首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The unusually high floral and faunal similarity between the different regions of the Afromontane archipelago has been noted by biogeographers since the late 1800s. A possible explanation for this similarity is the spread of montane habitat into the intervening lowlands during the glacial periods of the Pleistocene, allowing biotic exchange between mountain ranges. In this study, we sought to infer the existence and most likely positions of these potential habitat corridors. We focused on sixteen Afromontane endemic tree, shrub, and bird species in the Cameroon Volcanic Line, East African Rift and Great Escarpment. Species were chosen based on distribution above 1200–1500 m in at least two of the major Afromontane regions. Ecological niche models were developed for each species in the present and projected to the mid-Holocene and the last glacial maximum (LGM). Models were thresholded to create binary maps of presence/absence and then summed across taxa to estimate potential LGM and mid-Holocene distributions. We found widespread climatic suitability for our montane taxa throughout the lowlands of Central Africa during the LGM, connecting all regions of the Afromontane archipelago except the Ethiopian Highlands and the Dahomey Gap. During the mid-Holocene, we noted more limited climatic suitability for fewer species in lowland areas. Although we set out to test predictions derived from alternatively hypothesized corridors, we instead found widespread climatic suitability connecting Afromontane regions across the entire Congo Basin for all species.

  相似文献   

2.
Aim To examine the influence of climatic extinction filtering during the last glacial maximum (LGM; c. 18,000 yr bp ) and of the subsequent recolonization of forest faunas on contemporary assemblage composition in southern African forests. Location South Africa, Mozambique, Swaziland, Zimbabwe. Methods Data comprised presence/absence by quarter‐degree grid cell for forest‐dependent and forest‐associated birds, non‐volant mammals and frogs. Twenty‐one forest subregions were assigned to one of three previously identified forest types: Afrotemperate, scarp, and Indian Ocean coastal belt. Differences among forest types were examined through patterns and gradients of species richness and endemism, assemblage similarity, species turnover, and coefficients of species dispersal direction. The influence of contemporary environment on assemblage composition was investigated using partial canonical correspondence analysis. Several alternative biogeographical hypotheses for the recolonization of forest faunas were tested. Results Afrotemperate faunas are relatively species‐poor, have low species turnover, and are unsaturated and infiltrated by generalist species. In northern and central regions, communities are supplemented by recolonization from scarp forest refugia, and among frogs by autochthanous speciation in localized refugia. Scarp faunas are relatively species‐rich, contain many forest‐dependent species, have high species turnover, and overlap with coastal and Afrotemperate faunas. Coastal forests are relatively species‐rich with high species turnover. Main conclusions Afrotemperate communities were affected most by climatic extinction filtering events. Scarp forests were Afrotemperate refugia during the LGM and are a contemporary overlap zone between Afrotemperate and coastal forest. Coastal faunas derive from post‐LGM colonization along the eastern seaboard from tropical East African refugia. The greatest diversity is achieved in scarp and coastal forest faunas in northern KwaZulu–Natal province. This historical centre of diversity has influenced the faunal diversity of nearly all other forests in South Africa. The response of vertebrate taxa to large‐scale, historical processes is dependent on their relative mobility: forest birds best illustrate patterns resulting from post‐glacial faunal dispersal, while among mammals and frogs the legacy of climatic extinction filtering remains stronger.  相似文献   

3.
Jirˇí Reif  Jirˇí Flousek 《Oikos》2012,121(7):1053-1060
Climate change is one of the most important recent forces modulating the structure of ecological communities worldwide. Although a number of studies have documented climatically induced altitudinal range shifts, with species move upwards with increasing temperature and tracking their climatic optima, an examination of interspecific variability in such altitudinal shifts remains unexplored. Using a unique dataset on the altitudinal distribution of birds in a central European mountain range, collected with constant effort and methodology over more than 20 years, we examined the effects of particular species’ ecological traits on interspecific variability in altitudinal range shifts. We predicted that shifts would be greater in species with narrower European climatic niches, breeding in open habitats, feeding on insects and originally breeding at lower altitudes. Patterns of the shifts differed within the time period studied. In the first decade, no climate change was observed and species did not show any direction in their altitudinal shifts. In the second decade, local spring temperatures increased and species moved to higher altitudes. These altitudinal shifts were related to species’ habitat preferences, with open habitat species shifting to higher altitudes than forest species. The effect of other predictors was relatively small. The habitat effects imply either stronger self‐regulation of the forest microclimate compared to open habitats, with forest species less forced to move upwards, or a delayed shift in the alpine timberline due to the slow growth of trees. In the latter case, forest species would face unfavourable climatic conditions and at the same time be constrained by the limited distribution of their habitat. Our study shows that species’ ecology can considerably alter the actual outcome of the impacts of ongoing climate change in mountain areas.  相似文献   

