首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potentiometric titration curves and computer modelling studies indicated that aluminium complexes with alanine at-C00 moiety and also altered the proton affinity at+NH3 and-CH3 moiety.27Al NMR spectra broadening also confirmed the interaction.  相似文献   

2.
Organic anion exudation by roots as a mechanism of aluminium (Al) resistance has been intensively studied lately. In the present study, we evaluated qualitative and quantitative aspects of root exudation of organic anions in maize genotypes of distinct sensitivity to Al in response to Al exposure. Maize seedlings were grown axenically in nutrient solution and root exudates were collected along the whole seminal root axis for a short period (4 h) using a divided-root-chamber technique. In root exudates collected from 10-mm long root apices, citrate accounted for 67% of the total organic anions found, followed by malate (29%), trans-aconitate (3%), fumarate (<1%), and cis-aconitate (1%). Rates of citrate exudation from root apices of two genotypes with differential resistance to Al were consistently higher in the Al resistant one, differing by a factor of 1.7 – 3.0 across a range of external Al concentrations. Furthermore, relative Al resistance of eight maize genotypes correlated significantly well with their citrate exudation rate measured at 40 M Al. Higher exudation rates were accompanied by a less inhibited root elongation. The exudation of citrate along the longitudinal axis of fully developed seminal roots showed a particular pattern: citrate was exuded mainly in the regions of root apices, either belonging to the main root or to the lateral roots in the most basal part of the main root. The involvement of citrate in a mechanism of Al resistance is evaluated in terms of protection of the root from the effects of excess Al on root elongation and on nutrient uptake along a root axis showing distinct sites of citrate exudation.  相似文献   

3.
Soil solution and solid phase analyses were compared for stubble standing and stubble burnt systems on an acid, acidified and limed Alfisol in north-eastern Victoria. Exchangeable (1 M KCl) aluminium (Al), soil solution total and monomeric Al, pH (water) and soil solution pH were measured to identify any differences in soil acidification between the stubble burnt and the stubble standing treatments. All measures of Al increased with soil depth down to 10 cm in all stubble treatments and decreased in the 10–20 cm soil depth with the exception of lime treatments. Concentrations of low molecular weight organic acids in the soil solution were determined by high pressure liquid chromatography (HPLC). Aromatic and aliphatic acids were distributed throughout the soil depth (0–20 cm) for the stubble standing treatments but were confined to the 0–5 cm soil depth for the stubble burnt treatment. In this short term field trial (2 years for stubble management), the data suggest that the conventional practice of stubble burning was more acidifying than the soil conservation practice of stubble standing, over the 0–20 cm soil depth for the lime (6 t ha-1) treatments.  相似文献   

4.
ABSTRACT

Details of analyses of a range of lagers for aluminium and for silica are presented. These permit an estimation of the total levels of aluminium as beer is diluted by saliva and intestinal fluids. These data are combined with databases of formation constants and solubility products and the MINEIR speciation program to calculate the chemical speciation of aluminium from beer through to excretion. Bioavailable species are assumed to be [Al citrate]0 and/or [Al phosphate]0 but other than a noticeable presence in the small intestine—from which uptake is limited there is not a significant species concentration. With normal kidney action any small traces entering the blood are rapidly cleared.  相似文献   

5.
Surface areas and energetic properties of the shooting stage roots of rye (Secale L.), triticale (Triticale), barley (Hordeum L.) and four wheat (Triticum L.) varieties were estimated from experimental water vapor adsorption data. Roots stressed during 10 days at pH 4 with aluminium concentrations ranging from 0 to 40 mg dm–3 were studied. Roots grown continuously at pH 7 were taken as controls. The surface properties of the roots grown at pH 4 without Al addition were apparently the same as those of the control roots. With the increase of the concentration of the aluminium treatment the surface area of the roots increased for all of the plants, beginning at 5 mg Al dm–3 for barley, at 10 mg Al dm–3for wheat and triticale, and at 40 mg Al dm–3 for rye. The average water vapor adsorption energy of the root surface decreased in general with the increase of Al stress concentration for all plants but triticale, for which this increased. The sensitive cereal varieties seem to have greater amount of high energy adsorption centers (more polar surface) than the resistant ones (lower surface polarity), however more data is needed to justify this hypothesis. For Al-sensitive roots, fraction of high energy adsorption sites decreased and fraction of low energy sites increased under the Al stress. Smaller changes in adsorption energy sites were noted for roots of Al-resistant plants.  相似文献   

