l−1 which was in agreement with the predicted value. The same optimization process may be used to optimize many environmental and genetic factors such as temperature and agitation that can also affect the triterpenoid production from A. camphorata and to improve the production of bioactive metabolites from potent medicinal fungi by changing the fermentation parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号