4.
Bird species richness is mediated by local, regional, and historical factors, for example, competition, environmental heterogeneity, contemporary, and historical climate. Here, we related bird species richness with phylogenetic relatedness of bird assemblages, plant species richness, topography, contemporary climate, and glacial‐interglacial climate change to investigate the relative importance of these factors. This study was conducted in Inner Mongolia, an arid and semiarid region with diverse vegetation types and strong species richness gradients. The following associated variables were included as follows: phylogenetic relatedness of bird assemblages (Net Relatedness Index, NRI), plant species richness, altitudinal range, contemporary climate (mean annual temperature and precipitation, MAT and MAP), and contemporary‐Last Glacial Maximum (LGM) change in climate (change in MAT and change in MAP). Ordinary least squares linear, simultaneous autoregressive linear, and Random Forest models were used to assess the associations between these variables and bird species richness across this region. We found that bird species richness was correlated negatively with NRI and positively with plant species richness and altitudinal range, with no significant correlations with contemporary climate and glacial–interglacial climate change. The six best combinations of variables ranked by Random Forest models consistently included NRI, plant species richness, and contemporary‐LGM change in MAT. Our results suggest important roles of local ecological factors in shaping the distribution of bird species richness across this semiarid region. Our findings highlight the potential importance of these local ecological factors, for example, environmental heterogeneity, habitat filtering, and biotic interactions, in biodiversity maintenance.  相似文献   

5.
Aim Climate and land‐use change will have a dramatic impact on future ecosystems through alterations to species ranges and community composition. When forming conservation strategies, correlative species distribution models are often created to assess risks for individual species. These models are based on the assumption of climatic equilibrium, such that the modern range is representative of the full range of conditions under which species could thrive. However, the palaeo‐ecological record illustrates examples of disequilibrium in species today, and recent studies suggest that many species could occur in much broader climatic settings than previously thought. Montane ecosystems are thought to be at disproportionate risk due to temperature sensitivity and restricted geographical ranges. However, in the Afrotropics the palaeo‐ecological record shows that montane forest taxa expanded into the lowlands numerous times, suggesting a possible tolerance to warm temperatures. Location Africa. Methods We integrate palaeo‐ecological and palaeo‐climatic data in order to compare climate conditions in which species are currently found with those in the past. We use species distribution models to construct potential modern ranges for Afromontane species based on modern distributions and distributions in the palaeo‐ecological record in order to evaluate the equilibrium of species ranges. Results We show that many Afromontane trees have occupied warmer climates in the past, which suggests that the current low‐elevation boundaries are not set by climate. Interestingly, the species with the largest disequilibrium between palaeo‐ and modern distributions are those whose modern distributions show the least temperature sensitivity. Mapping of species potential ranges based on modern and palaeo‐ distributions clearly shows that suitable climate conditions exist today in the lowlands for less temperature‐sensitive species. Main conclusions These results imply that the current range of these forest trees does not necessarily inform risk from climatic change, and that human land use may be the major pressure for many species in the future.  相似文献   

6.
Fire is a major factor shaping the distribution of vegetation types. In this study, we used a recent high resolution map of potential natural vegetation (PNV) types and MODIS fire products to model and investigate the importance of fire as driver of vegetation distribution patterns in Ethiopia. We employed statistical modeling techniques to estimate the distribution of fire and the PNVs under current climatic conditions, and used the calibrated models to project distributions for different climate change scenarios. Results show a clear congruence between distribution patterns of fire and major vegetation types. The effect of climate change varies considerably between climate change models and scenarios, but as general trend expansions of moist Afromontane forest and CombretumTerminalia woodlands were predicted. Fire-prone areas were also predicted to increase, and including this factor in vegetation distribution models resulted in stronger expansion of CombretumTerminalia woodlands and a more limited increase of moist Afromontane forests. These results underline the importance of fire as a regulating factor of vegetation distribution patterns, and how fire needs to be factored into predict the possible effects of climate change. For conservation strategies to effectively address conservation challenges caused by rapid climate shifts, it is imperative that they not only consider the direct influence of climate changes on the vegetation, species species, or biodiversity patterns, but also the influence of future fire regimes.  相似文献   

