首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mouse monoclonal antibody (JD1) to Hydra attenuata using the peroxidase-antiperoxidase (PAP) method revealed unipolar, bipolar, and multipolar sensory and ganglion cells in the head region of H. littoralis. Neurons isolated from macerated hypostomes and tentacles were classified according to the number of their cytoplasmic processes and the position of the cilium, when present, relative to the perikaryon. PAP-stained sensory cells had an apical ciliary cone, whereas ganglion cells did not. Neurons with cytoplasmic processes longer than 50 microns stained faintly, whereas those with processes shorter than 50 microns in length stained mainly dense brown. Unipolar neurons had an oval, crescent, round, or elliptic perikaryon with a single short axon. The perikaryal shape of bipolar neurons varied from round to tall triangular, short triangular, crescent, oval, or elliptic with two oppositely directed symmetric or asymmetric processes. Asymmetric processes were present in a bipolar sensory cell with a long apical cilium typical of gastrodermal sensory cells. One type of bipolar ganglion cell had a short perikaryal cilium. Another type had neurites longer than 50 microns. We found seven morphological variations of multipolar neurons, including one with an apical knob, two with a short perikaryal cilium, two with cytoplasmic loops near the perikaryon, one with perpendicular processes projecting from the major neurites, and one with a branched process longer than 50 microns opposite a tangled mass of neurites.  相似文献   

2.
Using the retrograde axonic transport of horseradish peroxidase method the striatal neurons projections to substance nigra have been studied in rats. After peroxidase injection into substance nigra a considerable number of small and medium sized neurons (10-20 mkm) become labelled in the ipsilateral striatum. Large labelled striatal cells (20-25 mkm) have been found. Among labelled striatal neurons multipolar cells with triangular and oval body prevailed. The number of cells with elongated multipolar or spindle-shaped body was less. The data obtained disprove the conception that only large ("giant") neurons form the efferent striatal pathways to substance nigra.  相似文献   

3.
Segments of pedal disk and body column were cut from specimens of Hydra littoralis and separated into epidermis and gastrodermis, then macerated to isolate neurons for scanning electron microscopy. Bipolar and multipolar ganglion cells were present in both tissue layers, whereas sensory cells were found only in the gastrodermis. A single cilium projected from the perikaryon of some bipolar and multipolar ganglion cells; the cilium was long in the pedal disk ganglion cells and short in those from the body column. Ganglion cells from the pedal disk had short, thick processes, whereas those from the body column had long, thin neurites. Gastrodermal sensory cells were characterized as unipolar by the presence of an apical cilium near the perikaryon or as asymmetrical bipolar by the presence of a narrow neck region between the perikaryon and cilium. The axon was short in pedal disk sensory cells and long in those from the body column.  相似文献   

4.
A mouse monoclonal antibody to Hydra attenuata was used to demonstrate immunoreactive product in neurons in situ, in both whole mount and sectioned hypostomes and tentacles of H. oligactis and H. littoralis. Immunoreactive cells were concentrated around the mouth and scattered along the length of the tentacles. In the hypostome, nerve cells sent one or more processes orally and the others aborally but the processes were more distinctly stained in H. oligactis. A thin strand of five to six perihypostomal neurons was present close to the hypostome-tentacle junction. In the tentacles, neurons with long processes contacted up to five different batteries of nematocysts. Neural processes were associated with nematocyst batteries in three ways: 1) forming a perikaryal loop to encircle a centrally located stenotele, 2) branching at a distance from the perikaryon to contact a variety of nematocysts, and 3) terminal branching by one or more neurons with contacts on one to several nematocysts within a battery. Immunocytochemical localization of neurons in Hydra by light microscopy was correlated for the first time with electron microscopy. Peroxidase-antiperoxidase (PAP)-positive sensory cells were concentrated around the mouth opening. PAP-positive ganglion cells were predominant in the tentacles. Sensory cells were elongate or spindle-shaped (unipolar), triangular with two oppositely directed processes (bipolar), and multipolar (tripolar or tetrapolar) with one of the processes extending to the epidermal surface. Ganglion cells were either unipolar or bipolar or multipolar, with neurites paralleling the mesoglea and occasionally having processes abut on it.  相似文献   

