首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Frey MR  Dise RS  Edelblum KL  Polk DB 《The EMBO journal》2006,25(24):5683-5692
Internalization and proteolytic degradation of epidermal growth factor (EGF) receptor (R) following ligand binding is an important mechanism for regulating EGF-stimulated signals. Using pharmacological and RNA interference inhibition of p38 mitogen-activated protein kinase, we show that p38 is required for efficient EGF-induced EGFR destruction but not internalization. In the absence of p38 activity, EGF fails to stimulate the ubiquitin ligase Cbl or ubiquitinylation of EGFR, and internalized EGFR accumulates in intracellular vesicles containing caveolin-1. These effects are accompanied by loss of EGFR phosphorylation on Y1045, a phosphorylation site required for Cbl activation. Furthermore, similar to cells treated with p38 inhibitors, intestinal epithelial cells expressing Y1045F EGFR mutants show increased proliferation but not migration in response to EGF, thus uncoupling these biological responses. Together these data position p38 as a modulator of ligand-stimulated EGFR processing and demonstrate that this processing has a profound impact on the cellular outcome of EGFR signaling.  相似文献   

2.
We describe a system for extending stopped-flow analysis to the kinetics of ligand capture and release by cell surface receptors in living cells. While most mammalian cell lines cannot survive the shear forces associated with turbulent stopped-flow mixing, we determined that a murine hematopoietic precursor cell line, 32D, is capable of surviving rapid mixing using flow rates as great as 4.0 mL/s, allowing rapid processes to be quantitated with dead times as short as 10 ms. 32D cells do not express any endogenous epidermal growth factor (EGF) receptor or other ErbB family members and were used to establish monoclonal cell lines stably expressing the EGF receptor. Association of fluorescein-labeled H22Y-murine EGF (F-EGF) to receptor-expressing 32D cells was observed by measuring time-dependent changes in fluorescence anisotropy following rapid mixing. Dissociation of F-EGF from EGF-receptor-expressing 32D cells was measured both by chase experiments using unlabeled mEGF and by experiments in which equilibrium was perturbed by dilution. Comparison of these dissociation experiments showed that little, if any, ligand-induced dissociation occurs in the chase dissociation experiments. Data from a series of association and dissociation experiments, performed at various concentrations of F-EGF in the nanomolar range and at multiple cell densities, were simultaneously analyzed using global analysis techniques and fit to a two independent receptor-class model. Our analysis is consistent with the presence of two distinct receptor populations having association rate constants of k(on1) = 8.6 x 10(6) M(-1) s(-1) and k(on2) = 2.4 x 10(6) M(-1) s(-1) and dissociation rate constants of k(off1) = 0.17 x 10(-2) s(-1) and k(off2) = 0.21 x 10(-2) s(-1). The magnitudes of these parameters suggest that under physiological conditions, in which cells are transiently exposed to nanomolar concentrations of ligand, ligand capture and release may function as the first line of regulation of the EGF receptor-induced signal transduction cascade.  相似文献   

3.
Solubilized epidermal growth factor receptor (EGF-R) has been used in an extension of the Geysen epitope mapping protocol in order to provide additional insight into the amino acid residues in human transforming growth factor alpha (hTGF alpha) which are critical to recognition and binding. Overlapping heptapeptides which encompassed the 50 amino acid primary sequence of hTGF alpha were synthesized on a polyethylene solid phase, and the amount of detergent-solubilized EGF-R bound to each peptide was measured using ELISA. EGF-R appeared to bind reproducibly to four heptapeptides cognate to sequences in both the N- and C-domains of hTGF alpha (residues 22-28, 28-34, 36-42, and 44-50). Visualization of these four regions on three-dimensional solution phase structures of hTGF alpha, derived from 1H NMR measurements [Kline, T.-P., Brown, F.K., Brown, S.C., Jeffs, P.W., Kopple, K.D., & Mueller, L. (1990) Biochemistry 29, 7805-7813], indicated that the peptide segments are located on a single face of the protein and suggested the presence of a potential receptor binding cavity. If peptide segments within both the N- and C-domains of hTGF alpha are involved in binding to EGF-R, then this has direct consequences for possible molecular mechanisms by which receptor activation might take place. For example, the observed conformational flexibility in the six NMR-derived hTGF alpha structures due to variations in the main-chain torsion angles of Val-33, in combination with the involvement of residues from both domains in the proposed binding cavity, may imply that receptor activation results from interdomain reorientation in the protein ligand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.  相似文献   