7.
Pollen records from lacustrine sediments of deep basins in the Colombian Andes provide records of vegetation history, the development of the floristic composition of biomes, and climate variation with increasing temporal resolution. Local differences in the altitudinal distribution of present-day vegetation belts in four Colombian Cordilleras are presented. Operating mechanisms during Quaternary Ice-Age cycles that stimulated speciation are discussed by considering endemism in the asteraceous genera Espeletia, Espeletiopsis and Coespeletia. The floristically diverse lower montane forest belt (1000-2300 m) was compressed by ca. 55% during the last glacial maximum (LGM) (20 ka), and occupied the slopes between 800 m and 1400 m during that period. Under low LGM atmospheric pCO2 values, C4-dominated vegetation, now occurring below 2200 m, expanded up to ca. 3500 m. Present-day C3-dominated paramo vegetation is therefore not an analogue for past C4-dominated vegetation (with abundant Sporobolus lasiophyllus). Quercus immigrated into Colombia 478 ka and formed an extensive zonal forest from 330 ka when former Podocarpus-dominated forest was replaced by zonal forest with Quercus and Weinmannia. During the last glacial cycle the ecological tolerance of Quercus may have increased. In the ecotone forests Quercus was rapidly and massively replaced by Polylepis between 45 and 30 ka illustrating complex forest dynamics in the tropical Andes.  相似文献   

8.
Broad‐scale assessments of how climate change might impact mountain ecosystems, especially in areas of high biodiversity and endemism, are compromised by the lack of localised climate feedback in global circulation models. Here, we use regionally downscaled climate models to highlight how spatial variation in forecast change could impact rare plant distributions differentially across the Eastern Arc Mountains of Tanzania and Kenya, part of the Eastern Afromontane Biodiversity Hotspot. Concordant with the theory that climatic stability facilitates the accumulation of rare species, we find significant positive correlations between endemic plant richness and future climatic persistence within the dispersal‐limiting sky islands of this mountain archipelago. Further, we explore the hypothesis that mountain plants will move upslope in response to climate change and find that, conversely, some species are predicted to tend downslope, despite warmer annual conditions, driven by changes in seasonality and water availability. Importantly, two thirds of the modelled plant species are predicted to respond in different directions in different parts of their ranges, exemplifying the potential for individualistic responses of species and disjunct populations to environmental change, and the need for regional focus in climate change impact assessment. Conservation planners, and more broadly those charged with developing climate adaption policy, are advised to take caution in inferring local patterns of change from zoomed perspectives of broad‐scale models. Moreover, a preoccupation with mean annual temperature as the principal driver of ecosystem change is misguided and could compromise efforts to make conservation plans resilient to future climate change. Faced with spatially complex and inherently uncertain future conditions, sensible priorities are to restore forest connectivity and to underpin adaption strategies with knowledge of how ecosystems and people have adapted to previous episodes of rapid change.  相似文献   

9.
Understanding the impact of past climatic events on species may facilitate predictions of how species will respond to future climate change. To this end, we sampled populations of the common pond snail Radix balthica over the entire species range (northwestern Europe). Using a recently developed analytical framework that employs ecological niche modelling to obtain hypotheses that are subsequently tested with statistical phylogeography, we inferred the range dynamics of R. balthica over time. A Maxent modelling for present-day conditions was performed to infer the climate envelope for the species, and the modelled niche was used to hindcast climatically suitable range at the last glacial maximum (LGM) c . 21 000 years ago. Ecological niche modelling predicted two suitable areas at the LGM within the present species range. Phylogeographic model selection on a COI mitochondrial DNA data set confirmed that R. balthica most likely spread from these two disjunct refuges after the LGM. The match observed between the potential range of the species at the LGM given its present climatic requirements and the phylogeographically inferred refugial areas was a clear argument in favour of niche conservatism in R. balthica , thus allowing to predict the future range. The subsequent projection of the potential range under a global change scenario predicts a moderate pole-ward shift of the northern range limits, but a dramatic loss of areas currently occupied in France, western Great Britain and southern Germany.  相似文献   