5.
M Gioia  R Bianchi 《Acta anatomica》1992,144(2):127-134
A morphoquantitative analysis was carried out to clarify the cytoarchitectural organization of the paramedian pontine reticular formation (PPRF) which is considered to be an important site in the control of eye movements. The study was carried out on the cat, using the Golgi staining method. The topographic position and detailed structure of the neurons were demonstrated using morphoquantitative methods. On the basis of their neuronal arborization, fusiform neurons and two types of multipolar cells were identified. Fusiform neurons show dendrites which are given off from the two poles of the small- to medium-sized cell body. The arborization generally runs caudorostrally, ending inside the PPRF. These neurons are ubiquitous. Type 1 multipolar neurons, the most frequent elements of the neuronal population (60%), have a small- to large-sized cell body from which 2 or 3 primary spiny dendrites and the axon emerge. Their dendritic field is oval and generally oriented in the vertical plane. These neurons are scattered everywhere in the PPRF. Type 2 multipolar cells are large neurons endowed with numerous primary spiny dendrites constituting a wide round dendritic field and with a thick axon. They are located almost exclusively at the boundaries of the PPRF and preferentially in the caudal region. The characteristics of the neurons suggest that the fusiform cells may play an interneuronal role, while the multipolar neurons could have both a projective function and an important receptive role for the afferent fibers to the PPRF. The lack of homogeneity found among the multipolar neurons is in agreement with the variety of projective elements shown by functional investigations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
R Bianchi  M Gioia 《Acta anatomica》1991,142(4):357-365
The interstitial nucleus of Cajal (INC) is an important premotor centre related to the control of eye and head movements. The aim of the present research was to draw a detailed picture of the cytoarchitecture of the human INC, in particular taking into consideration the morphological features of the neurons and their functional implications. Within the neuronal population, two groups of cells were identified: one group (the most substantial) was made up of small and medium-sized neurons showing different soma shapes and both light and moderate basophilia. The second group consisted of a limited number (about 25%) of large cells dispersed throughout the whole INC, showing polygonal soma and intense basophilia. The hypothesis that these large cells represent a different cellular population inside the INC is advanced. On the basis of the dendritic emergence pattern, two types of cells were identified: multipolar and fusiform cells. The multipolar cells (59%) had small to large nerve cell bodies giving off 2-3 dendrites radiating in all directions. Dendrites and axons were often seen spreading outside the INC. The fusiform cells were small or medium sized and two dendrites emerged from the opposite poles of their elongated perikaryon. Their dendrites and axons always lay inside the INC. The fusiform cells were interpreted as neurons carrying out a mainly local integrative function, while the multipolar cells could also probably carry out an important projective role. The structural data reported are in agreement with the functional studies indicating the INC as both an integrative and a projective center.  相似文献   

7.
Summary In the guinea-pig hypothalamus, a group of enkephalinergic cells forms a well-circumscribed nuclear area called the magnocellular dorsal nucleus (MDN). This nucleus gives rise to a prominent projection to the lateral spetum: the hypothalamo-septal enkephalinergic pathway. In the present study, MDN neurons visualized by Golgi impregnation were subjected to morphological analysis in order to define the potential segregation of cellular types within the MDN. This study was complemented by additional observations of MDN neurons intracellularly injected by Lucifer yellow (LY) or horseradish peroxidase (HRP) during the in vitro incubation of hypothalamic slices. The following results were obtained from the analysis of 200 neurons: 163 Golgi-impregnated cells plus 37 injected cells (LY=14; HRP=23). Thirteen HRP-injected cells were precisely located in the MDN and 10 were located in the perifornical area surrounding the MDN. Four different cellular types were identified. Type-I neurons (41%) displayed a globular perikaryon, a variable number of primary dendrites that were poorly ramified, no preferential orientation, and an axon emerging from the perikaryon. Type-II neurons (30.5%) had a triangular perikaryon, three well-ramified primary dendrites, an orientation perpendicular to the third ventricle, and an axon emerging from the perikaryon. Type-III neurons (22%) exhibited a spindle-shaped perikaryon, two opposed well-ramified primary dendrites, an orientation perpendicular to the third ventricle, and an axon emerging from a primary dendrite. Type-IV neurons (6.5%), showed a globular perikaryon, a variable number of primary dendrites, poorly ramified dendrites, an orientation parallel to the third ventricle, and an axon whose orientation could not be identified. Neurons labeled after intracellular injection belonged to the first three cellular types.  相似文献   

