首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Our understanding on the folding of membrane proteins lags behind that of soluble proteins due to challenges posed by the exposure of hydrophobic regions during in vitro chemical denaturation and refolding experiments. While different folding models are accepted for soluble proteins, only the two-stage model and the long-range interactions model have been proposed so far for helical membrane proteins. To address our knowledge gap on how different membrane proteins traverse their folding pathways, we have systematically investigated the structural features of SDS-denatured states and the kinetics for reversible unfolding of sensory rhodopsin II (pSRII), a retinal-binding photophobic receptor from Natronomonas pharaonis. pSRII is difficult to denature, and only SDS can dislodge the retinal chromophore without rapid aggregation. Even in 30% SDS (0.998 ΧSDS), pSRII retains the equivalent of six out of seven transmembrane helices, while the retinal-binding pocket is disrupted, with transmembrane residues becoming more solvent exposed. Folding of pSRII from an SDS-denatured state harboring a covalently bound retinal chromophore shows deviations from an apparent two-state behavior. SDS denaturation to form the sensory opsin apo-protein is reversible. We report pSRII as a new model protein which is suitable for membrane protein folding studies and has a unique folding mechanism that differs from those of bacteriorhodopsin and bovine rhodopsin.  相似文献   

2.
3.
Analogies between halorhodopsin and bacteriorhodopsin   总被引:6,自引:0,他引:6  
The light-activated proton-pumping bacteriorhodopsin and chloride ion-pumping halorhodopsin are compared. They belong to the family of retinal proteins, with 25% amino acid sequence homology. Both proteins have seven alpha helices across the membrane, surrounding the retinal binding pocket. Photoexcitation of all-trans retinal leads to ion transporting photocycles, which exhibit great similarities in the two proteins, despite the differences in the ion transported. The spectra of the K, L, N and O intermediates, calculated using time-resolved spectroscopic measurements, are very similar in both proteins. The absorption kinetic measurements reveal that the chloride ion transporting photocycle of halorhodopsin does not have intermediate M characteristic for deprotonated Schiff base, and intermediate L dominates the process. Energetically the photocycle of bacteriorhodopsin is driven mostly by the decrease of the entropic energy, while the photocycle of halorhodopsin is enthalpy-driven. The ion transporting steps were characterized by the electrogenicity of the intermediates, calculated from the photoinduced transient electric signal measurements. The function of both proteins could be described with the 'local access' model developed for bacteriorhodopsin. In the framework of this model it is easy to understand how bacteriorhodopsin can be converted into a chloride pump, and halorhodopsin into a proton pump, by changing the ion specificity with added ions or site-directed mutagenesis.  相似文献   

4.
The genes coding for bacterioopsin, haloopsin, and sensory opsin I of a halobacterial isolate from the Red Sea called Halobacterium sp. strain SG1 have been cloned and sequenced. The deduced protein sequences were aligned to the previously known halobacterial retinal proteins. The addition of these new sequences lowered the number of conserved residues to only 23 amino acids, or 8% of the alignment. Data base searches with two highly conserved peptides as well as with an alignment profile yielded no significant similarity to any other protein, so the halobacterial retinal proteins should be regarded as a distinct protein family. The protein alignment was used to make predictions about the structure of the retinal proteins as well as about the amino acids in contact with retinal proteins. These results were in excellent agreement with the structural model of bacteriorhodopsin of Halobacterium halobium as well as with mutant studies, indicating that (i) structure predictions based on the sequences of a membrane protein family can be quite accurate; (ii) halorhodopsin and sensory rhodopsin I have tertiary structures similar to that of bacteriorhodopsin; (iii) conserved amino acids do not take part in reactions specific for one group of proteins, e.g., proton translocation for bacteriorhodopsins, but have a crucial role in determining the conformation and reactions of the chromophore; and (iv) the general mode of action (light-induced chromophore and protein movements) is the same for all halobacterial retinal proteins, ion pumps as well as sensors.  相似文献   