10.
Historical climatic refugia predict genetic diversity in lowland endemics of the Brazilian Atlantic rainforest. Yet, available data reveal distinct biological responses to the Last Glacial Maximum (LGM) conditions across species of different altitudinal ranges. We show that species occupying Brazil’s montane forests were significantly less affected by LGM conditions relative to lowland specialists, but that pre-Pleistocene tectonics greatly influenced their geographic variation. Our conclusions are based on palaeoclimatic distribution models, molecular sequences of the cytochrome b, 16S, and RAG-1 genes, and karyotype data for the endemic frog Proceratophrys boiei. DNA and chromosomal data identify in P. boiei at least two broadly divergent phylogroups, which have not been distinguished morphologically. Cytogenetic results also indicate an area of hybridization in southern São Paulo. The location of the phylogeographic break broadly matches the location of a NW–SE fault, which underwent reactivation in the Neogene and led to remarkable landscape changes in southeastern Brazil. Our results point to different mechanisms underpinning diversity patterns in lowland versus montane tropical taxa, and help us to understand the processes responsible for the large number of narrow endemics currently observed in montane areas of the southern Atlantic forest hotspot.  相似文献   

11.
Southern Africa's subtropical forest biome, though small and highly fragmented, supports much of the region's biodiversity. With limited resources available for conservation and the exploitative use of forest escalating, identifying a network of priority forest reserves is important. We examine the distribution of forest birds, butterflies and mammals in KwaZulu-Natal, South Africa. Using an iterative algorithm we explore the efficiency of existing protected areas, species richness and rarity hotspots, prime forest sites (selected by forest area) and complementary networks as alternative approaches to priority reserve selection, as well as the potential use of indicator taxa. Existing protected areas represent 98% of species but are relatively inefficient in terms of area. Alternative selection criteria represent a high proportion of species (86–92%) and provide efficient bases for developing fully representative reserve networks. All species are represented within a network of 22 complementary quarter degree cells. This network includes several larger forests and existing protected areas and is recommended for priority conservation. Complementary networks identified separately for birds, butterflies and mammals overlap little, but each represents a high proportion of the remaining taxa, supporting their potential as representative 'indicator' taxa. The evolutionary history of the three main forest types in KwaZulu-Natal explains observed spatial patterns of alternative reserve networks. Priority areas are concentrated in scarp and coastal forest belts, regions of comparatively recent evolutionary activity with high species richness. Afromontane forest is older and less diverse, but its inclusion in any reserve network is necessary for the full representation of forest diversity.  相似文献   

12.
为了解贵州省青冈林在全球气候变化下的潜在分布特征,基于现状分布数据,结合当前气候数据和未来气候变化情景(RCP8.5情景,2070-2099年)构建Maxent潜在分布模型,预测贵州省青冈林的潜在分布变化。结果表明,最冷季均温(bio11)、最冷月最低温度(bio6)和年均降水量(bio12)为控制贵州省青冈林潜在生境的主导气候因子;RCP8.5情景下贵州省青冈林的潜在分布面积相较当前气候条件增加,中度适宜生境增加19 419 km2,高度适宜生境增加9 944 km2;中度适宜生境平均海拔较当前气候条件上升126 m,高度适宜生境平均上升85 m。总的来说,贵州省青冈林对全球气候变化的响应不十分敏感。  相似文献   

13.
Question: How does the floristic diversity of Afromontane rainforests change along an altitudinal gradient? What are the implications for conservation planning in these strongly fragmented forest areas that form part of the Eastern Afromontane Biodiversity Hotspot? Location: Bonga, southwestern Ethiopia. Methods: Based on evidence from other montane forests, we hypothesized that altitude has an effect on the floristic diversity of Afromontane rainforests in southwestern Ethiopia. To test this hypothesis, detailed vegetation surveys were carried out in 62 study plots located in four relatively undisturbed forest fragments situated at altitudes between 1600 m and 2300 m. Floristic diversity was evaluated using a combination of multivariate statistical analyses and diversity indices. Results: Ordination and indicator species analyses showed gradual variations in floristic diversity along the altitudinal gradient with a pronounced shift in species composition at ca. 1830 m. Upper montane forest (>1830 m) is characterized by high fern diversity and indicator species that are Afromontane endemics. Lower montane forest (<1830 m) exhibits a greater diversity of tree species and a higher abundance of the flagship species Coffea arabica. Conclusions: Our results provide crucial ecological background information concerning the montane rainforests of Ethiopia, which have been poorly studied until now. We conclude that both forest types identified during this study need to be considered for conservation because of their particular species compositions. Owing to the high degree of forest fragmentation, conservation concepts should consider a multi‐site approach with at least two protected areas at different altitudinal levels.  相似文献   