8.
F P Reis  L M Machado 《Acta anatomica》1981,111(4):289-295
The cytoarchitecture of the oculomotor nuclear complex (ONC) and of the trochlear nucleus (TN) was studied in the encephalon of 10 adult marmosets (Callithrix jacchus). All the encephala were fixed with Bouin, embedded in paraffin and submitted to 20-mum serial sections in the transversal, frontal and horizontal directions. The following staining methods were employed: Nissl, Kluver-Barrera, and Pal-Weigert, modified by Erhart [1951]. Morphologically we delimited four cell columns in the ONC of the marmoset, namely lateral, dorsal, anterior, and dorsal central. The lateral and dorsal central columns comparatively correspond, in man, to the somatic portion. The others to the visceral portion. The trochlear nucleus of the marmoset is compact, round in shape and can be divided in to central cellular, dorsoventral and ventrolateral groups. The neurons of both the nuclei, of the multipolar type, predominantly have a round shape but it is also possible to observe oval or triangular neurons. They have a central nucleus, the Nissl substance is not dense and is irregularly disposed. Some differences in the size of neurons can be observed among the columns of the ONC.  相似文献   

9.
The distribution of neuropeptide Y (NPY)-immunoreactive neurons was studied in human frontal cerebral cortex from surgical biopsy specimens by immunohistochemical techniques. NPY-containing neurons were identified in all cortical sublayers except sublayer I. The stained neurons were of the multipolar, bitufted, round or triangular form with dendritic and axonal processes. The immunoreactive neurons were considered to be cortical interneurons, due to their nonpyramidal form, and since their processes could be followed intracortically particularly in direction to superficial cortical layers. The NPY precursor molecule is processed to NPY by a dibasic cleavage, and NPY is further enzymatically amidated before release and receptor activation can be achieved. Antisera raised against Cys-NPY(32-36)amide recognize amidated NPY not cross-reacting with nonamidated NPY. These antisera and immunohistochemistry revealed the presence of a population of NPYamide-immunoreactive cells morphologically indistinguishable from the NPY-immunoreactive cells in the human frontal cortex. By comparing the number of immunoreactive cells in adjacent sections, it appears that the number of NPY-immunoreactive cells was higher than those immunoreactive to NPYamide. Also, the density of NPY fibers was much higher compared with the number stained with NPYamide antiserum. The present immunohistochemical study indicates that NPY in its amidated form is contained in a subpopulation of human cortical NPY-immunoreactive neurons and may participate as an active neurotransmitter/modulator within the human cerebral cortex.  相似文献   

10.
In order to establish the synaptic relationship between the primary afferent terminals and the cuneothalamic relay neurons in the cuneate nucleus, the combined retrograde transport of horseradish peroxidase (HRP) and experimental degeneration have been applied in the young adult albino rats. 10 to 30% HRP was injected contralaterally (0.5 microliter) in the ventrobasal thalamic nucleus and multiple dorsal rhizotomies (C5 to T1) in the cervicothoracic dorsal roots were performed on the side ipsilateral to the cuneate nucleus. The results showed that: The cuneo-thalamic relay (CTN) neurons were the major neuronal type of the nucleus. More than 55% of neurons have been labelled. These neurons were 18-30 micron X 15-25 micron in sizes. They distributed in the whole rostrocaudal extent of the nucleus, particularly dense in the middle portion. The cells varied from round, oval, spindle to multipolar in shapes. They were rich in cytoplasmic organelles and had well-developed roughed endoplasmic reticulum. Their nucleus was either centrally or eccentrically located and was rather regular. The HRP-positive granules were randomly distribute in the perikaryon, dendrites and initial segment of the axons; At least three types of the experimental degeneration of the primary afferent terminals (PAT) were observed in the cuneate nucleus two to three days after dorsal rhizotomy, namely, electron-dense, granular and neurofilamentous. These PAT were mostly large and contained round vesicles. They were commonly found within synaptic complex, in which they were presynaptic to dendrites of various sizes, and were themselves postsynaptic to smaller axon terminals containing flattened vesicles. Degenerating PAT forming isolated synapses were less commonly seen; The PAT in the synaptic complex were directly presynaptic to the dendrites originating from the CTN neurons. The dendrites forming PAT-CTN synases were of large and medium-sized. The PAT did not form direct axo-somatic synapses with the somata of CTN or of any other cell types in the cuneate nucleus.  相似文献   

