首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution and local stability of a system of two interacting species in a finite two-dimensional habitat is investigated by taking into account the effects of self- and cross-dispersion and convection of the species. In absence of cross-dispersion, an equilibrium state which is stable without dispersion is always stable with dispersion provided that the dispersion coefficients of the two species are equal. However, when the dispersion coefficients of the two species are different, the possibility of self-dispersive instability arises. It is also pointed out that the cross-dispersion of species may lead to stability or instability depending upon the nature and the magnitude of the cross-dispersive interactions in comparison to the self-dispersive interactions. The self-convective movement of species increases the stability of the equilibrium state and can stabilize an otherwise unstable equilibrium state. The effect of cross-convection (in absence of self-dispersion and self-convection) is to stabilize the equilibrium state in a prey-predator model with positive cross-dispersion coefficients for the prey species. Finally, it is shown that if the system is stable under homogeneous boundary conditions it remains so under non-homogeneous boundary conditions.  相似文献   

2.
Simple models of two-species ecosystems are usually analyzed in terms of the existence and stability of a static equilibrium state. We examine the way in which perturbations, in the form of periodic reductions in both species, lead to stable coexistence in a state of dynamic equilibrium. We establish general criteria for the occurrence of such dynamic equilibrium states. We show that coexistence in a dynamic equilibrium occurs for a fairly wide range of model parameters, and that dynamic equilibrium states are a rather robust feature of simple models.  相似文献   

3.
应用能量估计方法和bootstrap技巧证明了一类强耦合反应扩散方程系统在任意维空间中古典解的整体存在性,该系统是竞争种群含自扩散和交错扩散,互惠种群仅含自扩散的竞争-竞争-互惠模型.  相似文献   

4.
In this paper, effects of convective and dispersive migration on the linear stability of the equilibrium state of a two species system with mutualistic interactions and functional response have been investigated. In both finite and semi-infinite habitats, it has been shown that the otherwise stable equilibrium state without dispersal remains so with dispersal also, both under flux and reservior conditions. In the case of finite habitat, the degree of stability increases as dispersal coefficients of the two species increase. The effect of convective migration also is to stabilize the equilibrium state in this case.  相似文献   

5.
Several field data and experiments on a terrestrial vertebrates exhibited that the fear of predators would cause a substantial variability of prey demography. Fear for predator population enhances the survival probability of prey population, and it can greatly reduce the reproduction of prey population. Based on the experimental evidence, we proposed and analyzed a prey-predator system introducing the cost of fear into prey reproduction with Holling type-II functional response. We investigate all the biologically feasible equilibrium points, and their stability is analyzed in terms of the model parameters. Our mathematical analysis exhibits that for strong anti-predator responses can stabilize the prey-predator interactions by ignoring the existence of periodic behaviors. Our model system undergoes Hopf bifurcation by considering the birth rate r0 as a bifurcation parameter. For larger prey birth rate, we investigate the transition to a stable coexisting equilibrium state, with oscillatory approach to this equilibrium state, indicating that the greatest characteristic eigenvalues are actually a pair of imaginary eigenvalues with real part negative, which is increasing for r0. We obtained the conditions for the occurrence of Hopf bifurcation and conditions governing the direction of Hopf bifurcation, which imply that the prey birth rate will not only influence the occurrence of Hopf bifurcation but also alter the direction of Hopf bifurcation. We identify the parameter regions associated with the extinct equilibria, predator-free equilibria and coexisting equilibria with respect to prey birth rate, predator mortality rates. Fear can stabilize the predator-prey system at an interior steady state, where all the species can exists together, or it can create the oscillatory coexistence of all the populations. We performed some numerical simulations to investigate the relationship between the effects of fear and other biologically related parameters (including growth/decay rate of prey/predator), which exhibit the impact that fear can have in prey-predator system. Our numerical illustrations also demonstrate that the prey become less sensitive to perceive the risk of predation with increasing prey growth rate or increasing predators decay rate.  相似文献   

6.
应用能量估计方法和Gagliardo-Nirenberg型不等式证明了带饱和项的Shigesada-Kawasaki-Teramoto两种群互惠模型在齐次Neumann边值条件下整体解的存在唯一性和一致有界性.通过构造Lyapunov函数给出了该模型正平衡点全局渐近稳定的条件.  相似文献   