6.
D. A. Care 《Plant and Soil》1995,171(1):159-162
The effect of aluminium (Al) on root hair length and number is quantified using solution culture techniques with genotypes from white clover cultivar Tamar, that had previously been selected for long and short root hairs. The population differences were maintained in control (0 Al) treatments, with the long-haired population having hairs three times longer than the short-haired population. At an activity of 2.2 µM Al3+, root hair length decreased in both populations, the magnitude of the decrease being greater for the long-haired population. Root hair numbers decreased in a similar manner for both populations. At an activity of 4.4 µM Al3+ or higher, root hairs virtually disappeared and root growth was very stunted. The effect of Al on root hair development has not been previously quantified, however other workers have observed reduced root hair development in other species at activities of Al greater than 2.5 µM Al3+.  相似文献   

7.
Blamey  F.P.C.  Ostatek-Boczynski  Z.  Kerven  G.L. 《Plant and Soil》1997,192(2):269-275
Although soluble aluminium (Al) has long been recognised as an important limitation to plant growth on acid soils, the biochemical basis of Al toxicity has not been elucidated. Aluminium accumulation in the cell wall may be important, especially the reaction of Al with calcium (Ca) pectate. A study was conducted to investigate the effects of six ligands, citrate, malate, galacturonate, fluoride, sulfate and chloride, on the sorption of Al by Ca pectate prepared from two sources of pectin that differed in degree of methyl esterification (DE). The sorption of Al by Ca pectate increased linearly with increase in Al added from 25 to 100 µM (or 50 to 200 µM in the case of Al2(SO4)3). There was a significant reduction in Al sorption in the presence of those ligands that form strong complexes with Al, especially citrate and, to a lesser extent, malate and fluoride. There was little difference in Al sorption by Ca pectate prepared from pectin of differing DE. Calcium in the supernatant solution increased linearly by 1.5 nmol for each 1 nmol increase in Al sorbed. The results support the hypothesis that strong complexes of Al with organic and inorganic ligands reduce Al sorption by Ca pectate in the cell wall.  相似文献   

8.
Summary The presence of soluble polymeric complexes in dilute solutions (10–30 M) of aluminium and phosphate at 25°C was demonstrated by paper electrophoresis and confirmed by chemical analyses and measurements of 32 P specific activities. Complexed aluminium and phosphate were not determined by colorimetric procedures without preliminary hydrolysis in 1 N HCl at 80–90°C. The formation of aluminophosphate complexes was maximal around pH 5 when, at an initial P/Al mole ratio of 1.6, 3 moles of P were complexed with 4 moles of Al. At pH 6.9, however, only 1 mole of P was removed for every 10 of Al, suggesting that hydroxyaluminium polymers predominated at higher ratios of OH-ions to H2PO4-ions. re]19750523  相似文献   

9.
The physiological basis of plant reaction to and tolerance of aluminium (Al) is poorly understood. We review the results of investigations into Al toxicity and root physiology to develop a theoretical basis for explaining the reaction of the root to Al, including suggested roles for Ca2+, mucilaginous cap secretions and endogenous growth regulators in mediating a transmitted response between Al-damaged cap cells and the interacting cell populations of the cap and root. This information is used to identify possible mechanisms of Al tolerance, notably involving signal transduction, Al uptake pathways and root morphogenesis; and to briefly discuss how procedures selecting for Al tolerance may be improved by incorporating the concept of stimulus-response coupling. Similarities in the responses of roots to Al and other signals (e.g. gravity, light, mechanical impedance) are used to develop the hypothesis that roots respond to environmental signals by way of a common regulatory system. New research prospects for extending our perception of Al tolerance mechanisms are identified.  相似文献   