11.
The distribution and morphology of neurons containing three calcium-binding proteins, calbindin D28K, calretinin, and parvalbumin in the adult rabbit visual cortex were studied. The calcium-binding proteins were identified using antibody immunocytochemistry. Calbindin D28K-immunoreactive (IR) neurons were located throughout the cortical layers with the highest density in layer V. However, calbindin D28K-IR neurons were rarely encountered in layer I. Calretinin-IR neurons were mainly located in layers II and III. Considerably lower densities of calretinin-IR neurons were observed in the other layers. Parvalbumin-IR neurons were predominantly located in layers III, IV, V, and VI. In layers I and II, parvalbumin-IR neurons were only rarely seen. The majority of the calbindin D28K-IR neurons were stellate, round or oval cells with multipolar dendrites. The majority of calretinin-IR neurons were vertical fusiform cells with long processes traveling perpendicularly to the pial surface. The morphology of the majority of parvalbumin-IR neurons was similar to that of calbindin D28K: stellate, round or oval with multipolar dendrites. These results indicate that these three different calcium-binding proteins are contained in specific layers and cells in the rabbit visual cortex.  相似文献   

12.
The distribution and morphology of neurons containing neuronal nitric oxide synthase (NOS), and calcium-binding proteins calbindin D28K and calretinin in the hamster visual cortex were compared by immunocytochemistry. Staining for NOS, calbindin D28K and calretinin was seen both in the specific layers and in the selective cell types. The densest concentration of anti-NOS-immunoreactive (IR) neurons was found in layer VI. Most of the calbindin D28K-IR neurons were located in layers II/III and V while the calretinin-IR neurons were predominantly located in layers II/III. The labeled neurons varied in morphology. The large majority of NOS-IR neurons were round or oval cells with many dendrites coursing in all directions. The majority of the calbindin D28K-IR neurons were stellate and round or oval cells with multipolar dendrites. The majority of the calretinin-IR neurons were vertical fusiform cells with long processes traveling perpendicular to the pial surface. Our study showed that 14.7% and 27.5% of the NOS-IR cells in the hamster visual cortex contained calbindin D28K or calretinin, respectively. These results indicate that NOS, calbindin and calretinin are located in specific layers and specific cell types and the vast majority of NOS-containing neurons are limited to neurons that do not express calbindin D28K or calretinin.  相似文献   

13.
The existence of ipsilateral claustrocortical projection to the occipital area Oc 2.2 (Wree et al. 1981) was demonstrated in four guinea pigs. The neurons labelled by retrogradely transported HRP were localized in the caudal half of the claustrum dorsale (in its dorsomedial and central part); small and medium-sized oval and multipolar neurons preponderated.  相似文献   