14.
Aim  To provide a test of the conservatism of a species' niche over the last 20,000 years by tracking the distribution of eight pollen taxa relative to climate type as they migrated across eastern North America following the Last Glacial Maximum (LGM).
Location  North America.
Methods  We drew taxon occurrence data from the North American pollen records in the Global Pollen Database, representing eight pollen types – all taxa for which ≥5 distinct geographic occurrences were available in both the present day and at the LGM (21,000 years ago ± 3000 years). These data were incorporated into ecological niche models based on present-day and LGM climatological summaries available from the Palaeoclimate Modelling Intercomparison Project to produce predicted potential geographic distributions for each species at present and at the LGM. The output for each time period was projected onto the 'other' time period, and tested using independent known occurrence information from that period.
Results  The result of our analyses was that all species tested showed general conservatism in ecological characteristics over the climate changes associated with the Pleistocene-to-Recent transition.
Main conclusions  This analysis constitutes a further demonstration of general and pervasive conservatism in ecological niche characteristics over moderate periods of time despite profound changes in climate and environmental conditions. As such, our results reinforce the application of ecological niche modelling techniques to the reconstruction of Pleistocene biodiversity distribution patterns, and to project the future potential distribution range of species in the face of global-scale climatic changes.  相似文献   

15.
It is anticipated that future climatic warming following the currently enhanced greenhouse effect will change the distribution limits of many vascular plant species. Using annual accumulated respiration equivalents, calculated from January and July mean temperatures and total annual precipitation, simple presence–absence response surface plots are constructed for 1521 native vascular-plant species in 229 75×75-km grid squares within Fennoscandia. The contemporary occurrences in relation to present-day climate and to predicted changes in climate (and hence annual accumulated respiration equivalents) are used to predict possible future immigrations and extinctions within each grid square. The percentage of potential change in species richness for each grid square is estimated from these predictions. Results from this study suggest a mean increase in species richness per grid square of 26%. Increases in species richness are greatest in the southern parts of the alpine/boreal regions in Fennoscandia. There are ten species that potentially may become extinct in Fennoscandia as a result of predicted climatic warming. Possible conservation strategies to protect such endangered species are outlined.  相似文献   

16.
以印度块菌(Tuber indicum)丰产区云南省为例,利用地理信息系统和物种分布模型,并通过影响印度块菌分布的主要环境因子和气候因子,共同模拟现在及未来生境分布模式。结果表明结合环境因子和气候因子,在建模过程中能提高模型预测准确度,在几类物种分布模型中,MAXENT模型具有最优的拟合效果。在大的空间尺度上,年降水,最湿季度降水,最冷月份最低温、地貌类型及土壤类型对印度块菌的生境分布影响最大。此外,在模型模拟的A2和B2未来气候变化情景下,印度块菌未来的新增生境均呈北上趋势,且B2情景下生境的适生程度低于A2情景。  相似文献   

17.
Previous research has shown that the geographical distribution patterns of freshwater fishes and amphibians have been influenced by past climatic oscillations in China resulting from Pleistocene glacial activity. However, it remains unknown how these past changes have impacted the present-day distribution of Chinese freshwater crabs. This work describes the diversity and endemism of freshwater crabs belonging to Sinopotamon, a highly speciose genus endemic to China, and evaluates its distribution in terms of topography and past climatic fluctuations. Species diversity within Sinopotamon was found to be concentrated in an area from the northeastern edge of the Yunnan-Guizhou Plateau to the Jiangnan Hills, and three areas of endemism were identified. Multiple regression analysis between current climatic variables and Sinopotamon diversity suggested that regional annual precipitation, minimum temperature in the coldest month, and annual temperature range significantly influenced species diversity and may explain the diversity patterns of Sinopotamon. A comparison of ecological niche models (ENMs) between current conditions and the last glacial maximum (LGM) showed that suitable habitat for Sinopotamon in China severely contracted during the LGM. The coincidence of ENMs and the areas of endemism indicated that southeast of the Daba Mountains, and central and southeastern China, are potential Pleistocene refuges for Sinopotamon. The presence of multiple Pleistocene refuges within the range of this genus could further promote inter- and intraspecific differentiations, and may have led to high Sinopotamon species diversity, a high endemism rate and widespread distribution.  相似文献   

