首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report the DNA binding properties of two hybrid molecules which result from the combination of the DNA sequence-specific minor groove ligand netropsin with the bithiazole moiety of the antitumor drug bleomycin. The drug-DNA interaction has been investigated by means of electric linear dichroism (ELD) spectroscopy and DNase I footprinting. In compound 1 the two moieties are linked by a flexible aliphatic tether while in compound 2 the two aromatic ring systems are directly coupled by a rigid peptide bond. The results are consistent with a model in which the netropsin moiety of compound 1 resides in the minor groove of DNA and where the appended bithiazole moiety is projected away from the DNA groove. This monocationic hybrid compound has a weak affinity for DNA and shows a strict preference for A and T stretches. ELD measurements indicate that in the presence of DNA compound 2 has an orientation typical of a minor groove binder. Similar orientation angles were measured for netropsin and compound 2. This ligand which has a biscationic nature tightly binds to DNA (Ka = 6.3 x 10(5) M-1) and is mainly an AT-specific groove binder. But, depending on the nature of the sequence flanking the AT site first targeted by its netropsin moiety, the bithiazole moiety of 2 can accommodate various types of nucleotide motifs with the exception of homooligomeric sequences. As evidenced by footprinting data, the bithiazole group of bleomycin acts as a DNA recognition element, offering opportunities to recognize GC bp-containing DNA sequences with apparently a preference (although not absolute) for a pyrimidine-G-pyrimidine motif. Thus, the bithiazole unit of bleomycin provides an additional anchor for DNA binding and is also capable of specifically recognizing particular DNA sequences when it is appended to a strongly sequence selective groove binding entity. Finally, a model which schematizes the binding of compound 2 to the sequence 5'-TATGC is proposed. This model readily explains the experimentally observed specificity of this netropsin-bithiazole conjugate.  相似文献   

2.
NETGA is an hybrid derivative which possesses an intercalating heterocyclic nucleus related to amsacrine and a minor groove binding squeletton related to netropsin. Cellular uptake of this drug has been studied by Electron Spin Resonance (ESR) spectroscopy using a spin-label derivative of NETGA (SL-NETGA). ESR determination of the kinetics of the drug repartition between the cytoplasm and nucleus showed that NETGA accumulated very rapidly and predominantly in the nucleus. Analysis of the anisotropic ESR spectra recorded in the nuclear compartment are in agreement with a strong binding of the drug to the DNA besides confirmed by a maximum delta Tm of 12 degrees C between the spin-label compound-DNA complex and the DNA alone.  相似文献   

3.
Isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and biosensor-surface plasmon resonance (SPR) are evaluated for their accuracy in determining equilibrium constants, ease of use, and range of application. Systems chosen for comparison of the three techniques were the formation of complexes between two minor groove binding compounds, netropsin and 4,6-diamidino-2-phenylindole (DAPI), and a DNA hairpin having the sequence 5'-d(CGAATTCGTCTCCGAATTCG)-3'. These systems were chosen for their structural differences, simplicity (1:1 binding), and binding affinity in the range of interest (K approximately 10(8) M(-1)). The binding affinities determined from all three techniques were in excellent agreement; for example, netropsin/DNA formation constants were determined to be K = 1.7x10(8) M(-1) (ITC), K = 2.4x10(8) M(-1) (DSC), and K = 2.9x10(8) M(-1) (SPR). DSC and SPR techniques have an advantage over ITC in studies of ligands that bind with affinities greater than 10(8) M(-1). The ITC technique has the advantage of determining a full set of thermodynamic parameters, including deltaH, TdeltaS, and deltaC(p) in addition to deltaG (or K). The ITC data revealed complex binding behavior in these minor groove binding systems not detected in the other methods. All three techniques provide accurate estimates of binding affinity, and each has unique benefits for drug binding studies.  相似文献   

4.
Fluorescence spectroscopy was used to study the interaction between the minor-groove-binding drug netropsin and the self-complementary oligonucleotide d(CTGAnPTTCAG)2 containing the fluorescent base analogue 2-aminopurine (nP). The binding of netropsin to this oligonucleotide causes strong quenching of the 2-aminopurine fluorescence, observed by steady-state as well as time-resolved spectroscopy. From fluorescence titrations, binding isotherms were recorded and evaluated. The parameters showed one netropsin binding site/oligonucleotide duplex and an association constant of about 10(5) M-1 at 25 degrees C, 3-4 orders of magnitude weaker than for an exclusive adenine/thymine host sequence. From the temperature dependence of the association constant the thermodynamic parameters were obtained as delta G = -29 kJ/mol, delta H = -12 kJ/mol and delta S = +55 J.mol-1.K-1 at 25 degrees C. These parameters resemble those of the interaction of poly[(dG-dC).(dG-dC)] with netropsin, indicating a mainly entropy-driven reaction. The amino group of 2-aminopurine, like that of guanine, resides in the minor groove of DNA. Therefore the relatively weak binding of netropsin to d(CTGAnPTTCAG)2 is probably related to partial blockage of the tight fit of netropsin into the preferred minor groove of an exclusive adenine/thymine host sequence.  相似文献   

