首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Munagala N  Basus VJ  Wang CC 《Biochemistry》2001,40(14):4303-4311
The hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRTase), a type I PRTase, from Tritrichomonas foetus, is a potential target for antitritrichomonal chemotherapy. Structural data on all the type I PRTases reveal a highly flexible, 11-14-amino acid loop, presumably covering the active site. With the exception of a highly conserved Ser-Tyr dipeptide, the other amino acids constituting the loop vary widely among different PRTases. The roles of the conserved Ser73 and Tyr74 residues in the loop and the dynamics of the loop in T. foetus HGXPRTase were investigated using site-directed mutants, stop-flow kinetics, chemical modification, and two-dimensional (1)H-(15)N heteronuclear NMR relaxation experiments. S73A, Y74F, and Y74E mutants of HGXPRTase exhibited a 5-7-fold increase in K(m) for guanine and a 3-5-fold increase in K(m) for PRPP compared to that of the wild type, reflecting the decreased affinity of binding for the two substrates. The k(cat)'s for these mutant-catalyzed reactions, however, do not change appreciably from that of the wild-type enzyme. Stopped-flow fluorescence with a Y74W mutant showed no apparent quenching by adding either PRPP or GMP alone. When both PRPP and guanine were added together, however, the fluorescence was rapidly quenched, followed by a slow recovery as the enzyme-catalyzed reaction progressed, suggesting movement of the loop during catalysis. In the presence of 9-deazaguanine and PRPP, the rapidly quenched fluorescence was not recovered, suggesting a closed loop form. The accessibility of Trp74 in the flexible loop of the mutant enzyme was also analyzed using N-bromosuccinimide (NBS), which reacts specifically with the tryptophan residue. NBS reacted with the only tryptophan in the Y74W mutant enzyme and rendered the enzyme inactive. GMP or PRPP alone failed to protect the enzyme from NBS inactivation. However, the presence of both 9-deazaguanine and PPRP protected the enzyme, allowing it to retain up to 70% of its activity. An S75H mutant, labeled with [(15)N]histidine, was used in the (1)H-(15)N NMR study. Spectra obtained in the presence of enzyme substrates indicated an apparent stabilization of the loop only in the presence of 9-deazaguanine and PRPP. These experimental results thus clearly demonstrated stabilization of the flexible loop upon binding of both PRPP and guanine and suggested its involvement in enzyme catalysis.  相似文献   

2.
Crystallographic data of the dimeric and octameric forms of fragaceatoxin C (FraC) suggested the key role of a small hydrophobic protein–protein interaction surface for actinoporins oligomerization and pore formation in membranes. However, site‐directed mutagenesis studies supporting this hypothesis for others actinoporins are still lacking. Here, we demonstrate that disrupting the key hydrophobic interaction between V60 and F163 (FraC numbering scheme) in the oligomerization interface of FraC, equinatoxin II (EqtII), and sticholysin II (StII) impairs the pore formation activity of these proteins. Our results allow for the extension of the importance of FraC protein–protein interactions in the stabilization of the oligomeric intermediates of StII and EqtII pointing out that all of these proteins follow a similar pathway of membrane disruption. These findings support the hybrid pore proposal as the universal model of actinoporins pore formation. Moreover, we reinforce the relevance of dimer formation, which appears to be a functional intermediate in the assembly pathway of some different pore‐forming proteins.  相似文献   

3.
The transmembrane subunits of viral envelope proteins are thought to perform all of the functions required for membrane fusion during entry of enveloped viruses. However, changes in a conserved SPHQ motif near the N terminus of the receptor binding subunit of a murine leukemia virus (MLV) envelope protein block infection and induction of cell-cell fusion but not receptor binding. Here we report evidence that a histidine-to-arginine change at position 8 (H8R) in the SPHQ motif of Moloney MLV blocks infection by arresting virus-cell fusion at the hemifusion state. In cell-cell fusion assays, H8R envelope protein induced mixing of membrane outer leaflet lipids but did not lead to content mixing, a finding indicative of fusion pore formation. Kinetic studies of virus-cell fusion showed that lipid mixing of H8R virus membranes begins much later than for wild-type virus. The length of the delay in lipid mixing decreased upon addition of two second-site changes that increase H8R virus infection to 100-fold less than the wild-type virus. Finally, chlorpromazine, dibucaine, and trifluoperazine, agents that induce pores in an arrested hemifusion state, rescued infection by H8R virus to within 2.5-fold of the level of wild-type virus infection and cell-cell fusion to half that mediated by wild-type envelope protein. We interpret these results to indicate that fusion progressed to the hemifusion intermediate but fusion pore formation was inhibited. These results establish that membrane fusion of Moloney MLV occurs via a hemifusion intermediate. We also interpret these findings as evidence that histidine 8 is a key switch-point residue between the receptor-induced conformation changes that expose fusion peptide and those that lead to six-helix bundle formation.  相似文献   

