首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fibroblast growth factor (FGF) 23 produced by the bone is the principal hormone to regulate serum phosphate level. Serum FGF23 needs to be tightly regulated to maintain serum phosphate in a narrow range. Thus, we hypothesized that the bone has some phosphate-sensing mechanism to regulate the production of FGF23. Previously we showed that extracellular phosphate induces the phosphorylation of FGF receptor 1 (FGFR1) and FGFR1 signaling regulates the expression of Galnt3, whose product works to increase FGF23 production in vitro. In this study, we show the significance of FGFR1 in the regulated FGF23 production and serum phosphate level in vivo. We generated late-osteoblast/osteocyte-specific Fgfr1-knockout mice (Fgfr1fl/fl; OcnCre/+) by crossing the Ocn-Cre and the floxed Fgfr1 mouse lines. We evaluated serum phosphate and FGF23 levels, the expression of Galnt3 in the bone, the body weight and life span. A selective ablation of Fgfr1 aborted the increase of serum active full-length FGF23 and the enhanced expression of Galnt3 in the bone by a high phosphate diet. These mice showed more pronounced hyperphosphatemia compared with control mice. In addition, these mice fed with a control diet showed body weight loss after 23 weeks of age and shorter life span. These results reveal a novel significance of FGFR1 signaling in the phosphate metabolism and normal life span.  相似文献   

2.
3.
4.
5.
Hepatic injury and regeneration of the liver are associated with activation of hepatic stellate cells (HSC). Fibroblast growth factors (FGFs) and their receptors are important regulators of repair in various tissues. HSC express FGFR3IIIc as well as FGFGR4 and different spliced FGFR1IIIc and FGFR2IIIc isoforms which differ in the presence or absence of the acid box and of the first Ig-like domain. Expression of FGF9, known to be capable to activate the HSC FGFR2/3-isoforms, was increased in HSC in liver slice cultures after exposition to carbon tetrachloride, as an acute liver injury model. FGF9 significantly stimulated 3-H thymidine incorporation of hepatocytes, but failed to induce DNA synthesis in HSC despite the fact that FGF9 induced a sustained activation of extracellular signal-related kinases (ERK) 1/2. FGF9 induced an increased phosphorylation of Tyr436 of the fibroblast growth factor receptor substrate (FRS) 2, while phosphorylation of Tyr196 which is required for efficient Grb2 recruitment remained unchanged. Our findings suggest that HSC FGF9 provide a paracrine mitogenic signal to hepatocytes during acute liver injury, while the autocrine FGF9 signaling appears to be not sufficient to induce cell proliferation.  相似文献   

6.
7.
8.
Laminin alpha chains have unique spatiotemporal expression patterns during development and defining their function is necessary to understand the regulation of epithelial morphogenesis. We investigated the function of laminin alpha5 in mouse submandibular glands (SMGs). Lama5(-/-) SMGs have a striking phenotype: epithelial clefting is delayed, although proliferation occurs; there is decreased FGFR1b and FGFR2b, but no difference in Lama1 expression; later in development, epithelial cell organization and lumen formation are disrupted. In wild-type SMGs alpha5 and alpha1 are present in epithelial clefts but as branching begins alpha5 expression increases while alpha1 decreases. Lama5 siRNA decreased branching, p42 MAPK phosphorylation, and FGFR expression, and branching was rescued by FGF10. FGFR siRNA decreased Lama5 suggesting that FGFR signaling provides positive feedback for Lama5 expression. Anti-beta1 integrin antibodies decreased FGFR and Lama5 expression, suggesting that beta1 integrin signaling provides positive feedback for Lama5 and FGFR expression. Interestingly, the Itga3(-/-):Itga6(-/-) SMGs have a similar phenotype to Lama5(-/-). Our findings suggest that laminin alpha5 controls SMG epithelial morphogenesis through beta1 integrin signaling by regulating FGFR expression, which also reciprocally regulates the expression of Lama5. These data link changes in basement membrane composition during branching morphogenesis with FGFR expression and signaling.  相似文献   