14.
Summary An investigation was made of the gross arrangement of the thoracic sympathetic rami, the histology and fine structure of their neurons, and of the light microscopy of thoracic spinal nerve roots in the rat. Sympathetic neurons were multipolar and were placed singly or in groups in the scanty stroma of collagen or among bundles of fine nerve fibers. Myelinated fibers in thoracic rami communicantes were either absent or occurred only in small numbers. Hence no white rami could be identified and thoracic preganglionic sympathetic fibers must have been unmyelinated. The few myelinated fibers in the sympathetic rami were probably somatic. Most sympathetic neurons were mononucleate and had a dense mottled nucleolus; a few binucleate neurons were observed. The nuclear envelope was always surrounded by a light perinuclear zone. The Nissl substance was usually arranged in distinct bodies which consisted of parallel, well-separated, and in some instances of closely packed layers of rough-surfaced cisternae; their membranes were occasionally fused. The sizes, shapes, texture, distribution and significance of dense bodies in the sympathetic perikaryon were described. A few whorls, onion or myelin-like structures were conjectured to be submicroscopic scars localizing presumptive minute areas of autolysis or necrosis. The satellite cell provided a fairly smooth and narrow coat around the sympathetic perikaryon, except where it contained the crenated nucleus or aggregates of cytoplasmic components. Axons and dendrites could not be classified according to the presence or absence of Nissl substance. Synaptic nerve endings, rarely placed as axo-somatic junctions at the sympathetic perikaryon, were usually observed at the neuronal processes, but their identification as axo-axonic or axo-dendritic endings could not be made. A comparison was made of the fine structure of sympathetic neurons in the rat, frog and man.This investigation was supported (in whole) by United States Public Health Service Grant NB-01879-07, Institute for Nervous Diseases and Blindness.  相似文献   

15.
Summary The present study deals with endocrine-like cells in the urethra of human penis. A large number of basal-granulated cells immunoreactive for serotonin were dispersed in the urethral epithelium. No cellular elements were stained positively with antisera against bioactive peptides. The serotonin-immunoreactive cells consisted of a small oval perikaryon and slender processes, and resembled neurons in shape. An apical process reached the urethral lumen. The basal processes frequently branched out in a dendritic fashion, some running laterally for a considerable distance. The number of cells immunoreactive for serotonin was remarkably reduced in subjects over 60 years of age.  相似文献   

16.
Yu SH  Lee JY  Jeon CJ 《Zoological science》2011,28(9):694-702
Although the dog is widely used to analyze the function of the brain, it is not known whether the distribution of calcium-binding proteins reflects a specific pattern in the visual cortex. The distribution of neurons containing calcium-binding proteins, calbindin D28K, calretinin, and parvalbumin in adult dog visual cortex were studied using immunocytochemistry. We also compared this labeling to that of gamma-aminobutyric acid (GABA). Calbindin D28K-immunoreactive (IR) neurons were predominantly located in layer II/III. Calretinin- and parvalbumin-IR neurons were located throughout the layers with the highest density in layers II/III and IV. The large majority of calbindin D28K-IR neurons were multipolar stellate cells. The majority of the calretinin-IR neurons were vertical fusiform cells with long processes traveling perpendicular to the pial surface. And the large majority of parvalbumin-IR neurons were multipolar stellate and round/oval cells. More than 90% of the calretinin- and parvalbumin-IR neurons were double-labeled with GABA, while approximately 66% of the calbindin D28K-IR neurons contained GABA. This study elucidates the neurochemical structure of calcium-binding proteins. These data will be informative in appreciating the functional significance of different laminar distributions of calcium-binding proteins between species and the differential vulnerability of calcium-binding proteins-containing neurons, with regard to calcium-dependent excitotoxic procedures.  相似文献   

17.
The torus semicircularis of Barbus meridionalis is composed of two nuclei, the nucleus centralis and nucleus lateralis. Its cytoarchitecture was studied in sections stained by Nissl and Golgi-Colonnier techniques. In the nucleus lateralis two portions were identified: the ‘pars lateralis’ and the ‘pars medialis.’ Cytoarchitecturally, both portions are identical. They exhibit a layered structure in which there is an alternation of cell-poor and cell-rich laminae designated as: (1) the subependymal layer; (2) the layer of small cells; (3) the fibrillar layer; and (4) the layer of disperse cells. The subependymal layer consists of fine fibers and some small rounded-ovoid cells whose dendritic prolongations course horizontally or ventrally. The second layer has small, densely-packed cells with rounded-ovoid and triangular somata and a main dendritic trunk that courses ventrally. The third layer contains dendritic fields of the cells of layer two and of cells from layer four. The fourth layer is composed of fusiform neurons with two dendritic trunks of equal thickness, rounded-ovoid neurons with one or two main dendritic trunks and multipolar triangular stellate neurons with equal dendritic trunks. The nucleus centralis comprises a fibrillar cortex with a structure identical to that of the subependymal layer. There is also a cellular region with the same cell types as those found in the nucleus lateralis. These two nuclei thus compose the torus semicircularis of the barbel. They exhibit the same cytological characteristics and both are differentiated by their cytoarchitectural and functional orders.  相似文献   