5.
By means of titration viscometry a number of distinct modes could be resolved for the interaction between the antibiotic netropsin and DNA species of 50, 58, and 69 mole + (A+T) below r = 0.04 netropsin molecules bound per DNA phosphate group. The number of corresponding binding sites increases with a high power of the (A+T) content. The apparent association constants are very high (greater than 10(6) M-1, some perhaps greater than 10(6) M-1) and also rather different for most of the binding sites. It is suggested that some of these interaction modes differ in the number of hydrogen bonds formed between donors of the ligand and acceptors of the binding sites. The interaction modes were characterized quantitatively by their (species-independent) changes of DNA contour length and by the percentage of local DNA stiffening.  相似文献   

6.
The solution structures of 1:1 complexes of a quinacrine-netropsin hybrid molecule with the self-complementary DNA duplexes, d(CGCGAATTCGCG)2 and d(CGAATTCG)2, have been studied by one- and two-dimensional 1H NMR spectroscopy. The NOE data indicate that the acridine ring of the hybrid intercalates into the 5'-GpA step and its netropsin moiety spans the minor groove of the central AATT region.  相似文献   

7.
Electrochemical methods were used to activate MnIII and FeIII complexes of meso-tetrakis(N-methyl-4-pyridiniumyl)porphine (H2TMPyP) to cause cleavage of pBR322 DNA and to study their interaction with sonicated calf thymus DNA. Electrochemical reduction of MnIIITMPyP and FeIIITMPyP (at low concentrations) in the presence of O2 was required to activate these complexes. However, FeIIITMPyP at 1 x 10(-6) M produced DNA strand breakage without being electrochemically reduced. At low concentrations, FeIITMPyP was more efficient at cleaving DNA than MnIITMPyP. Reduction of O2 at a platinum electrode also produced some cleavage but to a much smaller extent. The oxidized form of MnIIITMPyP (charge 5+) has higher affinity for sonicated calf thymus (CT) DNA than the reduced form (charge 4+), as determined by the negative shift in E degrees' for the voltammetric wave in the presence of DNA. Both forms of FeIIITMPyP (charge 4+) interact with DNA to about the same extent. Differential pulse voltammetry was used to determine binding constants (K) and binding-site sizes (s) of the interaction of these metalloporphyrins with sonicated CT DNA. The data were analyzed assuming both mobile and static equilibria. MnIIITMPyP binds to DNA (5 mM Tris, 50 mM NaCl, pH 7) with K = 5 (+/- 2) x 10(6) M-1, s = 3 bp (mobile) or K = 3.6 (+/- 0.3) x 10(6) M-1, s = 4 bp (static). FeIIITMPyP at that ionic strength caused DNA precipitation. At higher ionic strength (0.1 M Tris, 0.1 M NaCl, pH 7), FeIIITMPyP associates to DNA with K = 4.4 (+/- 0.2) x 10(4) M-1, s = 5 bp (mobile) or K = 1.9 (+/- 0.1) x 10(4) M-1, s = 6 bp (static).  相似文献   

