首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Temperature-dependent changes of growth rate and protein components were investigated for primary cultured cells derived from goldfish caudal fin. When the culture temperature was shifted from 20 degrees C to 35 degrees C and 40 degrees C, the growth rate was increased at 35 degrees C as compared with that at 20 degrees C, but no cell growth was observed at 40 degrees C. The differential scanning calorimetry demonstrated the onset of the endothermic reaction for goldfish cellular components at 40 degrees C. Therefore, the temperature shift to 40 degrees C was found to be of severe heat shock for goldfish cultured cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that, although expression of 70-kDa components was slightly induced at 35 degrees C, the temperature shift to 40 degrees C markedly induced the expression of the 30-kDa component in addition to that of 70-kDa component. The N-terminal amino acid sequencing identified the 30- and 70-kDa components to be heat shock protein (Hsp)-30 and Hsp70, respectively. Northern blot analysis revealed that the enhanced Hsp30 messenger ribonucleic acid (mRNA) levels were only observed at 40 degrees C, whereas Hsp70 mRNA was slightly accumulated at 35 degrees C. These results indicated that Hsp30 might have important functions under severe heat stress condition.  相似文献   

2.
Corn mitochondrial protein synthesis in response to heat shock   总被引:2,自引:1,他引:1       下载免费PDF全文
Nebiolo CM  White EM 《Plant physiology》1985,79(4):1129-1132
Corn (Zea mays L., W23(N), OH43(N), and reciprocal single cross hybrid) seedling mitochondria respond to a 10°C temperature shift (27-37°C) by incorporating a greater amount of [35S]methionine into acid-insoluble material than mitochondria incubated at the original growing temperature (27°C). This increase is in part manifested in the enhanced synthesis of a 52 kilodaltons protein. At both temperatures mitochondria of two inbreds and their reciprocal hybrids synthesize normal (N) cytoplasm proteins sensitive to chloramphenicol and insensitive to cyclohexamide treatment. The 52 kilodaltons protein is found in the supernatants of pelleted (15,000g, 5 min) mitochondria after heat shock. The role of this protein in the heat shock response is discussed in light of the implication of mitochondria as the primary cellular target to temperature stress.  相似文献   

3.
4.
5.
6.
7.
The analysis of proteins synthesized in rat thymocytes and mouse teratocarcinoma PCC-4 Aza 1 and myeloma Sp2/0 cells after 1 h of treatment at 42 or 44 degrees C was carried out. Shock at 42 degrees C reduced the total synthetic rate of proteins in all three cell lines and induced "classical" heat-shock protein with a mass of 70 kDa (hsp 70). Heat shock at 44 degrees C resulted in almost complete inhibition of protein synthesis; only a small amount of hsp 70 was synthesized. Meanwhile a new 48-kDa polypeptide (pI = 7.5) was found in the cells exposed to severe heat shock. This protein was compared by peptide mapping with other known polypeptides of the same size: heat-shock protein from chicken embryo cells and mitogen-stimulated polypeptide from human lymphoid cells. The peptide maps were not identical. It was also shown that after a shock at 44 degrees C teratocarcinoma cells were able to accumulate anomalous amounts of hsp 70 despite hsp 70 synthesis inhibition. The data show that reaction of various cells to extreme heat shock depends heavily on cell type.  相似文献   

8.
9.
10.
We have characterized the general properties of the heat shock response of the Gram-positive hardy bacteriumEnterococcus faecalis. The heat resistance (60°C or 62.5°C, 30 min) of log phase cells ofE. faecalis grown at 37°C was enhanced by exposing cells to a prior heat shock at 45°C or 50°C for 30 min. These conditioning temperatures also induced ethanol (22%, v/v) tolerance. The onset of thermotolerance was accompanied by the synthesis of a number of heat shock proteins. The most prominent bands had molecular weights in the range of 48 to 94kDa. By Western blot analysis two of them were found to be immunologically related to the well known DnaK (72 kDa) and GroEL (63 kDa) heat shock proteins ofEscherichia coli. Four other proteins showing little or no variations after exposure to heat are related to DnaJ, GrpE and Lon (La)E. coli proteins and to theBacillus subtilis 43 factor. Ethanol (2% or 4%, v/v) treatments elicited a similar response although there was a weaker induction of heat shock proteins than with heat shock.  相似文献   