10.
Hydrogen sulphide (H2S) is emerging as an important signalling molecule involved in plant resistance to various stresses. However, the underlying mechanism of H2S in aluminium (Al) resistance and the crosstalk between H2S and nitric oxide (NO) in Al stress signalling remain elusive. Citrate secretion is a wide‐spread strategy for plants against Al toxicity. Here, two citrate transporter genes, GmMATE13 and GmMATE47, were identified and characterized in soybean. Functional analysis in Xenopus oocytes and transgenic Arabidopsis showed that GmMATE13 and GmMATE47 mediated citrate exudation and enhanced Al resistance. Al treatment triggered H2S generation and citrate exudation in soybean roots. Pretreatment with an H2S donor significantly elevated Al‐induced citrate exudation, reduced Al accumulation in root tips, and alleviated Al‐induced inhibition of root elongation, whereas application of an H2S scavenger elicited the opposite effect. Furthermore, H2S and NO mediated Al‐induced GmMATE expression and plasma membrane (PM) H+‐ATPase activity and expression. Further investigation showed that NO induced H2S production by regulating the key enzymes involved in biosynthesis and degradation of H2S. These findings indicate that H2S acts downstream of NO in mediating Al‐induced citrate secretion through the upregulation of PM H+‐ATPase‐coupled citrate transporter cotransport systems, thereby conferring plant resistance to Al toxicity.  相似文献   

11.
Transport of aluminum and gallium from blood into rat tissues following continuous iv infusion of metals in different chemical forms has been investigated. Tissue uptake of aluminum and gallium was similar and highly dependent on the chemical species of the metals. Aluminum and gallium accumulated in liver and spleen when infused in the chloride form. Raised citrate markedly enhanced aluminum and gallium uptake into renal cortex and bone; in contrast with gallium-transferrin, citrate increased uptake of67Ga into renal cortex and bone by 8- and 14-fold respectively. Uptake of67Ga with citrate into renal cortex was around 3 times smaller than that of aluminum. The antitransferrin receptor antibody OX-26 enhanced67Ga uptake from gallium citrate into all rat tissues.67Ga from purified gallium-transferrin was also taken into all tissues in the presence of OX-26, the effect being greatest in renal cortex and bone. No influence of antibody on aluminum transport into rat tissues was, however, observed when aluminum was infused in the citrate form. Therefore, transport of aluminum and gallium into tissues is not similar under all conditions. Transport of each metal occurs into all tissues in the presence of antitransferrin receptor antibody. The potential for such transport is much greater in the case of gallium. Transport of aluminum and gallium citrate complexes appears important especially in the renal cortex and bone.  相似文献   

12.
The aqueous speciation of Al was studied in acid forest soils in N.W. Spain. Aluminum concentrations were 10–70 mol L–1, with variable proportions oflabile, nonlabile, andacid-soluble Al. Almost all thelabile Al was found complexed with F, Al3+ concentrations being low. The importance of organic matter was seen in the formation of Al-organic complexes in the solid soil fraction and the presence of aqueous alumino-organic complexes in superficial horizons (umbric epipedons) rich in organic matter.  相似文献   

13.
Effects of various treatments on prey capture, prey ingestion and ingestion time of individualArtemia salina nauplii by the sea anemoneAiptasia pallida Verrill were studied in the laboratory. Exposure to crudeArtemia homogenate, 5 × 10–4 M reduced glutathione or 5 × 10–4 M proline significantly decreased the number ofArtemia that were captured and ingested but had no significant effect on the ingestion time of individualArtemia. Multiple captures increased the total ingestion time but decreased ingestion time per prey item. Results suggest that, under these conditions, the prey capture phase of zooplankton feeding was somewhat distinct from the ingestion phase since chemical stimuli that significantly reduced prey capture had no significant effect on ingestion time.  相似文献   

14.
The activities of acid phosphatase, hexosaminidase, -galactosidase, Mg2+-stimulated Na+ K+ ATPase, fumarase and ATP: citrate lyase were measured in grey matter of rabbit spinal cord 7–8 days after intra-ventricular or intra-cisternal injection of aluminium. RNA, DNA, and water content were measured in whole spinal cords. Choline acetyltransferase (CAT) and acetylcholinesterase were assayed in dorsal grey matter of the cord, which contained no aluminium-induced neurofilament accumulations (NFAs), and ventral grey matter, which had large numbers of such NFAs. CAT was also assayed in the hypoglossal nerve. None of these measures were consistently altered in the aluminium treated rabbits, although the activity of -galactosidase was increased in the NFA-free caudate nucleus of rabbits given aluminium intra-ventricularly, possibly due to the presence of phagocytes on the ventricular surface of the caudate. It is concluded that neither aluminium nor its induced NFAs has a gross effect on neuronal metabolism within 7–8 days.  相似文献   