5.
We have previously shown that the antireceptor antibody alpha IR-3 inhibits binding of 125I-somatomedin-C/insulin-like growth factor I (Sm-C/IGF-I) to the 130-kDa alpha subunit of the type I receptor in human placental membranes, but does not block 125I-insulin-like growth factor II (IGF-II) binding to a similar 130-kDa complex in these membranes. To determine whether the 130-kDa 125I-IGF-II binding complex represents a homologous receptor or whether 125I-IGF-II binds to the type I receptor at a site that is not blocked by alpha IR-3, type I receptors were purified by affinity chromatography on Sepharose linked alpha IR-3. The purified receptors bound both 125I-Sm-C/IGF-I and 125I-IGF-II avidly (KD = 2.0 X 10(-10) M and 3.0 X 10(-10) M, respectively). The maximal inhibition of 125I-Sm-C/IGF-I binding by the antibody, however, was 62% while only 15% of 125I-IGF-II binding was inhibited by alpha IR-3. In the presence of 500 nM alpha IR-3, Sm-C/IGF-I bound with lower affinity (KD = 6.5 X 10(-10) M) than IGF-II (KD = 4.5 X 10(-10) M) and IGF-II was the more potent inhibitor of 125I-Sm-C/IGF-I binding. These findings suggest that the type I receptor contains two different binding sites. The site designated IA has highest affinity for Sm-C/IGF-I and is blocked by alpha IR-3. Site IB has higher affinity for IGF-II than for Sm-C/IGF-I and is not blocked by alpha IR-3.  相似文献   

6.
We have recently identified high and low affinity insulin-like growth factor I (IGF I) binding sites in solubilized human placental membranes and purified the high affinity IGF I receptor by IGF I affinity chromatography (Tollefsen, S. E., Thompson, K., and Petersen, D. J. (1987) J. Biol. Chem. 262, 16461-16469). To define the structural basis for high affinity IGF I binding, we have examined the effect of disulfide bond reduction on the binding parameters of the high affinity IGF I receptor. We find that the disulfide bonds linking the two alpha beta dimers of the IGF I receptor heterotetramer are reduced by incubation at pH 8.75 with 2 mM dithiothreitol (DTT) for 5 min at room temperature. Gel filtration chromatography on a Superose 12 fast protein liquid chromatography column indicates that the alpha beta dimers do not remain associated by noncovalent interactions after reduction. Scatchard plots of IGF I binding to the IGF I receptor incubated at pH 8.75 with or without DTT indicate that the IGF I receptor alpha beta dimers have a 6.1 +/- 1.6 (mean +/- S.D.) times lower affinity than the heterotetramer for IGF I. The total binding capacity of the IGF I receptor treated with DTT is 1.6 +/- 0.3 (mean +/- S.D.) times higher than that of an equal amount of receptor treated without DTT. These results are consistent with a model in which the heterotetramer binds a single IGF I molecule with high affinity, whereas each of the two alpha beta dimers binds an IGF I molecule with lower affinity after dissociation. We conclude that association of two alpha beta dimers is required for formation of an IGF I receptor with high affinity for its ligand.  相似文献   