11.
An in vitro test system for measuring DNA and protein synthesis in cultivated lens epithelium cells was developed. The method is suited also for other monolayer cultures; it has the following advantages: a) Cultivation of cells, incubation with radionuclides, preparation of the samples and measurement of radioactivity are carried out in the same vessel (scintillation vial); b) The use of 3H-thymidine and 14C-phenylalanine allows simultaneous measurement of DNA and protein synthesis; c) Only small amounts of cells (10(4) to 10(5) cells) are required to measure DNA and protein synthesis. The test system is highly sensitive to synthetic effectors (cytosone arabinoside, actinomycin D, puromycin), and is thus appropriate for the detection of inhibitors of DNA and protein synthesis and for testing the toxicity of drugs.  相似文献   

12.
In recent studies, induction of the heat shock response increased IL-6 production in gut mucosa in vivo and in cultured Caco-2 cells in vitro. The heat shock response is associated with increased survival of cells exposed to otherwise lethal hyperthermia, so called thermotolerance, but the role of IL-6 in the induction of thermotolerance is not known. We tested the hypothesis that treatment of cultured Caco-2 cells with IL-6 results in the development of thermotolerance. Cells were treated with human recombinant IL-6 for 1h followed by 3 h recovery in cytokine-free medium whereafter cells were exposed to heat stress (48 degrees C for 2 h). In untreated cells, the heat stress resulted in an approximately 80% cell death. In cells treated with IL-6, cell viability after heat stress was significantly improved and was doubled at an IL-6 concentration of 20 ng/ml. Treatment of the cells with other cytokines (IL-4, IL-10, IL-1beta, or TNFalpha) did not induce thermotolerance, suggesting that the effect of IL-6 may be specific for this cytokine. The induction of thermotolerance by IL-6 was blocked by an IL-6 receptor antibody, suggesting that the development of thermotolerance was receptor-mediated. Treatment of cells with IL-6 did not induce an heat shock response as suggested by unaltered heat shock protein 70 and 90 levels and unaffected heat shock factor DNA binding activity. In addition, the IL-6-induced thermotolerance was not inhibited by quercetin. The present study provides the first evidence of IL-6-induced thermotolerance and suggests that this effect of IL-6 is independent of the heat shock response.  相似文献   

13.
In Saccharomyces cerevisiae both the induction of heat shock proteins (98, 85, 70 kD) and the intracellular pH, determined by means of 31P-NMR spectroscopy, show a similar dose response to increasing temperature or concentrations of 2,4-dinitrophenol (DNP). Temperature increases from 23 degrees to 32 degrees C or more, or concentrations of DNP higher than 1 mM cause a significant increase in the synthesis rate of heat shock proteins and a significant decrease of the intracellular pH. A similar correlation is found in a mitochondrial mutant (Q) defective in oxidative phosphorylation. Intracellular signal transduction may thus involve H+-concentration changes independent of intact oxidative phosphorylation.  相似文献   

14.
15.
16.
The effects of IFN and mild hyperthermia on the responses of human promyelocytic HL-60 cells were investigated. Cells subjected to an elevated culture temperature (39.5 degrees-40.5 degrees C instead of 37 degrees C, herein referred to as heat-treated cells) showed an increase in heat shock proteins (HSPs) and corresponding mRNA synthesis, which were additionally potentiated by the presence of IFN. With cells cultured at 37 degrees C, IFN had no effect on HSP expression. The observed inhibition (40-70%) of RNA polymerase II-directed RNA synthesis (based on alpha-amanitin sensitivity) in isolated nuclei of heat-treated cells was also significantly reversed by the simultaneous addition of IFN. These data suggest that the IFN-amplified HSP gene expression may be involved in preventing irreversible damage or in fine tuning the recovery of mammalian cells from heat stress.  相似文献   