4.
The LQT1 locus (KCNQ1) has been correlated with the most common form of inherited long QT (LQT) syndrome. LQT patients suffer from syncopal episodes and high risk of sudden death. The KCNQ1 gene encodes KvLQT1 alpha-subunits, which together with auxiliary IsK (KCNE1, minK) subunits form IK(s) K(+) channels. Mutant KvLQT1 subunits may be associated either with an autosomal dominant form of inherited LQT, Romano-Ward syndrome, or an autosomal recessive form, Jervell and Lange-Nielsen syndrome (JLNS). We have identified a small domain between residues 589 and 620 in the KvLQT1 C-terminus, which may function as an assembly domain for KvLQT1 subunits. KvLQT1 C-termini do not assemble and KvLQT1 subunits do not express functional K(+) channels without this domain. We showed that a JLN deletion-insertion mutation at KvLQT1 residue 544 eliminates important parts of the C-terminal assembly domain. Therefore, JLN mutants may be defective in KvLQT1 subunit assembly. The results provide a molecular basis for the clinical observation that heterozygous JLN carriers show slight cardiac dysfunctions and that the severe JLNS phenotype is characterized by the absence of KvLQT1 channel.  相似文献   

5.
6.
Some of the conserved residues at subunit interfaces of thermophilic xylose isomerases (XIs) were selected by means of both multiple sequences alignment and subunit interactions analysis of XIs, and then were mutated for improving the activity of Thermus thermophilus xylose isomerase (TtXI). By site-directed mutagenesis, single (D375G, K355A, V144A) and double (D375G/V385A) mutations were introduced into TtXI containing a N91D mutation site, namely, TtXI-N91D. It was shown that the specific activities of mutants D375G, K355A and V144A were remarkably increased over a temperature range of 40–90 °C at pH 7.0. The activities of mutants D375G/V385A, D375G, V144A and K355A were 1.14-, 1.62-, 2.49- and 3.02-fold greater than that of TtXI-N91D at 75 °C, respectively. Over the pH range of 5.0–9.0, the activities of mutants D375G, K355A and V144A were greater than that of TtXI-N91D at 60 °C. The thermostability of all mutants, except K355A, was lower than that of TtXI-N91D. The results suggest that the activity of TtXI could be engineered by site-directed mutagenesis on the conserved residues at subunit interfaces. This method could be employed for improving the activity of other thermophilic XIs.  相似文献   

7.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), a key enzyme of photosynthetic CO2 fixation, is composed of 8 large and 8 small subunits. The Rubisco-deficient Nicotiana tabacum mutant Sp25 is able to synthesize the peptides for both subunits but does not contain any active holoenzyme. The phenotype is maternally inherited and thus caused by a mutation in the chloroplast genome, which also encodes the Rubisco large subunit. A comparison of the nucleotide sequences of the large subunit gene of the Sp25 mutant with that of the wild-type tobacco revealed a single nucleotide change in the Sp25 mutant. This resulted in an amino acid substitution at Gly-322, which was replaced by serine.  相似文献   

8.
Although alkaline phosphatase (APase) from Escherichia coli crystallizes as a symmetric dimer, it displays deviations from Michaelis-Menten kinetics supported by a model describing a dimeric enzyme with conformationally and kinetically non-equivalent subunits. The proposed model, explaining the mechanism of substrate hydrolysis, encompasses a conformational change mediated by subunit interactions [S. Orhanovi?, M. Pavela-Vrancic, Eur. J. Biochem. 270 (2003) 4356-4364]. The significance of interactions at the subunit interface and the involvement of the beta-pleated sheet stretching from underneath the active site to the subunit surface, in the catalytic mechanism, has been probed by site-directed mutagenesis. The mutant APase, carrying alanine in place of Thr81, was analyzed in comparison to the wild-type protein. The T81A mutation, introduced at the subunit interface, significantly affected the protein kinetic properties, emphasizing the importance of subunit interactions in the catalytic process.  相似文献   