9.
The development of all vertebrate embryos requires the establishment of a three-dimensional coordinate system in order to pattern embryonic structures and create the complex shape of the adult organism. During the process of gastrulation, the three primary germ layers are created under the guidance of numerous signaling pathways, allowing cells to communicate during development. Cell-cell communication, mediated by receptors of the Notch family, has been shown to be involved in mediating diverse cellular behaviors during development and has been implicated in the regulation of cell fate decisions in both vertebrate and invertebrate organisms. In order to investigate a role for Notch signaling during boundary formation between the mesoderm and endoderm during gastrulation, we manipulated Notch signaling in gastrula stage embryos and examined gene expression in resultant tissues and organs. Our findings demonstrate a much broader role for Notch signaling during germ layer determination than previously reported in a vertebrate organism. Activation of the Notch pathway, specifically in gastrula stage embryos, results in a dramatic decrease in the expression of genes necessary to create many different types of mesodermal tissues while causing a dramatic expansion of endodermal tissue markers. Conversely, temporally controlled suppression of this pathway results in a loss of endodermal cell types and an expansion of molecular markers of mesoderm. Thus, our data are consistent with and significantly extend the implications of prior observations suggesting roles for Notch signaling during germ layer formation and establish an evolutionarily conserved role for Notch signaling in mediating mesoderm-endoderm boundaries during early vertebrate development.  相似文献   

10.
The formation of the coronary vessel system is vital for heart development, an essential step of which is the establishment of a capillary plexus that displays a density gradient across the myocardial wall, being higher on the epicardial than the endocardial side. This gradient in capillary plexus formation develops concurrently with transmural gradients of myocardium-derived growth factors, including FGFs. To test the role of the FGF expression gradient in patterning the nascent capillary plexus, an ectopic FGF-over-expressing site was created in the ventricular myocardial wall in the quail embryo via retroviral infection from E2-2.5, thus abolishing the transmural gradient of FGFs. In FGF virus-infected regions of the ventricular myocardium, the capillary density across the transmural axis shifted away from that in control hearts at E7. This FGF-induced change in vessel patterning was more profound at E12, with the middle zone becoming the most vascularized. An up-regulation of FGFR-1 and VEGFR-2 in epicardial and subepicardial cells adjacent to FGF virus-infected myocardium was also detected, indicating a paracrine effect on induction of vascular signaling components in coronary precursors. These results suggest that correct transmural patterning of coronary vessels requires the correct transmural expression of FGF and, therefore, FGF may act as a template for coronary vessel patterning.  相似文献   

11.
The enteric nervous system (ENS) is derived from neural crest cells that migrate along the gastrointestinal tract to form a network of neurons and glia that are essential for regulating intestinal motility. Despite the number of genes known to play essential roles in ENS development, the molecular etiology of congenital disorders affecting this process remains largely unknown. To determine the role of bone morphogenetic protein (BMP) signaling in ENS development, we first examined the expression of bmp2, bmp4, and bmprII during hindgut development and find these strongly expressed in the ENS. Moreover, functional BMP signaling, demonstrated by the expression of phosphorylated Smad1/5/8, is present in the enteric ganglia. Inhibition of BMP activity by noggin misexpression within the developing gut, both in ovo and in vitro, inhibits normal migration of enteric neural crest cells. BMP inhibition also leads to hypoganglionosis and failure of enteric ganglion formation, with crest cells unable to cluster into aggregates. Abnormalities of migration and ganglion formation are the hallmarks of two human intestinal disorders, Hirschsprung's disease and intestinal neuronal dysplasia. Our results support an essential role for BMP signaling in these aspects of ENS development and provide a basis for further investigation of these proteins in the etiology of neuro-intestinal disorders.  相似文献   