7.
This article is concerned with the evolution of certain types of density-dependent dispersal strategy in the context of two competing species with identical population dynamics and same random dispersal rates. Such density-dependent movement, often referred to as cross-diffusion and self-diffusion, assumes that the movement rate of each species depends on the density of both species and that the transition probability from one place to its neighbourhood depends solely on the arrival spot (independent of the departure spot). Our results suggest that for a one-dimensional homogeneous habitat, if the gradients of two cross- and self-diffusion coefficients have the same direction, the species with the smaller gradient will win, i.e. the dispersal strategy with the smaller gradient of cross- and self-diffusion coefficient will evolve. In particular, it suggests that the species with constant cross- and self-diffusion coefficients may have competitive advantage over species with non-constant cross- and self-diffusion coefficients. However, if the two gradients have opposite directions, neither of the two dispersal strategies wins as these two species can coexist.  相似文献   

8.
This article is concerned with the evolution of certain types of density-dependent dispersal strategy in the context of two competing species with identical population dynamics and same random dispersal rates. Such density-dependent movement, often referred to as cross-diffusion and self-diffusion, assumes that the movement rate of each species depends on the density of both species and that the transition probability from one place to its neighbourhood depends solely on the arrival spot (independent of the departure spot). Our results suggest that for a one-dimensional homogeneous habitat, if the gradients of two cross- and self-diffusion coefficients have the same direction, the species with the smaller gradient will win, i.e. the dispersal strategy with the smaller gradient of cross- and self-diffusion coefficient will evolve. In particular, it suggests that the species with constant cross- and self-diffusion coefficients may have competitive advantage over species with non-constant cross- and self-diffusion coefficients. However, if the two gradients have opposite directions, neither of the two dispersal strategies wins as these two species can coexist.  相似文献   

9.
The principle of competitive exclusion is investigated within the framework of the solvable model proposed earlier for two-species systems. The results elucidate the recent controversy over the interpretation of experimental data onDrosophila equilibrium. It is shown that the necessary and sufficient conditions for stable coexistence of competing species is that the product of intraspecific rate constants be greater than the product of interspecific rate constants. Inequalities between rate constants for the occurrence of stable equilibriumbelow andabove the line joining single species equilibria are derived. The availability of larger domain of coexistence suggests that the model presented here has the potential to accommodate a wider class of phenomena than the Gause—Volterra model according to which coexistence is possible only above the line of single species equilibrium.  相似文献   

10.
We extend two-species models of individual aggregation or clustering to two-dimensional spatial domains, allowing for more realistic movement of the populations compared with one spatial dimension. We assume that the domain is bounded and that there is no flux into or out of the domain. The motion of the species is along fitness gradients which allow the species to seek out a resource. In the case of competition, species which exploit the resource alone will disperse while avoiding one another. In the case where one of the species is a predator or generalist predator which exploits the other species, that species will tend to move toward the prey species, while the prey will tend to avoid the predator. We focus on three primary types of interspecies interactions: competition, generalist predator–prey, and predator–prey. We discuss the existence and stability of uniform steady states. While transient behaviors including clustering and colony formation occur, our stability results and numerical evidence lead us to believe that the long-time behavior of these models is dominated by spatially homogeneous steady states when the spatial domain is convex. Motivated by this, we investigate heterogeneous resources and hazards and demonstrate how the advective dispersal of species in these environments leads to asymptotic steady states that retain spatial aggregation or clustering in regions of resource abundance and away from hazards or regions or resource scarcity.  相似文献   

11.
Understanding ecosystem stability and functioning is a long-standing goal in theoretical ecology, with one of the main tools being dynamical modelling of species abundances. With the help of spatially unresolved (well-mixed) population models and equilibrium dynamics, limits to stability and regions of various ecosystem robustness have been extensively mapped in terms of diversity (number of species), types of interactions, interaction strengths, varying interaction networks (for example plant-pollinator, food-web) and varying structures of these networks. Although many insights have been gained, the impact of spatial extension is not included in this body of knowledge. Recent studies of spatially explicit modelling on the other hand have shown that stability limits can be crossed and diversity increased for systems with spatial heterogeneity in species interactions and/or chaotic dynamics. Here we show that such crossing and diversity increase can appear under less strict conditions. We find that the mere possibility of varying species abundances at different spatial locations make possible the preservation or increase in diversity across previous boundaries thought to mark catastrophic transitions. In addition, we introduce and make explicit a multitude of different dynamics a spatially extended complex system can use to stabilise. This expanded stabilising repertoire of dynamics is largest at intermediate levels of dispersal. Thus we find that spatially extended systems with intermediate dispersal are more robust, in general have higher diversity and can stabilise beyond previous stability boundaries, in contrast to well-mixed systems.  相似文献   