9.
We generated mice harboring a single amino acid mutation in the motor domain of nonmuscle myosin heavy chain II-B (NMHC II-B). Homozygous mutant mice had an abnormal gait and difficulties in maintaining balance. Consistent with their motor defects, the mutant mice displayed an abnormal pattern of cerebellar foliation. Analysis of the brains of homozygous mutant mice showed significant defects in neuronal migration involving granule cells in the cerebellum, the facial neurons, and the anterior extramural precerebellar migratory stream, including the pontine neurons. A high level of NMHC II-B expression in these neurons suggests an important role for this particular isoform during neuronal migration in the developing brain. Increased phosphorylation of the myosin II regulatory light chain in migrating, compared with stationary pontine neurons, supports an active role for myosin II in regulating their migration. These studies demonstrate that NMHC II-B is particularly important for normal migration of distinct groups of neurons during mouse brain development.  相似文献   

10.
The rhodopsin/transducin-coupled vertebrate vision system has served as a paradigm for G protein-coupled signaling. We have taken advantage of this system to identify new types of constitutively active, transducin-alpha (alphaT) subunits. Here we have described a novel dominant-negative mutation, made in the background of a chimera consisting of alphaT and the alpha subunit of G(i1) (designated alphaT*), which involves the substitution of a conserved arginine residue in the conformationally sensitive Switch 3 region. Changing Arg-238 to either lysine or alanine had little or no effect on the ability of alphaT* to undergo rhodopsin-stimulated GDP-GTP exchange, whereas substituting glutamic acid for arginine at this position yielded an alphaT* subunit (alphaT*(R238E)) that was incapable of undergoing rhodopsin-dependent nucleotide exchange and was unable to bind or stimulate the target/effector enzyme (cyclic GMP phosphodiesterase). Moreover, unlike the GDP-bound forms of alphaT*, alphaT*(R238A) and alphaT*(R238K), the alphaT*(R238E) mutant did not respond to aluminum fluoride (AlF4(-)), as read out by changes in Trp-207 fluorescence. However, surprisingly, we found that alphaT*(R238E) effectively blocked rhodopsin-catalyzed GDP-GTP exchange on alphaT*, as well as rhodopsin-stimulated phosphodiesterase activity. Analysis by high pressure liquid chromatography indicated that the alphaT*(R238E) mutant exists in a nucleotide-free state. Nucleotide-free forms of G alpha subunits were typically very sensitive to proteolytic degradation, but alphaT*(R238E) exhibited a resistance to trypsin-proteolysis similar to that observed with activated forms of alphaT*. Overall, these findings indicated that by mutating a single residue in Switch 3, it is possible to generate a unique type of dominant-negative G alpha subunit that can effectively block signaling by G protein-coupled receptors.  相似文献   

11.
DNA-binding protein from starved cells (DPS), a mini-ferritin capable of self-assembling into a 12-meric nano-cage, was chosen as the basis for an alanine-shaving mutagenesis study to investigate the importance of key amino acid residues, located at symmetry-related protein-protein interfaces, in controlling protein stability and self-assembly. Nine mutants were designed through simple inspection, synthesized, and subjected to transmission electron microscopy, circular dichroism, size exclusion chromatography, and "virtual alanine scanning" computational analysis. The data indicate that many of these residues may be hot spot residues. Most remarkably, two residues, R83 and R133, were observed to shift the oligomerization state to ~50% dimer. Based on the hypothesis that these two residues constitute a "hot strip," located at the ferritin-like threefold axis, the double mutant was generated which completely shuts down detectable formation of 12-mer in solution, favoring a cooperatively folded dimer. The fact that this effect logically builds upon the single mutants emphasizes that complex self-assembly has the potential to be manipulated rationally. This study should have an impact on the fundamental understanding of the assembly of DPS protein cages specifically and protein quaternary structure in general. In addition, as there is much interest in applying these and similar systems to the templation of nano-materials and drug delivery, the ability to control this ferritin's oligomerization state and stability could prove especially valuable.  相似文献   