5.
Crystal structure of rhodopsin: implications for vision and beyond   总被引:1,自引:0,他引:1  
A heptahelical transmembrane bundle is a common structural feature of G-protein-coupled receptors (GPCRs) and bacterial retinal-binding proteins, two functionally distinct groups of membrane proteins. Rhodopsin, a photoreceptor protein involved in photopic (rod) vision, is a prototypical GPCR that contains 11-cis-retinal as its intrinsic chromophore ligand. Therefore, uniquely, rhodopsin is a GPCR and also a retinal-binding protein, but is not found in bacteria. Rhodopsin functions as a typical GPCR in processes that are triggered by light and photoisomerization of its ligand. Bacteriorhodopsin is a light-driven proton pump with an all-trans-retinal chromophore that photoisomerizes to 13-cis-retinal. The recent crystal structure determination of bovine rhodopsin revealed a structure that is not similar to previously established bacteriorhodopsin structures. Both groups of proteins have a heptahelical transmembrane bundle structure, but the helices are arranged differently. The activation of rhodopsin involves rapid cis-trans photoisomerization of the chromophore, followed by slower and incompletely defined structural rearrangements. For rhodopsin and related receptors, a common mechanism is predicted for the formation of an active state intermediate that is capable of interacting with G proteins.  相似文献   

6.
Halorhodopsin, a light-driven halide pump, is the second archaeal rhodopsin involved in ion pumping to be studied at high resolution by X-ray crystallography. Like its cousin bacteriorhodopsin, halorhodopsin couples vectorial ion transport to the isomerisation state of a covalently linked retinal. Given the similarity and interconvertability of these two ion pumps, a unified mechanism for ion translocation by archaeal rhodopsins is now emerging.  相似文献   

7.
Structure of the retinal chromophore in the hR578 form of halorhodopsin   总被引:1,自引:0,他引:1  
Halorhodopsin is a retinal-containing pigment that is thought to function as a light-driven chloride ion pump in the cell membrane of Halobacterium halobium. To address the role of the retinal chromophore in chloride ion transport, resonance Raman spectra have been obtained of the hR578 form of chromatographically purified halorhodopsin (hR). The close similarity of the frequencies and intensities of the hR578 Raman bands with those of light-adapted bacteriorhodopsin (bR568) shows that the chromophore in hR578 has an all-trans configuration and that the protein environment around the chromophore in these two pigments is very similar. In addition, hR578 exhibits a Raman line at 1633 cm-1 which is assigned as the stretching vibration of a protonated Schiff base linkage to the protein based on its shift to 1627 cm-1 in D2O. The reduced frequency of the Schiff base stretching vibration compared with bR568 (1640 cm-1) is shown to result from a reduction of its coupling with the NH in-plane rock. This may be due to a reduction in hydrogen-bonding between the Schiff base proton and an electronegative counterion in halorhodopsin.  相似文献   

8.
We have cloned and sequenced the gene that encodes archaerhodopsin, a light-driven H+ pump in Halobacterium sp. aus-1 (Mukohata, Y., Sugiyama, Y., Ihara, K., and Yoshida, M. (1988) Biochem. Biophys. Res. Commun. 151, 1339-1345). The nucleotide sequence of this gene contained an open reading frame which corresponded to a protein of 260 amino acids with a molecular mass of 27,851 daltons, including a precursor sequence of 6 amino acids at the amino terminus and 2 amino acids at the carboxyl terminus. The deduced amino acid sequence of archaerhodopsin exhibited 59 and 32% homology to the sequences of bacteriorhodopsin and halorhodopsin, respectively, from Halobacterium halobium. Three charged residues (Asp-121, Asp-218, and Lys-222) are conserved in the transmembrane segments among the three retinal proteins. Residues Asp-91 and Asp-102 which, it has been suggested, may be essential for the pumping of protons (Mogi, T., Stern, L. J., Marti, T., Chao, B. H., and Khorana, H. G. (1988) Proc. Natl. Acad. Sci. U. S. A. 85,4148-4152) are conserved between archaerhodopsin and bacteriorhodopsin.  相似文献   