12.
13.
A two-species genetic model of host-parasite interaction is used to study the dynamical consequences of varying the number of genotypes in each species, and the recombination rate in the host. With two genotypes in each species, the model's behaviour is very simple; there is either a stable interior equilibrium, a stable cycle or a smooth outward spiral toward the boundaries. But with three or more genotypes, complex cycles and apparently chaotic behaviour may arise over wide ranges of parameter values. Increasing the number of genotypes also tends to slow the rate of gene-frequency change. Recombination in the host does not affect the stability of the interior fixed point, but intermediate rates of recombination may give dynamic stability to an otherwise dynamically unstable pattern of cycling. Intermediate rates of recombination also tend to decrease the amplitudes of gene-frequency cycles in the host, which implies that they could promote the accumulation of genetic variation involved in complementary, antagonistic interactions with parasites.  相似文献   

14.
The cross-diffusion competition systems were introduced by Shigesada et al. [J. Theor. Biol. 79, 83–99 (1979)] to describe the population pressure by other species. In this paper, introducing the densities of the active individuals and the less active ones, we show that the cross-diffusion competition system can be approximated by the reaction-diffusion system which only includes the linear diffusion. The linearized stability around the constant equilibrium solution is also studied, which implies that the cross-diffusion induced instability can be regarded as Turing’s instability of the corresponding reaction-diffusion system.H. Ninomiya was Partially supported by Grant-in-Aid for Young Scientists (No. (B)15740076), Japan Society for the Promotion of Science.  相似文献   

15.
A non-linear reaction diffusion model of a negative feedback epigenetic control system is presented. The model involves synthesis of the mitotic inducing and inhibiting proteins, simultaneously with intercellular self-diffusion and cross-diffusion of the latter only. The importance of negative cross-diffusion for creating a regular dissipative structure is shown. A bifurcation analysis of the non-linear diffusive system has been performed and it is concluded that bifurcation is supercritical. Lastly, using Liapunov's direct method, it is shown that the pattern evolved by the system is globally asymptotically stable.  相似文献   

16.
Starting from natural planktonic systems, we present a new mechanism involving spatial heterogeneity, and develop a new spatial structure model of planktonic predation systems. Firstly, the effect of diffusion on the dynamics of the system is investigated. We find that diffusion of only prey or both prey and predator between different patches with different predation risk may stabilize the dynamics, depending on the flow rate. Only a medium flow rate can lead to the stability of the system. Too large a rate can cause the system to approach the non-spatial limit case of a well-mixed system. Too large a rate can cause the system to approach the non-spatial limit case as a well-mixed system, which is characterized by its strongly oscillatory dynamics. When only prey diffuse, the smaller the parameter f (the proportion of the patchy volume with larger predation risk to the total volume), the more stable the system. If both populations can diffuse, however, only medium and very small f values may stabilize the system. Also, the response of the spatially averaged equilibrium densities of the system to the increasing of the flow rate is examined. With increasing flow rate, the spatial-averaged equilibrium density of prey decreases, while that of predator depends on which species can diffuse. For the case of prey diffusion only, it first remains unchanged and then slightly decreases, while it increases for the case of combinations as the flow rate increases. Our results are, qualitatively, determined by the spatially heterogeneous mechanism that we propose, and further regulated by top-down forces. Of practical importance, the results reported here indicate that which species diffuse plays a key role in the ways in which diffusion influences the dynamics and the spatial-average equilibrium densities of the system responses to the flow rate's increasing.  相似文献   

17.
We consider a two-species competition model in a one-dimensional advective environment, where individuals are exposed to unidirectional flow. The two species follow the same population dynamics but have different random dispersal rates and are subject to a net loss of individuals from the habitat at the downstream end. In the case of non-advective environments, it is well known that lower diffusion rates are favored by selection in spatially varying but temporally constant environments, with or without net loss at the boundary. We consider several different biological scenarios that give rise to different boundary conditions, in particular hostile and “free-flow” conditions. We establish the existence of a critical advection speed for the persistence of a single species. We derive a formula for the invasion exponent and perform a linear stability analysis of the semi-trivial steady state under free-flow boundary conditions for constant and linear growth rate. For homogeneous advective environments with free-flow boundary conditions, we show that populations with higher dispersal rate will always displace populations with slower dispersal rate. In contrast, our analysis of a spatially implicit model suggest that for hostile boundary conditions, there is a unique dispersal rate that is evolutionarily stable. Nevertheless, both scenarios show that unidirectional flow can put slow dispersers at a disadvantage and higher dispersal rate can evolve.  相似文献   