12.
Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) play essential roles in bone formation and osteoblast activity through the extracellular signal‐regulated kinase 1/2 (ERK1/2) and Smad pathways. Sprouty family members are intracellular inhibitors of the FGF signaling pathway, and four orthologs of Sprouty have been identified in mammals. In vivo analyses have revealed that Sprouty2 is associated with bone formation. However, the mechanism by which the Sprouty family controls bone formation has not been clarified. In this study, we investigated the involvement of Sprouty2 in osteoblast proliferation and differentiation. We examined Sprouty2 expression in MC3T3‐E1 cells, and found that high levels of Sprouty2 expression were induced by basic FGF stimulation. Overexpression of Sprouty2 in MC3T3‐E1 cells resulted in suppressed proliferation compared with control cells. Sprouty2 negatively regulated the phosphorylation of ERK1/2 after basic FGF stimulation, and of Smad1/5/8 after BMP stimulation. Furthermore, Sprouty2 suppressed the expression of osterix, alkaline phosphatase, and osteocalcin mRNA, which are markers of osteoblast differentiation. Additionally, Sprouty2 inhibited osteoblast matrix mineralization. These results suggest that Sprouty2 is involved in the control of osteoblast proliferation and differentiation by downregulating the FGF‐ERK1/2 and BMP‐Smad pathways, and suppresses the induction of markers of osteoblast differentiation.  相似文献   

13.
Although fibroblast growth factor 9 (FGF9) is widely expressed in the central nervous system (CNS), the function of FGF9 in neural development remains undefined. To address this question, we deleted the Fgf9 gene specifically in the neural tube and demonstrated that FGF9 plays a key role in the postnatal migration of cerebellar granule neurons. Fgf9-null mice showed severe ataxia associated with disrupted Bergmann fiber scaffold formation, impaired granule neuron migration, and upset Purkinje cell maturation. Ex vivo cultured wildtype or Fgf9-null glia displayed a stellate morphology. Coculture with wildtype neurons, but not Fgf9-deficient neurons, or treating with FGF1 or FGF9 induced the cells to adopt a radial glial morphology. In situ hybridization showed that Fgf9 was expressed in neurons and immunostaining revealed that FGF9 was broadly distributed in both neurons and Bergmann glial radial fibers. Genetic analyses revealed that the FGF9 activities in cerebellar development are primarily transduced by FGF receptors 1 and 2. Furthermore, inhibition of the MAP kinase pathway, but not the PI3K/AKT pathway, abrogated the FGF activity to induce glial morphological changes, suggesting that the activity is mediated by the MAP kinase pathway. This work demonstrates that granule neurons secrete FGF9 to control formation of the Bergmann fiber scaffold, which in turn, guides their own inward migration and maturation of Purkinje cells.  相似文献   

14.
Fibroblast growth factor 18 (FGF18) has been shown to regulate chondrocyte proliferation and differentiation by signaling through FGF receptor 3 (FGFR3) and to regulate osteogenesis by signaling through other FGFRs. Fgf18(-/-) mice have an apparent delay in skeletal mineralization that is not seen in Fgfr3(-/-) mice. However, this delay in mineralization could not be simply explained by FGF18 signaling to osteoblasts. Here we show that delayed mineralization in Fgf18(-/-) mice was closely associated with delayed initiation of chondrocyte hypertrophy, decreased proliferation at early stages of chondrogenesis, delayed skeletal vascularization and delayed osteoclast and osteoblast recruitment to the growth plate. We further show that FGF18 is necessary for Vegf expression in hypertrophic chondrocytes and the perichondrium and is sufficient to induce Vegf expression in skeletal explants. These findings support a model in which FGF18 regulates skeletal vascularization and subsequent recruitment of osteoblasts/osteoclasts through regulation of early stages of chondrogenesis and VEGF expression. FGF18 thus coordinates neovascularization of the growth plate with chondrocyte and osteoblast growth and differentiation.  相似文献   