12.
Each regulatory subunit of cAMP-dependent protein kinase has two tandem cAMP-binding sites, A and B, at the carboxyl terminus. Based on sequence homologies with the cAMP-binding domain of the Escherichia coli catabolite gene activator protein, a model has been constructed for each cAMP-binding domain. Two of the conserved features of each cAMP-binding site are an arginine and a glutamic acid which interact with the negatively charged phosphate and with the 2'-OH on the ribose ring, respectively. In the type I regulatory subunit, this arginine in cAMP binding site A is Arg-209. Recombinant DNA techniques have been used to change this arginine to a lysine. The resulting protein binds cAMP with a high affinity and associates with the catalytic subunit to form holoenzyme. The mutant holoenzyme also is activated by cAMP. However, the mutant R-subunit binds only 1 mol of cAMP/R-monomer. Photoaffinity labeling confirmed that the mutant R-subunit has only one functional cAMP-binding site. In contrast to the native R-subunit which is labeled at Trp-260 and Tyr-371 by 8-N3cAMP, the mutant R-subunit is convalently modified at a single site, Tyr-371, which correlates with a functional cAMP-binding site B. The lack of functional cAMP-binding site A also was confirmed by activating the mutant holoenzyme with analogs of cAMP which have a high specificity for either site A or site B. 8-NH2-methyl cAMP which preferentially binds to site B was similar to cAMP in its ability to activate both mutant and wild type holoenzyme whereas N6-monobutyryl cAMP, a site A-specific analog, was a very poor activator of the mutant holoenzyme. The results support the conclusions that 1) Arg-209 is essential for cAMP binding to site A and 2) cAMP binding to domain A is not essential for dissociation of the mutant holoenzyme.  相似文献   

13.
The nematode Caenorhabditis elegans is an established model organism for studying neurobiology. UNC-63 is a C. elegans nicotinic acetylcholine receptor (nAChR) α-subunit. It is an essential component of the levamisole-sensitive muscle nAChR (L-nAChR) and therefore plays an important role in cholinergic transmission at the nematode neuromuscular junction. Here, we show that worms with the unc-63(x26) allele, with its αC151Y mutation disrupting the Cys-loop, have deficient muscle function reflected by impaired swimming (thrashing). Single-channel recordings from cultured muscle cells from the mutant strain showed a 100-fold reduced frequency of opening events and shorter channel openings of L-nAChRs compared with those of wild-type worms. Anti-UNC-63 antibody staining in both cultured adult muscle and embryonic cells showed that L-nAChRs were expressed at similar levels in the mutant and wild-type cells, suggesting that the functional changes in the receptor, rather than changes in expression, are the predominant effect of the mutation. The kinetic changes mimic those reported in patients with fast-channel congenital myasthenic syndromes. We show that pyridostigmine bromide and 3,4-diaminopyridine, which are drugs used to treat fast-channel congenital myasthenic syndromes, partially rescued the motility defect seen in unc-63(x26). The C. elegans unc-63(x26) mutant may therefore offer a useful model to assist in the development of therapies for syndromes produced by altered function of human nAChRs.  相似文献   