7.
We have prepared plasma membranes from Balb/c 3T3 fibroblasts to study the transmodulation of the high affinity epidermal growth factor (EGF) receptor. Although phorbol esters do not transmodulate the high affinity EGF receptors on these membranes, the addition of platelet-derived growth factor (PDGF) or EGF to the membranes leads to the loss of high affinity EGF binding and to the phosphorylation of several membrane proteins, including the EGF receptor. The EGF receptor is phosphorylated at tyrosine residues although we have not yet established if this represents direct phosphorylation by the PDGF receptor kinase or is mediated by activation of other cell membrane-associated tyrosine kinases. Upon treatment of the membranes with PDGF, four major phosphoproteins (of apparent molecular masses of 69, 56, 38, and 28 kDa) are released from the membrane and can be retrieved from the supernatant fluid using a reversed-phase cartridge. As assessed by immunoprecipitation with an anti-phosphotyrosine antibody, all four proteins appear to be phosphorylated on tyrosine. The time course of dissociation of these proteins from the membranes closely parallels the loss of high affinity EGF receptors. The high affinity EGF receptor can be reconstituted on PDGF-transmodulated membranes by treating the supernatant fluid with alkaline phosphatase and adding the mixture to the membranes. It appears that dephosphorylation of the released proteins is sufficient to allow reassociation with the membranes and formation of the high affinity EGF receptor complex.  相似文献   

8.
We have identified high and low affinity insulin-like growth factor I (IGF I)-binding sites with mean dissociation constants of 0.37 and 6.25 nM, respectively, in solubilized placental membranes. We have separated these sites and purified the high affinity IGF I receptor 1,300-fold, with an overall yield of 9.9%, using wheat germ agglutinin-Sepharose chromatography, insulin affinity chromatography, and IGF I affinity chromatography. The Scatchard plot of IGF I binding to the high affinity receptor is linear, suggesting the purification of a single homogeneous class of binding sites. Insulin is two orders of magnitude less effective than IGF I in competitively inhibiting IGF I binding to this receptor. The high affinity IGF I receptor is composed of alpha and beta subunits with apparent molecular weights of 135,500 and 96,200, respectively. IGF I at concentrations of greater than or equal to 50 ng/ml stimulates autophosphorylation of the beta subunit of the purified high affinity receptor 4.6-fold. Low affinity IGF I-binding sites run through the IGF I affinity column or are eluted from the insulin affinity column. The separation of IGF I receptors with different binding affinities by sequential affinity chromatography will make it possible to examine directly the determinants of receptor affinity.  相似文献   

9.
Integrin-mediated cell adhesion cooperates with growth factor receptors in the control of cell proliferation, cell survival, and cell migration. One mechanism to explain these synergistic effects is the ability of integrins to induce phosphorylation of growth factor receptors, for instance the epidermal growth factor (EGF) receptor. Here we define some aspects of the molecular mechanisms regulating integrin-dependent EGF receptor phosphorylation. We show that in the early phases of cell adhesion integrins associate with EGF receptors on the cell membrane in a macromolecular complex including the adaptor protein p130Cas and the c-Src kinase, the latter being required for adhesion-dependent assembly of the macromolecular complex. We also show that the integrin cytoplasmic tail, c-Src kinase, and the p130Cas adaptor protein are required for phosphorylation of EGF receptor in response to integrin-mediated adhesion. We show that integrins induce phosphorylation of EGF receptor on tyrosine residues 845, 1068, 1086, and 1173, but not on residue 1148, a major site of phosphorylation in response to EGF. In addition we find that integrin-mediated adhesion increases the amount of EGF receptor expressed on the cell surface. Therefore these data indicate that integrin-mediated adhesion induces assembly of a macromolecular complex containing c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosine residues.  相似文献   

10.
Chimeric receptors composed of the human epidermal growth factor receptor (EGF-R) extracellular domain fused to wild-type and truncated platelet-derived growth factor receptor (PDGF-R) intracellular sequences were stably expressed in NIH 3T3 cells devoid of endogenous EGF-Rs. This experimental system allowed us to investigate the biological activity of PDGF-R cytoplasmic-domain mutants in PDGF-R-responsive NIH 3T3 cells by activating PDGF-specific signaling pathways with EGF. Deletion of 74 carboxy-terminal amino acids severely impaired the ability of the PDGF-R cytoplasmic domain to associate with cellular substrates in vitro. This deletion also inhibited receptor and substrate phosphorylation, reduced the receptor's mitogenic activity, and completely abolished its oncogenic signaling potential. Surprisingly, removal of only six additional amino acids, including Tyr-989, restored substantial receptor and substrate phosphorylation capacity as well as transforming potential and yielded a receptor with wild-type levels of ligand-induced mitogenic activity. However, the ability of this chimera to bind phospholipase C gamma was severely impaired in comparison with the ability of the wild-type receptor, while the association with other cellular proteins was not affected. Further deletion of 35 residues, including Tyr-977, nearly abolished all PDGF-R cytoplasmic-domain biological signaling activities. None of the three C-terminal truncations completely abolished the mitogenic potential of the receptors or had any influence on ligand binding or receptor down regulation. Together, these data implicate the 80 C-terminal-most residues of the PDGF-R, and possibly Tyr-989, in phospholipase C gamma binding, while receptor sequences upstream from Asp-988 appear to be essential for specific interactions with other cellular polypeptides such as ras GTPase-activating protein and phosphatidylinositol 3-kinase. Thus, the mutants described here allow the separation of distinct PDGF-activated signaling pathways and demonstrate that phospholipase C gamma phosphorylation is not required for mitogenesis and transformation.  相似文献   