15.
A factorial experiment was conducted to determine the effect of aluminium (0 and 600M) and media (sand, and 1:1 sand:soil) on mycorrhizal (M) and non-mycorrhizal (NM) highbush blueberry plantlets. There were no differences in nutrient uptake and total plant dry weight between M and NM plantlets. However, more root growth, as determined by dry weight, was observed in M than NM plantlets. The plantlets growing in sand had more dry weight than did those in the soil medium. Although the root growth and shoot growth were reduced by the 600M Al treatment, the direct effect of Al on plantlet growth was not clear due to Al and P interactions. Plant nutrient uptake was reduced by high concentrations of Al, suggesting that high Al concentration limited the ability of roots to acquire most of the nutrients. Mycorrhizal cortical cell infection levels of 15–20% wene maintained in the roots in soil medium but decreased to about 5% over the 6 weeks of the experiment in the sand medium. Although M plantlets accumulated more Al in their roots, Al was readily transported to the leaf tissues of M and NM plantlets.  相似文献   

16.
Identity of the rhizotoxic aluminium species   总被引:11,自引:3,他引:8  
The aluminium (III) released from soil minerals to the soil solution under acid conditions may appear as hexaaquaaluminium (Al(H2O)6 3+, or Al3+ for convenience) or may react with available ligands to form additional chemical species. That one or more of these species is rhizotoxic (inhibitory to root elongation) has been known for many decades, but the identity of the toxic species remains problematical for the following reasons. 1. Several Al species coexist in solution so individual species cannot be investigated in isolation, even in artificial culture media. 2. The activities of individual species must be calculated from equilibrium data that may be uncertain. 3. The unexpected or undetected appearance of the extremely toxic triskaidekaaluminium (AlO4Al12(OH)24(H2O)12 7+ or Al13) may cause misatribution of toxicity to other species, especially to mononuclear hydroxy-Al. 4. If H+ ameliorates Al3+ toxicity, or vice versa, then mononuclear hydroxy-Al may appear to be toxic when it is not. 5. The identity and activities of the Al species contacting the cell surfaces are uncertain because of the H+ currents through the root surface and because of surface charges. This article considers the implications of these problems for good experimental designs and critically evaluates current information regarding the relative toxicities of selected Al species. It is concluded that polycationic Al (charge >2) is rhizotoxic as are other polyvalent cations.  相似文献   

17.
Summary The uptake of239Pu and241Am from different clay mineral-organic matter-sand mixtures simulating contrasting soil types was examined in growth chamber experiments. The mixtures represented various combinations of organic matter (0, 5 and 10%), kaolinite (11 type) and montomorillonite (21 type) clay minerals, each at the levels of 5, 10 and 25%, and purified quartz sand (as filler).Results indicated a marked reduction in uptake of both239Pu and241Am with increase in organic matter as well as clay content of the mixtures. The Pu Concentration Ratios (CRs) ranged from (2.5–7.0)×10–3 in the case of kaolinite-organic matter mixtures, and from (0.9–5.5)×10–3 in the case of montmorillonite-organic matter mixtures. The corresponding values of Am Concentration Ratios (CRs) obtained were (1.9–725.4)×10–3 in the case of kaolinite-organic matter mixtures, and between (0.7–3.5)×10–3 for the montmorillonite-organic matter mixtures.Reduction in the uptake of241Am with increasing clay content was more pronounced in the montmorillonite clay-organic matter mixtures as compared to that in the case of kaolinite-organic matter mixtures. While similar qualitative reduction in239Pu CRs with increasing clay content was observed, the reduction was less marked than in the case of241Am. The values for Am CRs were higher than the corresponding Pu CRs in kaolinite based mixtures whereas in the case of montmorillonite-organic matter mixtures Pu CRs exceeded the Am CRs.Increasing organic matter content and its interaction with both kaolinite and montmorillonite clay minerals were found to be equally effective in reducing the uptake of239Pu as well as241Am by plants.  相似文献   