18.
The purpose of the present study was to determine whether an intraspinal nociceptive pathway from the lungs modulated activity of spinal neurons that also received afferent input from the colon. Extracellular potentials of single lumbosacral (L6-S2) spinal neurons were recorded in pentobarbital-anesthetized, paralyzed, and ventilated male rats. The lower airways and lungs were irritated by injecting ammonia vapor over a 30% NH(4)OH solution into the inspiratory line of the ventilator (0.5 ml, 20 s). Graded colorectal distension (CRD; 20-60 mmHg, 20 s) was produced by air inflation of a balloon. Inhaled ammonia (IA) altered activity of 31/51 (61%) lumbosacral spinal neurons responding to noxious CRD (60 mmHg, 20 s). In contrast, IA changed activity of 3/30 (10%) spinal neurons with somatic fields that did not respond to colorectal inputs. IA decreased activity of 16/31 (52%) spinal neurons and increased activity of the other 15 neurons with colorectal input. Multiple patterns of viscerovisceral convergent spinal neurons with excitatory and inhibitory responses to CRD and IA were observed; 87% (27/31) of the viscerovisceral convergent neurons also responded to innocuous and/or noxious stimuli of somatic fields. Bilateral cervical vagotomy abolished responses to IA in 2/8 tested neurons, indicating that the remaining 6 neurons had input originating from sympathetic afferent fibers. Rostral C1 spinal transection did not abolish inhibitory responses to IA in 4/4 neurons, but L2 transection eliminated inhibitory responses to IA in 3/3 neurons. These results indicated that irritation of the lower airways modulated activity of lumbosacral spinal neurons with colorectal input. It might contribute to intraspinal cross talk between the colon and lungs.  相似文献   

19.
Calcium-binding proteins are thought to play important roles in regulating intracellular calcium in the central nervous system. In the present study, we investigated the distribution and morphology of neurons containing parvalbumin in the visual cortex of mouse and hamster. The calcium-binding proteins were localized using immunocytochemistry. Parvalbumin-immunoreactive neurons were located in all layers except layer I. The highest density of parvalbumin immunoreactivity was found in layer V of both mouse and hamster. The labeled neurons varied in morphology. The majority of the parvalbumin-immunoreactive neurons both in mouse and hamster visual cortex was stellate and round, or oval with multipolar dendrites. These results indicate that the calcium-binding protein parvalbumin is contained in specific layers and in selective cell types of the mouse and hamster visual cortex. The distribution of parvalbumin in the mouse visual cortex is very similar to that of hamster.  相似文献   

20.
By means of the silver nitrate impregnation method after Golgi-Kopsch in kittens and young cats the field 4 in the cerebral motor cortex has been studied. The motor cortex of the field 4 possesses certain heteromorphism. Besides usual stellate and pyramidal neurons, that differ from real ones by some morphological signs: their body is often round, the apical dendrite is much thinner than the corresponding dendrite of a pyramidal neuron, it does not produce oblique branches along the course, never gets into the I layer, the spines arrange less densely. According to the mode of dendrites setting off, the atypical pyramidal neurons can be divided into multipolar and spindle-like with horizontal or vertical branching of the dendrites. According to the spines distribution, the multipolar atypical neurons can be divided into spinous, rare-spinous and aspinous. With respect to various cellular forms and distribution of various types of neurons in layers, every of the areas (gamma, alpha, sfu, fu) possesses specific peculiarities. The greatest variability of the neurons have the field 4 gamma and 4 alpha, where, besides stellate and pyramidal, atypical neurons can be found. The stellate neurons of the field 4 gamma are characterized with a deep arrangement, their number is essentially less, than in other areas of the field 4. In the field 4 alpha they are situated in the layers II-III. Suprafundal and fundal parts of the field do not possess pyramidal atypical neurons and are characterized with presence of large amount of the stellate neurons. In respect to the axonal branching in the suprafundal part of the field 4, 2 types of the stellate cells are distinguished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号