17.
The synthesis of a major heat shock protein (HSP 70) was measured in HeLa cells incubated at 42.5 degrees C and then transferred to 37 degrees C or 30 degrees C. After 90 min, synthesis of HSP 70 decreased by 54 and 85%, respectively, whereas HSP 70 mRNA was reduced at most by 20%. Therefore, the reduced synthesis of HSP 70 could not be accounted for by mRNA turnover. HSP 70 was associated with large polyribosomes (6-10 ribosomes) in cells kept at 42.5 degrees C, but with medium or small polyribosomes in cells transferred to 37 degrees C or 30 degrees C (5-6 or 2-3 ribosomes, respectively). Addition of puromycin to these cells resulted in the release of all ribosomes from HSP 70 mRNA, indicating that they were translationally active. The regulation of HSP 70 synthesis was investigated in cell-free systems prepared from heat-shocked or control cells and incubated at 30 degrees C and 42 degrees C. After 5 min at 42 degrees C, the cell-free system from heat-shocked cells synthesized protein at 3 times the rate of the control cell-free system. This difference was in large part due to synthesis of HSP 70. Addition of HSP mRNA to the control cell-free system stimulated protein synthesis at 42 degrees C, but not at 30 degrees C. These findings suggest that translation of HSP 70 mRNA is specifically promoted at high temperature and repressed during recovery from heat shock by regulatory mechanisms active at the level of initiation.  相似文献   

18.
Interaction of heat and salt shock in cultured tobacco cells   总被引:8,自引:2,他引:8       下载免费PDF全文
Cultured tobacco cells (Nicotiana tabacum L. var Wisconsin-38) developed tolerance to otherwise nonpermissive 54°C treatment when heat-shocked at 38°C (2 h) but not at 42°C. Heat-shocked cells (38°C) exhibited little normal growth when the 54°C stress came immediately after heat shock and normal growth when 54°C stress was administered 8 hours after heat shock. Heat shock extended the length of time that the cells tolerated 54°C. Tobacco cells developed tolerance to otherwise lethal 2% NaCl treatment when salt-shocked (1.2% NaCl for 3 hours). The time course for salt tolerance development was similar to that of thermotolerance. Heat-shocked cells (38°C) developed tolerance of nonpermissive salt stress 8 hours after heat shock. Alternatively, cells heat-shocked at 42°C exhibited immediate tolerance to lethal salt stress followed by a decline over 8 hours. Radioactive methionine incorporation studies demonstrated synthesis of heat shock proteins at 38°C. The apparent molecular weights range from 15 to 115 kilodaltons with a protein complex in the 15 to 20 kilodalton range. Synthesis of heat shock proteins appeared to persist at 42°C but with large decreases in incorporation into selected heat shock protein. During salt shock, the synthesis of normal control proteins was reduced and a group of salt shock proteins appeared 3 to 6 h after shock. Similarities between the physiology and salt shock proteins/heat shock proteins suggest that both forms of stress may share common elements.  相似文献   

19.
HeLa cells synthesize a particular heat shock protein that is induced only by heat shock at 42 degrees C, and not at 45 degrees C or by other stresses that induce major heat shock proteins (Hatayama et al. (1986) Biochem. Biophys. Res. Commun. 137, 957-963). We further characterized the 42 degrees C-specific protein. This protein was induced in mouse FM 3A cells as well as in human HeLa cells. In both cell lines, the protein was resolved into two spots, a basic polypeptide and an acidc one. The mRNA of the protein was induced during the incubation of these cells at 42 degrees C, and the in vitro translation product of mRNA corresponded to the basic, not to the acidic, polypeptide. During the chase period for cells that were labeled with [35S]-methionine, the basic polypeptide of the protein decreased, and the acidic one increased, indicating that the protein was synthesized as the basic polypeptide and then somehow modified to become the acidic one. The 42 degrees C-specific protein was found only in the cytosol fraction, and not in the nuclear or other particulate fractions, in both HeLa and FM 3A cells. The results suggested that the 42 degrees C-specific protein may have some function in the cytoplasm of mammalian cells during mild heat shock.  相似文献   

20.
Induced thermotolerance in murine embryos occurs at the 8-cell stage when embryos are maintained in vitro but not until the blastocyst stage if development proceeds in vivo. Present results indicate that ability of embryos to undergo induced thermotolerance is not limited by heat shock protein 70 (HSP70) synthesis. Exposure of 8-cell embryos to 40 degrees C enhanced synthesis of 2 constitutive HSP70 proteins (HSC70 and HSC72) and induced another protein, HSP68; exposure of 43 degrees C was required to induce similar responses in expanded blastocysts. Unlike induced thermotolerance, increased synthesis of HSP70 molecules did not depend on whether embryos were cultured or developed in vivo. Thus, other biochemical mechanisms in addition to HSP70 confer thermotolerance in the preimplantation-stage murine embryo. The observation that the temperature threshold for induction of HSP70 synthesis increased from the 8-cell to the blastocyst stage is indicative of these other biochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号