11.
The ErbB family includes two receptors, ErbB-1 and ErbB-3, that respectively bind to epidermal growth factor and Neu differentiation factor, and an orphan receptor, ErbB-2. Unlike ErbB-1 and ErbB-2, the intrinsic tyrosine kinase of ErbB-3 is catalytically impaired. By using interleukin-3-dependent cells that ectopically express the three ErbB proteins or their combinations, we found that ErbB-3 is devoid of any biological activity but both ErbB-1 and ErbB-2 can reconstitute its extremely potent mitogenic activity. Transactivation of ErbB-3 correlates with heterodimer formation and is reflected in receptor phosphorylation and the transregulation of ligand affinity. Inter-receptor interactions enable graded proliferative and survival signals: heterodimers are more potent than homodimers, and ErbB-3-containing complexes, especially the ErbB-2/ErbB-3 heterodimer, are more active than ErbB-1 complexes. Nevertheless, ErbB-1 signaling displays dominance over ErbB-3 when the two receptors are coexpressed. Although all receptor combinations activate the mitogen-activated protein kinases ERK and c-Jun kinase, they differ in their rate of endocytosis and in coupling to intervening signaling proteins. It is conceivable that combinatorial receptor interactions diversify signal transduction and confer double regulation, in cis and in trans, of the superior mitogenic activity of the kinase-defective ErbB-3.  相似文献   

12.
The binding of epidermal growth factor (EGF) to its cell surface receptor (EGF-R) results in a number of intracellular responses including the activation of the receptor intracellular tyrosine kinase. Receptor oligomerization induced by ligand binding has been suggested to play an important role in signal transduction. However, the mechanisms involved in oligomerization and signal transduction are poorly understood. We have produced and purified several milligrams of recombinant extracellular domain of the EGF receptor (EGF-Rx) using the baculovirus/insect cell expression system. The baculovirus-generated EGF-Rx is glycosylated, has had its signal peptide correctly cleaved, and exhibits a dissociation constant for EGF similar to that for solubilized full-length receptor, of about 100 nM. The binding of EGF to EGF-Rx leads to the formation of receptor dimers and higher oligomerization states which are irreversibly captured using the covalent cross-linking agent disuccinimidyl suberate. Interestingly, purified receptor monomers and dimers, stabilized by the cross-linker in the presence of EGF, exhibit increased binding affinity toward EGF as compared with receptor monomers which have not been exposed to EGF. It appears that the high affinity state of receptor can be maintained by the covalent cross-linking agent. These results indicate that in addition to ligand binding, the extracellular domain of EGF receptor possesses the inherent ability to undergo ligand-induced dimerization and that the low affinity state is converted to a high affinity state by EGF.  相似文献   