9.
The prediction of a protein's structure from its amino acid sequence has been a long-standing goal of molecular biology. In this work, a new set of conformational parameters for membrane spanning alpha helices was developed using the information from the topology of 70 membrane proteins. Based on these conformational parameters, a simple algorithm has been formulated to predict the transmembrane alpha helices in membrane proteins. A FORTRAN program has been developed which takes the amino acid sequence as input and gives the predicted transmembrane alpha-helices as output. The present method correctly identifies 295 transmembrane helical segments in 70 membrane proteins with only two overpredictions. Furthermore, this method predicts all 45 transmembrane helices in the photosynthetic reaction center, bacteriorhodopsin and cytochrome c oxidase to an 86% level of accuracy and so is better than all other methods published to date.  相似文献   

10.
How color visual pigments are tuned.   总被引:1,自引:0,他引:1  
The absorption maximum of the retinal chromophore in color visual pigments is tuned by interactions with the protein (opsin) to which it is bound. Recent advances in the expression of rhodopsin-like transmembrane receptors and in spectroscopic techniques have allowed us to measure resonance Raman vibrational spectra of the retinal chromophore in recombinant visual pigments to examine the molecular basis of this spectral tuning. The dominant physical mechanism responsible for the opsin shift in color vision is the interaction of dipolar amino acid residues with the ground- and excited-state charge distributions of the chromophore.  相似文献   

11.
Halorhodopsin from Natronomonas pharaonis (NpHR) is a member of the retinal protein group and serves as a light-driven chloride pump in which chloride ions are transported through the membrane following light absorption by the retinal chromophore. In this study, we examined two main issues: (1) factors controlling the binding of the retinal chromophore to the NpHR opsin and (2) the ability of the NpHR opsin to catalyze the thermal isomerization of retinal isomers. We have revealed that the reconstitution process of pharaonis HR (NpHR) pigment from its apoprotein and all-trans retinal depends on the pH, and the process has a pKa of 5.8 ± 0.1. It was proposed that this pKa is associated with the pKa of the lysine residue that binds the retinal chromophore (Lys256). The pigment formation is regulated by the concentration of sodium chloride, and the maximum yield was observed at 3.7 M NaCl. The low yield of pigment in a lower concentration of NaCl (< 3 M) may be due to an altered conformation adopted by the apomembrane, which is not capable of forming the pigment. Unexpectedly and unlike the apomembrane of bacteriorhodopsin, NpHR opsin produces pigments with 11-cis retinal and 9-cis retinal owing to the thermal isomerization of these retinal isomers to all-trans retinal. The isomerization rate depends on the pH, and it is faster at a higher pH. The pKa value of the isomerization process is similar to the pKa of the binding process of these retinals, which suggests that Lys256 is also involved in the isomerization process. The isomerization is independent of the sodium chloride concentration. However, in the absence of sodium chloride, the apoprotein adopts such a conformation, which does not prevent the isomerization of retinal, but it prevents a covalent bond formation with the lysine residue. The rate and the thermodynamic parameter analysis of the retinal isomerization by NpHR apoprotein led to the conclusion that the apomembrane catalyzes the isomerization via a triplet mechanism.  相似文献   

12.
Positions and rotations of two helices in the tertiary structure of bacteriorhodopsin have been studied by neutron diffraction using reconstituted, hybrid purple membrane samples. Purple membrane was biosynthetically 2H-labeled at non-exchangeable hydrogen positions of leucine and tryptophan residues. Two chymotryptic fragments were purified, encompassing either the first two or the last five of the seven putative transmembrane segments identified in the amino acid sequence of bacteriorhodopsin. The 2H-labeled fragments, diluted to variable extents with the identical, unlabeled fragment, were mixed with their unlabeled counterpart; bacteriorhodopsin was then renatured and reconstituted. The crystalline purple membrane samples thus obtained contained hybrid bacteriorhodopsin molecules in which certain transmembrane segments had been selectively 2H-labeled to various degrees. Neutron diffraction powder patterns were recorded and analyzed both by calculating difference Fourier maps and by model building. The two analyses yielded consistent results. The first and second transmembrane segments in the sequence correspond to helices 1 and 7 of the three-dimensional structure, respectively. Rotational orientations of these two helices were identified using best fits to the observed diffraction intensities. The data also put restrictions on the position of the third transmembrane segment. These observations are discussed in the context of folding models for bacteriorhodopsin, the environment of the retinal Schiff base, and site-directed mutagenesis experiments.  相似文献   