15.
To determine the role of Bone morphogenetic protein (BMP) signaling in murine limb development in vivo, the keratin 14 promoter was used to drive expression of the BMP antagonist Noggin in transgenic mice. Phosphorylation and nuclear translocation of Smad1/5 were dramatically reduced in limbs of the transgenic animals, confirming the inhibition of BMP signaling. These mice developed extensive limb soft tissue syndactyly and postaxial polydactyly. Apoptosis in the developing limb necrotic zones was reduced with incomplete regression of the interdigital tissue. The postaxial extra digit is also consistent with a role for BMPs in regulating apoptosis. Furthermore, there was persistent expression of Fgf8, suggesting a delay in the regression of the AER. However, Msx1 and Msx2 expression was unchanged in these transgenic mice, implying that induction of these genes is not essential for mediating BMP-induced interdigital apoptosis in mice. These abnormalities were rescued by coexpressing BMP4 under the same promoter in double transgenic mice, suggesting that the limb abnormalities are a direct effect of inhibiting BMP signaling.  相似文献   

16.
Nymphs of hemimetabolous insects, such as cockroaches and crickets, possess functional legs with a remarkable capacity for epimorphic regeneration. In this study, we have focused on the role of epidermal growth factor receptor (EGFR) signaling in regeneration of a nymphal leg in the cricket Gryllus bimaculatus. We performed loss-of-function analyses with a Gryllus Egfr homolog (Gb'Egfr) and nymphal RNA interference (RNAi). After injection of double-stranded RNA for Gb'Egfr in the body cavity of the third instar cricket nymph, amputation of the leg at the distal tibia resulted in defects of normal distal regeneration. The regenerated leg lacked the distal tarsus and pretarsus. This result indicates that EGFR signaling is required for distal leg patterning in regeneration during the nymphal stage of the cricket. Furthermore, we demonstrated that EGFR signaling acts downstream of the canonical Wnt/Wg signaling and regulates appendage proximodistal (PD) patterning genes aristaless and dachshund during regeneration. Our results suggest that EGFR signaling influences positional information along the PD axis in distal leg patterning of insects, regardless of the leg formation mode.  相似文献   

17.
18.
19.
The establishment of anteroposterior (AP) polarity in the early mouse epiblast is crucial for the initiation of gastrulation and the subsequent formation of the embryonic (head to tail) axis. The localization of anterior and posterior determining genes to the appropriate region of the embryo is a dynamic process that underlies this early polarity. Several studies indicate that morphological and molecular markers which define the early AP axis are first aligned along the short axis of the elliptical egg cylinder. Subsequently, just prior to the time of primitive streak formation, a conformational change in the embryo realigns these markers with the long axis. We demonstrate that embryos lacking the signaling factor Wnt3 exhibit defects in this axial realignment. In addition, chimeric analyses and conditional removal of Wnt3 activity reveal that Wnt3 expression in the epiblast is required for induction of the primitive streak and mesoderm whereas activity in the posterior visceral endoderm is dispensable.  相似文献   

20.
It has become increasingly recognized that coculture has a beneficial effect on the in vitro maturation (IVM) of oocytes and embryo development in many species. However, these effects of coculture on IVM have been documented only for their positive conditioning roles without any evidence on the precise mechanisms underlying the action of coculture systems on the development of cumulus oocyte complexes (COCs). It has been suggested that the epidermal growth factor receptor (EGFR) signaling pathway is important for development of COCs, mediated by several epidermal growth factor (EGF)-like proteins with downstream mitogen-activated protein kinase 1/3 signaling. Therefore, we hypothesized that canine oviduct cells (OCs) in a coculture system, which shows improvement of oocyte quality in several species, are associated with EGFR signaling by exposure to progesterone (P4; imitating its production before ovulation and its continuous increase while oocytes reside in the oviduct to complete maturation in dogs). We designed three experimental groups: control, OCs coculture exposed to P4, and OCs coculture without exposure to P4. The result showed that the OCs coculture exposed to P4 strongly expressed EGF-like proteins and significantly improved COCs and subsequent embryo development. Furthermore, the expression of EGFR-related genes in cumulus cells and GDF9 and BMP15 in oocytes was upregulated in the P4-treated group. This study provides the first evidence that OCs exposed to P4 can induce strong expression of EGF-like proteins, and OCs effectively mediate improved porcine COCs development and subsequent embryo development by altering EGFR signaling related mRNA expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号