18.
Modelling simulations of palaeoclimate and past vegetation form and function can contribute to global change research by constraining predictions of potential earth system responses to future warming, and by providing useful insights into the ecophysiological tolerances and threshold responses of plants to varying degrees of atmospheric change. We contrasted HadCM3LC simulations of Amazonian forest at the last glacial maximum (LGM; 21 kyr ago) and a Younger Dryas-like period (13-12 kyr ago) with predicted responses of future warming to provide estimates of the climatic limits under which the Amazon forest remains relatively stable. Our simulations indicate that despite lower atmospheric CO2 concentrations and increased aridity during the LGM, Amazonia remains mostly forested, and that the cooling climate of the Younger Dryas-like period in fact causes a trend toward increased above-ground carbon balance relative to today. The vegetation feedbacks responsible for maintaining forest integrity in past climates (i.e. decreased evapotranspiration and reduced plant respiration) cannot be maintained into the future. Although elevated atmospheric CO2 contributes to a positive enhancement of plant carbon and water balance, decreased stomatal conductance and increased plant and soil respiration cause a positive feedback that amplifies localized drying and climate warming. We speculate that the Amazonian forest is currently near its critical resiliency threshold, and that even minor climate warming may be sufficient to promote deleterious feedbacks on forest integrity.  相似文献   

19.
Spatial and temporal constraints on dispersal explain the absence of species from areas with potentially suitable conditions. Previous studies have shown that post‐glacial recolonization has shaped the current ranges of many species, yet it is not completely clear to what extent interspecific differences in range size depend on different dispersal rates. The inferred boundaries of glacial refugia are difficult to validate, and may bias spatial distribution models (SDMs) that consider post‐glacial dispersal constraints. We predicted the current distribution of 12 Caucasian forest plants and animals, factoring in the effective geographical distance from inferred glacial refugia as an additional predictor. To infer glacial refugia, we tested the transferability of the current SDMs based on the distribution of climatic variables, and projected the most transferable ones onto two climate scenarios simulated for the Last Glacial Maximum (LGM). We then calculated least‐cost distances from the inferred refugia, using elevation as a friction surface, and recalculated the current SDMs incorporating the distances as an additional variable. We compared the predictive powers of the initial with the final SDMs. The palaeoclimatic simulation that best matched the distribution of species was assumed to represent the closest fit to the true palaeoclimate. SDMs incorporating refugial distance performed significantly better for all but one studied species, and the Model for Interdisciplinary Research on Climate (MIROC) climatic simulation provided a more convincing pattern of the LGM climate than the Community Climate System Model (CCSM) simulation. Our results suggest that the projection of suitable habitat models onto past climatic conditions may yield realistic boundaries of glacial refugia, and that the current distribution of forest species in the study region is strongly associated with locations of former refugia. We inferred six major forest refugia throughout western Asia: (1) Colchis; (2) western Anatolia; (3) western Taurus; (4) the upper reaches of the Tigris River; (5) the Levant; and (6) the southern Caspian basin. The boundaries of the modelled refugia were substantially broader than the refugia boundaries inferred solely from pollen records. Thus, our method could be used to: (1) improve models of current species distributions by considering the dispersal histories of the species; and (2) validate alternative reconstructions of palaeoclimate with current distribution data. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 231–248.  相似文献   

20.
Changes in C4 grass distribution and abundance are frequently observed in Quaternary, Holocene and future environmental‐change scenarios. However, the factors driving these dynamics are not fully understood, and conflicting theories have been reported. In this paper, we present a very large dataset of modern altitudinal distribution profiles of C3 and C4 grasses covering the entire Neotropical Andes, which was compared with actual climate data. The results of multivariate analysis demonstrate that, in the Neotropical Andes, mean annual temperature is the main factor governing the modern altitudinal distribution of C3 and C4 grass species. The C3 and C4 grass distributions were compared with simulations based on the Lund‐Potsdam‐Jena dynamic global vegetation model (LPJ‐DGVM), which allowed the present grass distribution to be estimated. Finally, the DGVM was employed to simulate past and future scenarios, using the IPCC's climate projections for 2100 and PMIP2 models for the Holocene Optimum (HO, 6000 years bp ) and the Last Glacial Maximum (LGM, 21 000 years bp ). The results were found to be significantly different from those obtained using a simple photosynthetic model. According to LPJ forced with the PMIP2 models for the LGM, during the LGM, the C4 grasses would not have reached higher altitudes than found in the present day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号