14.
The two human CLC Cl channels, ClC-Ka and ClC-Kb, are almost exclusively expressed in kidney and inner ear epithelia. Mutations in the genes coding for ClC-Kb and barttin, an essential CLC-K channel β subunit, lead to Bartter syndrome. We performed a biophysical analysis of the modulatory effect of extracellular Ca2+ and H+ on ClC-Ka and ClC-Kb in Xenopus oocytes. Currents increased with increasing [Ca2+]ext without full saturation up to 50 mM. However, in the absence of Ca2+, ClC-Ka currents were still 20% of currents in 10 mM [Ca2+]ext, demonstrating that Ca2+ is not strictly essential for opening. Vice versa, ClC-Ka and ClC-Kb were blocked by increasing [H+]ext with a practically complete block at pH 6. Ca2+ and H+ act as gating modifiers without changing the single-channel conductance. Dose–response analysis suggested that two protons are necessary to induce block with an apparent pK of ∼7.1. A simple four-state allosteric model described the modulation by Ca2+ assuming a 13-fold higher Ca2+ affinity of the open state compared with the closed state. The quantitative analysis suggested separate binding sites for Ca2+ and H+.A mutagenic screen of a large number of extracellularly accessible amino acids identified a pair of acidic residues (E261 and D278 on the loop connecting helices I and J), which are close to each other but positioned on different subunits of the channel, as a likely candidate for forming an intersubunit Ca2+-binding site. Single mutants E261Q and D278N greatly diminished and the double mutant E261Q/D278N completely abolished modulation by Ca2+. Several mutations of a histidine residue (H497) that is homologous to a histidine that is responsible for H+ block in ClC-2 did not yield functional channels. However, the triple mutant E261Q/D278N/H497M completely eliminated H+ -induced current block. We have thus identified a protein region that is involved in binding these physiologically important ligands and that is likely undergoing conformational changes underlying the complex gating of CLC-K channels.  相似文献   

15.
Canonical glutathione (GSH) transferases are dimeric proteins with subunits composed of an N-terminal GSH binding region (domain 1) and a C-terminal helical region (domain 2). The stabilities of several GSH transferase dimers are dependent upon two groups of interactions between domains 1 and 2 of opposing subunits: a hydrophobic ball-and-socket motif and a buried charge cluster motif. In rGSTM1-1, these motifs involve residues F56 and R81, respectively. The structural basis for the effects of mutating F56 to different residues on dimer stability and function has been reported (Codreanu et al. (2005) Biochemistry 44, 10605-10612). Here, we show that the simultaneous disruption of both motifs in the F56S/R81A mutant causes complete dissociation of the dimer to a monomeric protein on the basis of gel filtration chromatography and multiple-angle laser light scattering. The fluorescence and far-UV CD properties of the double mutant as well as the kinetics of amide H/D exchange along the polypeptide backbone suggest that the monomer has a globular structure that is similar to a single subunit in the native protein. However, the mutant monomer has severely impaired catalytic activity, suggesting that the dimer interface is vital for efficient catalysis. Backbone amide H/D exchange kinetics in the F56S and F56S/R81A mutants indicate that a reorganization of the loop structure between helix alpha2 and strand beta3 near the active site is responsible for the decreased catalytic activity of the monomer. In addition, the junction between the alpha4 and alpha5 helices in F56S/R81R shows decreased H/D exchange, indicating another structural change that may affect catalysis. Although the native subunit interface is important for dimer stability, urea-induced unfolding of the F56S/R81A mutant suggests that the interface is not essential for the thermodynamic stability of individual subunits. The H/D exchange data reveal a possible molecular basis for the folding cooperativity observed between domains 1 and 2.  相似文献   

16.
The significance of partial deficiency of erythrocyte adenine phosphoribosyltransferase (APRT), reported in a number of subjects with gout, has been investigated by studying its incidence in 700 normal blood donors. Three clearly deficient subjects were found, an incidence not significantly different from that in patients with abnormalities of urate metabolism. A new assay method for APRT is described in which an erythrocyte lysate is incubated with adenine and phosphoribosylpyrophosphate (PRPP) for a given time; both hemoglobin and adenine nucleotide (AMP) are then precipitated with lanthanum phosphate; the change in absorbance of adenine at 260 nm reflects the extent of its conversion to AMP by APRT.This work was supported by the National Health and Medical Research Council of Australia.  相似文献   

17.
BACKGROUND: Hypoxanthine-guanine phosphoribosyltransferases (HGPRTs) are well-recognized antiparasitic drug targets. HGPRT is also a paradigmatic representative of the phosphoribosyltransferase family of enzymes, which includes other important biosynthetic and salvage enzymes and drug targets. To better understand the reaction mechanism of this enzyme, we have crystallized HGPRT from the apicomplexan protozoan Toxoplasma gondii as a ternary complex with a substrate and a substrate analog. RESULTS: The crystal structure of T. gondii HGPRT with the substrate Mg2+-PRPP and a nonreactive substrate analog, 9-deazaguanine, bound in the active site has been determined at 1.05 A resolution and refined to a free R factor of 15.4%. This structure constitutes the first atomic-resolution structure of both a phosphoribosyltransferase and the central metabolic substrate PRPP. This pre-transition state complex provides a clearer understanding of the structural basis for catalysis by HGPRT. CONCLUSIONS: Three types of substrate deformation, chief among them an unexpected C2'-endo pucker adopted by the PRPP ribose ring, raise the energy of the ground state. A cation-pi interaction between Tyr-118 and the developing oxocarbenium ion in the ribose ring helps to stabilize the transition state. Enforced substrate propinquity coupled with optimal reactive geometry for both the substrates and the active site residues with which they interact contributes to catalysis as well.  相似文献   