13.
The epidermal growth factor receptor (EGFR) is an important target in the treatment of cancer. A very potent antibody, mAb806, has been developed against overexpressed EGFR and was found to be particularly active in brain tumors. Structural studies reveal that it binds to an epitope on the extracellular region of the EGFR. However, this epitope is cryptic/buried in crystal structures of the active (untethered) and inactive (tethered) EGFR, and it is unclear as to how the antibody interacts with this region. To explore this interaction, we combined molecular docking, steered molecular dynamics, and equilibrium molecular dynamics simulations. Our computational models reveal that the antibody induces local unfolding around the epitope to form the antibody–EGFR complex. In addition, regions in the vicinity of the epitope also modulate the interaction, which are in accordance with several other known antibody–antigen interactions, and offers new possibilities for the design of antibodies with increased potency and specificity for this receptor. Proteins 2015; 83:153–168. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
The platelet-derived growth factor (PDGF) receptor (PDGFR) transactivates the epidermal growth factor (EGF) receptor (ErbB1) to stimulate the cell migration of fibroblasts through an unknown mechanism (Li, J., Kim, Y. N. & Bertics, P. (2000) J. Biol. Chem. 275, 2951-2958). In this paper we provide evidence that the transactivation of the EGF receptor (EGFR) by PDGFR is essential for PDGF to activate p21-activated kinase (PAK) family kinases. Fetal calf serum (10%) transiently stimulates the PAK activity in NIH 3T3 fibroblasts. The activation of PAK was completely inhibited by either PDGFR-specific inhibitor (AG1295) or EGFR-specific inhibitor (AG1478), suggesting that serum requires either the PDGF- or EGF-dependent pathway or the combination of both to activate PAK. PDGF-induced activation of PAK is completely inhibited by either AG1295 or AG1478, indicating that PDGF requires both PDGFR and EGFR for PAK activation. In support of this notion, a mouse embryo fibroblast cell line derived from the EGFR -/- mouse (from Dr. Erwin Wagner) doesn't activate PAK in response to PDGF. Expression of human EGFR in this cell line restores the ability of the PDGF to induce PAK activation. Our results indicate that PDGF activates PAK through transactivation of ErbB1.  相似文献   

15.
Dorsal root ganglia were extirpated from 9-day old embryonic chickens and solubilized in phosphate buffered saline containing 0.5% Noniodet P 40 detergent. When nerve growth factor binding studies are performed on these samples, the expected curvilinear Rosenthal (Scatchard) plot is obtained. However, when the solubilized cell sample is made 1-2 mM in phenylmethylsulfonyl fluoride and nerve growth factor binding is determined, a linear Rosenthal (Scatchard) plot is obtained. The equilibrium dissociation constant obtained from the slope of the line is 1.9 X 10(-9) M, identical to the equilibrium dissociation constant of the low affinity receptor. A similar phenomenon is observed when rat pheochromocytoma cells are solubilized in the non-ionic detergent and nerve growth factor binding is determined. No high affinity binding can be detected for either cell type when detergent solubilized cells are incubated with phenylmethylsulfonyl fluoride.  相似文献   

16.
A Yayon  M Klagsbrun  J D Esko  P Leder  D M Ornitz 《Cell》1991,64(4):841-848
The role of low affinity, heparin-like binding sites for basic fibroblast growth factor (bFGF) was investigated in CHO cells mutant in their metabolism of glycosaminoglycans. Heparan sulfate-deficient mutants transfected to express a cloned mouse FGF receptor cDNA are not able to bind bFGF. It is demonstrated that free heparin and heparan sulfate can reconstitute a low affinity receptor that is, in turn, required for the high affinity binding of bFGF. These studies suggest that the low affinity receptor is an accessory molecule required for binding of bFGF to the high affinity site. Such an obligatory interaction of low and high affinity FGF receptors suggests a physiological role for heparin-like, low affinity receptors and constitutes a novel mechanism for the regulation of growth factor-receptor interactions.  相似文献   

17.
Ligand-induced receptor oligomerization is an established mechanism for receptor-tyrosine kinase activation. However, numerous receptor-tyrosine kinases are expressed in multicomponent complexes with other receptors that may signal independently or alter the binding characteristics of the receptor-tyrosine kinase. Nerve growth factor (NGF) interacts with two structurally unrelated receptors, the Trk A receptor-tyrosine kinase and p75, a tumor necrosis factor receptor family member. Each receptor binds independently to NGF with predominantly low affinity (K(d) = 10(-9) m), but they produce high affinity binding sites (K(d) = 10(-11) m) upon receptor co-expression. Here we provide evidence that the number of high affinity sites is regulated by the ratio of the two receptors and by specific domains of Trk A and p75. Co-expression of Trk A containing mutant transmembrane or cytoplasmic domains with p75 yielded reduced numbers of high affinity binding sites. Similarly, co-expression of mutant p75 containing altered transmembrane and cytoplasmic domains with Trk A also resulted in predominantly low affinity binding sites. Surprisingly, extracellular domain mutations of p75 that abolished NGF binding still generated high affinity binding with Trk A. These results indicate that the transmembrane and cytoplasmic domains of Trk A and p75 are responsible for high affinity site formation and suggest that p75 alters the conformation of Trk A to generate high affinity NGF binding.  相似文献   