13.
Two pumps, one principle: light-driven ion transport in halobacteria   总被引:21,自引:0,他引:21  
Comparison of the primary structure of the chloride pump halorhodopsin with that of the proton pump bacteriorhodopsin provides insight into light-driven ion transport by retinal proteins. Several conserved amino acid residues in the membrane-spanning region of both proteins and their interaction with different isomerization states of retinal are suggested to be the key element for ion transport in both proteins.  相似文献   

14.
T Iwasa 《Biochemistry》1992,31(4):1190-1195
Halorhodopsin (HR), the light-driven chloride pump of Halobacterium halobium, was bleached with hydroxylamine and regenerated with all-trans-retinal under several different conditions. The largest recovery of the pigment was found with apoprotein obtained from detergent-free HR [HR(BB)]. To compare the chloride-pumping mechanism of HR with that of bacteriorhodopsin (BR; the light-driven proton pump of the same bacteria), HR pigment analogues were reconstituted with the bleached HR (BB) and retinal analogues. The corresponding BR pigment analogues have previously been shown to have little or no proton-pumping activity, except for retinal2 (3,4-dehydroretinal). Pigment analogues with 13-demethylretinal or retinal2 showed an "opsin shift" similar to that of the all-trans-retinal pigment of both HR and BR. Opsin shifts of the pigments of 9-12-phenylretinal and 3,7-dimethyl-2,4,6,8-decatetraenal and haloopsin are slightly different from those of the corresponding BR pigment analogues, presumably reflecting differences of the chromophoric structures in HR and BR. In addition to the spectral properties, the effect of chloride ion on deprotonation of the Schiff base was measured. These pigment analogues showed the "chloride effect" (a shift of the pK value for deprotonation of the Schiff base), but a smaller one than that seen in HR. For a measurement of the chloride-pumping activity, each retinal analogue was added to a culture of L07 cells (BOP-, HOP+, Ret-), and the activity was measured with the cell suspension. Only cultures with retinal or retinal2 showed chloride-pumping activity, as is true for proton pumping by BR. This suggests that a similar retinal-protein interaction is necessary for both ion pumps.  相似文献   

15.
It was recently found that NOP-1, a membrane protein of Neurospora crassa, shows homology to haloarchaeal rhodopsins and binds retinal after heterologous expression in Pichia pastoris. We report on spectroscopic properties of the Neurospora rhodopsin (NR). The photocycle was studied with flash photolysis and time-resolved Fourier-transform infrared spectroscopy in the pH range 5-8. Proton release and uptake during the photocycle were monitored with the pH-sensitive dye, pyranine. Kinetic and spectral analysis revealed six distinct states in the NR photocycle, and we describe their spectral properties and pH-dependent kinetics in the visible and infrared ranges. The phenotypes of the mutant NR proteins, D131E and E142Q, in which the homologues of the key carboxylic acids of the light-driven proton pump bacteriorhodopsin, Asp-85 and Asp-96, were replaced, show that Glu-142 is not involved in reprotonation of the Schiff base but Asp-131 may be. This implies that, if the NR photocycle is associated with proton transport, it has a low efficiency, similar to that of haloarchaeal sensory rhodopsin II. Fourier-transform Raman spectroscopy revealed unexpected differences between NR and bacteriorhodopsin in the configuration of the retinal chromophore, which may contribute to the less effective reprotonation switch of NR.  相似文献   

16.
A 3-dimensional model for the retinal binding pocket in the light-driven proton pump, bacteriorhodopsin, is proposed on the basis of spectroscopic studies of bacteriorhodopsin mutants. In this model Trp-182, Pro-186 and Trp-189 surround the polyene chain while Tyr-185 is positioned close to the retinylidene Schiff base. This model is supported by sequence homologies in the F-helices of bacteriorhodopsin and the related retinal proteins, halorhodopsin and rhodopsins.  相似文献   