18.
The regulation of ATP synthase activity is complex and involves several distinct mechanisms. In bacteria and chloroplasts, subunit epsilon plays an important role in this regulation, (i) affecting the efficiency of coupling, (ii) influencing the catalytic pathway, and (iii) selectively inhibiting ATP hydrolysis activity. Several experimental studies indicate that the regulation is achieved through large conformational transitions of the alpha-helical C-terminal domain of subunit epsilon that occur in response to membrane energization, change in ATP/ADP ratio or addition of inhibitors. This review summarizes the experimental data obtained on different organisms that clarify some basic features as well as some molecular details of this regulatory mechanism. Multiple functions of subunit epsilon, its role in the difference between the catalytic pathways of ATP synthesis and hydrolysis and its influence on the inhibition of ATP hydrolysis by ADP are also discussed.  相似文献   

19.
The glutathione transferases (GSTs) represent a superfamily of dimeric proteins. Each subunit has an active site, but there is no evidence for the existence of catalytically active monomers. The lock and key motif is responsible for a highly conserved hydrophobic interaction in the subunit interface of pi, mu, and alpha class glutathione transferases. The key residue, which is either Phe or Tyr (Tyr(50) in human GSTP1-1) in one subunit, is wedged into a hydrophobic pocket of the other subunit. To study how an essentially inactive subunit influences the activity of the neighboring subunit, we have generated the heterodimer composed of subunits from the fully active human wild-type GSTP1-1 and the nearly inactive mutant Y50A obtained by mutation of the key residue Tyr(50) to Ala. Although the key residue is located far from the catalytic center, the k(cat) value of mutant Y50A decreased about 1300-fold in comparison with the wild-type enzyme. The decrease of the k(cat) value of the heterodimer by about 27-fold rather than the expected 2-fold in comparison with the wild-type enzyme indicates that the two active sites of the dimeric enzyme work synergistically. Further evidence for cooperativity was found in the nonhyperbolic GSH saturation curves. A network of hydrogen-bonded water molecules, found in crystal structures of GSTP1-1, connects the two active sites and the main chain carbonyl group of Tyr(50), thereby offering a mechanism for communication between the two active sites. It is concluded that a subunit becomes catalytically competent by positioning the key residue of one subunit into the lock pocket of the other subunit, thereby stabilizing the loop following the helix alpha2, which interacts directly with GSH.  相似文献   

20.
Neuroligins are evolutionarily conserved postsynaptic cell-adhesion molecules that function, at least in part, by forming trans-synaptic complexes with presynaptic neurexins. Different neuroligin isoforms perform diverse functions and exhibit distinct intracellular localizations, but contain similar cytoplasmic sequences whose role remains largely unknown. Here, we analysed the effect of a single amino-acid substitution (R704C) that targets a conserved arginine residue in the cytoplasmic sequence of all neuroligins, and that was associated with autism in neuroligin-4. We introduced the R704C mutation into mouse neuroligin-3 by homologous recombination, and examined its effect on synapses in vitro and in vivo. Electrophysiological and morphological studies revealed that the neuroligin-3 R704C mutation did not significantly alter synapse formation, but dramatically impaired synapse function. Specifically, the R704C mutation caused a major and selective decrease in AMPA receptor-mediated synaptic transmission in pyramidal neurons of the hippocampus, without similarly changing NMDA or GABA receptor-mediated synaptic transmission, and without detectably altering presynaptic neurotransmitter release. Our results suggest that the cytoplasmic tail of neuroligin-3 has a central role in synaptic transmission by modulating the recruitment of AMPA receptors to postsynaptic sites at excitatory synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号