18.
The interaction of the hepatitis C virus (HCV) NS3 protease domain with its NS4A cofactor peptide (Pep4AK) was investigated at equilibrium and at pre-steady state under different physicochemical conditions. Equilibrium dissociation constants of the NS3-Pep4AK complex varied by several orders of magnitude depending on buffer additives. Glycerol, NaCl, detergents, and peptide substrates were found to stabilize this interaction. The extent of glycerol-induced stabilization varied in an HCV strain-dependent way with at least one determinant mapping to an NS3-NS4A interaction site. Conformational transitions affecting at least the first 18 amino acids of NS3 were the main energy barriers for both the association and the dissociation reactions of the complex. However, deletion of this N-terminal portion of the protease molecule only slightly influenced equilibrium dissociation constants determined under different physicochemical conditions. Limited proteolysis experiments coupled with mass spectrometric identification of cleavage fragments suggested a high degree of conformational flexibility affecting at least the first 21 residues of NS3. The accessibility of this region of the protease to limited chymotryptic digestion did not significantly change in any condition tested, whereas a significant reduction of chymotryptic cleavages within the NS3 core was detected under conditions of high NS3-Pep4AK complex affinity. We conclude the following: (1) The N-terminus of the NS3 protease that, according to the X-ray crystal structure, makes extensive contacts with the cofactor peptide is highly flexible in solution and contributes only marginally to the thermodynamic stability of the complex. (2) Affinity enhancement is accomplished by several factors through a general stabilization of the fold of the NS3 molecule.  相似文献   

19.
Theoretical and experimental studies of thin liquid films show that, under certain conditions, the film thickness can undergo a sudden transition which gives a stable narrower film or ends in film rupture at spatially periodic points. Theoretical analysis have also indicated that similar transitions might arise in the thin aqueous layer separating interacting membranes. Experiments described here show spatially periodic intermembrane contact points and suggest that spontaneous rapid growth of fluctuations can occur on an intermembrane water layer. Normal and pronase pretreated erythrocytes were exposed to 2% Dextran (450,000 Mr) and the resultant aggregates were examined by light and transmission electron microscopy. Cell electrophoresis measurements were used as an index of pronase modification of the glycocalyx. Erythrocytes exposed to dextran revealed a uniform intercellular separation of parallel membranes. This equilibrium between attractive and repulsive intermembrane forces is consistent with the established Derjaguin, Landau, Verwey, Overbeek (DLVO) model for colloidal particle interaction. In contrast to the above uniform separation a spatial pattern of discrete contact regions was observed in cells coming together in dextran following pronase pretreatment. The lateral contact separation distance was 3.0 microns for mild pronase pretreatment and decreased to 0.85 micron for more extensive pronase pretreatments. The system examined here is seen as a useful experimental model in which to study the principles involved in producing either uniform separation or point contacts between interacting membranes.  相似文献   

20.
The nature of chromium(III) complexes has been found to show a profound influence in its interaction with collagen. The hydrothermal stability of rat tail tendon (RTT) fibres treated with dimeric, trimeric and tetrameric species of chromium(III) has been found to be 102, 87 and 68 degrees C, while that of native RTT is 62 degrees C. This shows that the efficiency of crosslinking of collagen by chromium(III) species is dimeric > trimeric > tetrameric. This order of stabilisation is again confirmed by cyanogen bromide (CNBr) cleavage of RTT collagen treated with dimeric, trimeric and tetrameric chromium(III) species. CNBr has been found to cleave the collagen treated with tetrameric chromium(III) species extensively. On the other hand, dimer-treated collagen does not undergo any cleavage on CNBr treatment. The equilibrium constants for the reaction of a nucleophile like NCS(-) to the dimeric, trimeric and tetrameric species of chromium(III) have been found to be 15.7+/-0.1, 14.6+/-0.1 and 1.2+/-0.1 M(-1), respectively. These equilibrium constant values reflect the relative thermodynamic stability of the chromium(III) species-nucleophile complex. The low stabilising effect of the tetrameric species can be traced to its low thermodynamic affinity for nucleophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号