17.
The proteorhodopsin family consists of hundreds of homologous retinal containing membrane proteins found in bacteria in the photic zone of the oceans. They are colour tuned to their environment and act as light-driven proton pumps with a potential energetic and regulatory function. Precise structural details are still unknown. Here, the green proteorhodopsin variant has been selected for a chemical shift analysis of retinal and Schiff base by solid-state NMR. Our data show that the chromophore exists in mainly all-trans configuration in the proteorhodopsin ground state. The optical absorption maximum together with retinal and Schiff base chemical shifts indicate a strong interaction network between chromophore and opsin. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Mark Lorch and Andreas C. Woerner contributed equally to this work.  相似文献   

18.
The light-driven proton pump bacteriorhodopsin occurs naturally as two-dimensional crystals. A three-dimensional density map of the structure, at near-atomic resolution, has been obtained by studying the crystals using electron cryo-microscopy to obtain electron diffraction patterns and high-resolution micrographs. New methods were developed for analysing micrographs from tilted specimens, incorporating methods previously developed for untilted specimens that enable large areas to be analysed and corrected for distortions. Data from 72 images, from both tilted and untilted specimens, were analysed to produce the phases of 2700 independent Fourier components of the structure. The amplitudes of these components were accurately measured from 150 diffraction patterns. Together, these data represent about half of the full three-dimensional transform to 3.5 A. The map of the structure has a resolution of 3.5 A in a direction parallel to the membrane plane but lower than this in the perpendicular direction. It shows many features in the density that are resolved from the main density of the seven alpha-helices. We interpret these features as the bulky aromatic side-chains of phenylalanine, tyrosine and tryptophan residues. There is also a very dense feature, which is the beta-ionone ring of the retinal chromophore. Using these bulky side-chains as guide points and taking account of bulges in the helices that indicate smaller side-chains such as leucine, a complete atomic model for bacteriorhodopsin between amino acid residues 8 and 225 has been built. There are 21 amino acid residues, contributed by all seven helices, surrounding the retinal and 26 residues, contributed by five helices, forming the proton pathway or channel. Ten of the amino acid residues in the middle of the proton channel are also part of the retinal binding site. The model also provides a useful basis for consideration of the mechanism of proton pumping and allows a consistent interpretation of a great deal of other experimental data. In particular, the structure suggests that pK changes in the Schiff base must act as the means by which light energy is converted into proton pumping pressure in the channel. Asp96 is on the pathway from the cytoplasm to the Schiff base and Asp85 is on the pathway from the Schiff base to the extracellular surface.  相似文献   

19.
Halorhodopsin is a light-driven chloride anion pump in which the trans-->cis photoisomerization of a retinal chromophore triggers a photocycle resulting in the translocation of chloride across the plasma membrane. The mechanism of chloride transfer past the cis retinal is determined here by computing multiple pathways for this process. The calculations reveal two conditions of the valve mechanism. First, a lumen absent in the ground state structure is transiently opened by chloride passage. Second, this activated opening, which is achieved by flexible deformation of the surrounding protein, is shown to significantly raise the chloride translocation barrier between photocycles, thus preventing chloride backflow. Unlike macroscopic valve designs, the protein allows differential ion flows in the pumping and resting states that are tuned to match the physiological timescales of the cell, thus creating a "kinetic" valve.  相似文献   

20.
Human color vision is mediated by the red, green, and blue cone visual pigments. Cone opsins are G-protein-coupled receptors consisting of an opsin apoprotein covalently linked to the 11-cis-retinal chromophore. All visual pigments share a common evolutionary origin, and red and green cone opsins exhibit a higher homology, whereas blue cone opsin shows more resemblance to the dim light receptor rhodopsin. Here we show that chromophore regeneration in photoactivated blue cone opsin exhibits intermediate transient conformations and a secondary retinoid binding event with slower binding kinetics. We also detected a fine-tuning of the conformational change in the photoactivated blue cone opsin binding site that alters the retinal isomer binding specificity. Furthermore, the molecular models of active and inactive blue cone opsins show specific molecular interactions in the retinal binding site that are not present in other opsins. These findings highlight the differential conformational versatility of human cone opsin pigments in the chromophore regeneration process, particularly compared to rhodopsin, and point to relevant functional, unexpected roles other than spectral tuning for the cone visual pigments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号