18.
Tumor promoters cause a variety of effects in cultured cells, at least some of which are thought to result from activation of the Ca2+-phospholipid-stimulated protein kinase C. One action of tumor promoters is the modulation of the binding and phosphorylation of the epidermal growth factor (EGF) receptor in A431 cells. To determine if these compounds act on the EGF receptor by substituting for the endogenous activator of C kinase, diacylglycerol, we compared the effects of the potent tumor promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA) with those of the synthetic diacylglycerol analog 1-oleyl 2-acetyl diglycerol (OADG). When A431 cells were treated with TPA, the subcellular distribution of C kinase activity shifted from a predominantly cytosolic location to a membrane-associated state; OADG also caused the disappearance of cytosolic C kinase activity. The shift in the subcellular distribution of C kinase, caused by TPA or OADG, correlated with changes in binding and phosphorylation of the EGF receptor. OADG, like TPA, caused loss of binding to an apparent high affinity class of receptors, blocked EGF-induced tyrosine phosphorylation of the EGF receptor, and stimulated phosphorylation of the EGF receptor at both serine and threonine residues. No difference between the phosphopeptide maps of receptors from cells treated with OADG or TPA was observed. Thus, it appears that tumor promoters can exert their effects on the EGF receptors by substituting for diacylglycerol, presumably by activating protein kinase C. Further, these results suggest that endogenously produced diacylglycerol may have a role in normal growth regulatory pathways.  相似文献   

19.
Platelet-derived growth factor-BB (PDGF-BB) and basic fibroblast growth factor (bFGF) are potent growth factors active on many cell types. The present study indicates that they directly interact in vitro. The interaction was investigated with overlay experiments, surface plasmon resonance experiments, and solid-phase immunoassays by immobilizing one factor or the other and by steady-state fluorescence analysis. The interaction observed was specific, dose-dependent, and saturable, and the bFGF/PDGF-BB binding stoichiometry was found to be 2:1. K(D)(1) for the first step equilibrium and the overall K(D) values were found to be in the nanomolar and in the picomolar range, respectively. Basic FGF/PDGF-BB interaction was strongly reduced as a function of time of PDGF-BB proteolysis. Furthermore, docking analysis suggested that the PDGF-BB region interacting with bFGF may overlap, at least in part, with the PDGF-BB receptor-binding site. This hypothesis was supported by surface plasmon resonance experiments showing that an anti-PDGF-BB antibody, known to inhibit PDGF-BB binding with its receptor, strongly reduced bFGF/PDGF-BB interaction, whereas a control antibody was ineffective. According to these data, the observed bFGF.PDGF-BB complex formation might explain, at least in part, previous observations showing that PDGF-BB chemotactic and mitogenic activity on smooth muscle cells are strongly inhibited in the presence of bFGF.  相似文献   

20.
The nerve growth factor (NGF) receptor is a glycosylated transmembrane protein present on the cell surface as both high and low affinity forms, but biological responsiveness requires interactions of NGF with the high affinity site. We have tested the effects of mutations in the intracellular domain of the receptor upon its cell surface expression and equilibrium binding of 125I-NGF. Although mutant receptors lacking the entire cytoplasmic domain are processed and expressed at the cell surface and are capable of binding to NGF, the absence of cytoplasmic sequences leads to a loss of high affinity binding and to a lack of an appropriate cross-linking pattern as assessed by N-hydroxysuccinimidyl 4-azidobenzoate photoaffinity cross-linking. These results, taken together with the highly conserved nature of these cytoplasmic sequences, implies that the interaction of the receptor with an accessory molecule is necessary to form the high affinity receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号