18.
Summary 1. A 0.5 ml inoculum containing 1.4×104 spores and/or mycelial fragments ofAllescheria boydii when injected intraperitoneally, did not cause death in 18–20 g female Swiss mice in 18 days.2. Focal, pin-point lesions developed in the liver and spleen of mice injected with the stock suspension and the 1:10 dilution of it (2.8×104 and 2.8×103 infective units ofA. boydii per ml, respectively); no lesions developed from the 1:100 dilution of the original suspension.3.Allescheria boydii was recovered from the livers and spleens of all mice, as well as from the peritoneal exudate of one mouse injected with the stock suspension ofA. boydii; the fungus was not isolated from heart's blood.4. Inability to cause death by the intraperitoneal injection ofA. boydii inocula might be attributed to the natural defense mechanisms in the mice or to the excessive dilution of the inoculum; it is improbable that any genetically controlled resistance to allescheriosis exists in the mice used in this study.Paper no. 664, Department of Botany and Plant Pathology, Ohio State University, 1735 Neil Avenue, Columbus 10, Ohio.This is the report of research done by the junior authors with the guidance of the senior author during a course in medical mycology in this department.  相似文献   

19.
Transformation of cereal protoplasts has been reported using several methods; however, the efficiencies of transformations are still very low. We have evaluated a number of parameters that influence electroporation-mediated DNA uptake and have also compared the efficiency of transient GUS activity and stable transformation obtained using an optimized electroporation method with that of the PEG method. The electroporation conditions tested were ionic composition of buffer, ionic strength, resistivity of buffer, type of anions, voltage, and capacitance.Protoplasts isolated from suspension cultures derived from immature embryos of rice (cvs Radon and IR-54) were used for this study. Stable transformation or transient GUS expression experiments were carried out using a plasmid construct containing the CaMV 35S promoter driving thebar gene and a rice actin promoter driving thegus A (uid A) gene (pAG35bar). Electroporation under optimized conditions resulted in about 13-fold higher GUS activities compared to the PEG method. Protoplast survival following optimized electroporation conditions was 55–60%, compared to 35–40% with the PEG treatment. Protoplasts isolated from a suspension culture at different ages gave substantially different levels of transient GUS expression following electroporation-mediated DNA uptake. In contrast, the age of the suspension culture did not influence PEG-mediated DNA uptake and transient GUS activities, which remained low throughout the culture period examined (21 months). Putatively transformed calluses were selected after three to four weeks on medium containing phosphinothricin as the selection agent. The transformation frequencies ranged from 6.2×10–5 to 5.4×10–4 with the electroporation method compared to 1.3×10–5 to 5.3×10–5 with the PEG method. Southern blot analysis of PPT-resistant calluses obtained by the electroporation-mediated transformation showed simple intergration patterns of integrated DNA in most of the transformants.  相似文献   

20.
Oxisols have a high likelihood of NO3 leaching which may strongly reduce N availability for tropical crops. The aim of this work was to evaluate the N and the water submodels of the STICS crop model for its ability to estimate N availability in N-fertilised field maize crops on two oxisols in Guadeloupe (French West Indies) with and without Al toxicity: a non-limed plot (NLI, pHKCl 3.9, 2.1 cmol Al3+ kg–1), and a limed plot (LI, pHKCl 4.5, 0 cmol Al3+ kg–1). An uncropped plot (UC, pHKCl 4.5, 0 cmol Al3+ kg–1) was used in order to fit some model parameters for soil evaporation, nitrification and NO3 transport. The model was modified in order to describe nitrification as a partially inhibited process in acid soils, and to take into account NO3 retention in oxisols. Nitrification was described as the result of the multiplicative effects of soil acidity, temperature and soil water content. Soil moisture and NO3 and NH4 + content up to 0.8 m soil depth, above-ground biomass and N uptake by crops, and their leaf area index (LAI), were measured from sowing to the beginning of grain filling. The model described correctly the changes in soil water content during the moist and the dry periods of the experiment, and there was some evidence that capillary rise occurred in the dry period. Nitrogen mineralization, nitrification in UC, NO3 transport and plant uptake were satisfactorily simulated by the model. Because of the effect of Al toxicity on plant growth, LAI at flowering was three times higher in LI than in NLI. Some discrepancies between observed and simulated data were found for the distribution of NO3 and NH4 + in the cropped plots. This was probably due to the change of the ionic N form absorbed by the crops as a function of soil acidity and available P in the soil. No leaching was observed below 0.8 m depth and this was associated with NO3 retention in the soil. The results showed that partial inhibition of nitrification and NO3 retention should be taken into account by crop models to obtain realistic estimates of N availability for plants in tropical acid soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号