8.
9.
Experimental data are reported on DNA-cleaving activity of the synthetic netropsin analogs consisting of the two N-propylpyrrole carboxamide units linked covalently through two or three glycine residues to a copper-chelating tripeptide glycyl-glycyl-L-histidine. Incubation of DNA restriction fragment and netropsin analog in the presence of ascorbate, hydrogen peroxide and Cu2+ ions resulted in selective cleavage of the DNA at or near the preferred sites for binding of netropsin analog. A similar cleavage pattern is observed after X-ray irradiation of DNA complexes with netropsin analogs tethered with Cu2+ ions. The cleavage patterns are found to be dependent on the length of the connecting chain between the histidine-containing tripeptide and netropsin analog. The netropsin analog containing three glycine residues in the connecting chain, but not the analog with a shorter linker chain, can generate an intense cleavage of one of the two polynucleotide chains at a position corresponding to the presumed binding site for the dimeric ligand species. More than 50% of the total DNA can be cleaved at this position after X-ray irradiation. From analysis of the nucleotide sequences surrounding the preferred cleavage site on several DNA fragments we found that the consensus is 5'-TTTTNCA*AAA-3', where N is an arbitrary nucleotide. The Cu(2+)-mediated cleavage of DNA occurs at the second adenine (indicated by an asterisk) from the 5'-end of the sequence. The greatest cleavage activity is observed when the molar ratio of Cu2+ to the netropsin analog is equal to 0.5. Evidently, the Cu(2+)-ligated and unligated oligopeptide species interacts with each other to form a heterodimer bound to DNA at the cleavage site. To test the validity of this model we have studied the binding of unligated netropsin analog and netropsin analog complexed with Cu2+ ion to a self-complementary oligonucleotide 5'-GCGTTTTGCAAAACGC-3'. It is found that binding of Cu(2+)-ligated netropsin analog to the DNA oligomer preincubated with unligated form of the oligopeptide is a cooperative process for which interactions between the two bound ligands are responsible. The cooperativity parameter is estimated to be on the order of factor 6. Finally, a model is proposed in which a heterodimer stabilized by interligand beta-sheet binds in the minor DNA groove.  相似文献   

10.
This study examined the ability of netropsin and related minor groove binders to interfere with the actions of DNA topoisomerases II and I. We evaluated a series of netropsin dimers linked with flexible aliphatic chains of different lengths. These agents are potentially able to occupy longer stretches of DNA than the parental drug as a result of bidentate binding. Both netropsin and its dimers were found: (i) to inhibit the catalytic activity of isolated topoisomerase II and (ii) to interfere with the stabilization of the cleavable complexes of topoisomerase II and I in nuclei. Dimers with linkers consisting of 0-4 and 6-9 methylene groups (n) were far more inhibitory than netropsin against isolated enzyme and in the nuclear system. The compound with n = 5 was less active than netropsin in both assays while the dimer with n = 10 inhibited only the isolated enzyme. The comparison of dimers with fixed linker length (n = 2) but varying number of N-methylpyrrole residues (from 1 to 3) revealed that the inhibitory properties were enhanced with increasing number of N-methylpyrrole units. For dimers with varying linker length, drug ability to inhibit catalytic activity of isolated topoisomerase II was positively correlated with calf thymus DNA association constants. In contrast, no such correlation existed in nuclei. However, the inhibitory effects in the nuclear system were correlated with the association constants for poly(dAdT). The results indicate that bidentate binding can significantly enhance anti-topoisomerase activity of netropsin related dimeric minor groove binders. However, other factors such as the length of the linker, the number of pyrrole moieties and the nature of the target (isolated enzyme/DNA versus chromatin in nuclei) also contribute to these activities.  相似文献   

11.
Antioxidants are essential to good health. Flavonoids are powerful antioxidants, and prevent DNA damage. The antioxidative protections are related to their binding modes to a DNA duplex and complexation with free radicals in vivo. Recently we reported the interaction of flavonoids with DNA in vitro (Kanakis et al., J. Biomol. Struct. Dyn. 22, 719-724, 2005), where polyphenol different binding modes were discussed. The aim of this study was to examine the interaction of transfer RNA with quercetin (que), kaempferol (kae), and delphinidin (del) in aqueous solution at physiological conditions and to make a comparison with the corresponding pigment-DNA adducts. Constant tRNA concentration (6.25 mM) and various drug/RNA(phosphate) molar ratios of 1/48 to 1/8 were used. FTIR and UV-visible difference spectroscopic methods have been applied to determine the drug binding mode, the binding constants, and the effects of drug complexation on the stability and conformation of tRNA duplex. Both intercalative and external binding modes were observed. Structural analysis showed que, kae, and a del intercalate tRNA duplex with minor external binding to the major or minor groove and the backbone phosphate group with overall binding constants K (que) = 4.80 x 10(4) M(1), K (kae) = 4.65 x 10(4) M(1), and K (del) = 9.47 x 10(4) M(1). The stability of adduct formation is in the order of del > que > kae. A comparison with flavonoids-DNA adducts showed both intercalation and external bindings with the stability order K (que) = 7.25 x 10(4) M(1), K (kae) = 3.60 x 10(4) M(1), and K (del) = 1.66 x 10(4) M(1). Low flavonoid concentration induces helical stabilization, whereas high pigment content causes helix opening. A partial Bto A-DNA transition occurs at high drug concentration, while tRNA remains in the A-family structure.  相似文献   

12.
Abstract

Using CD measurements we show that the interaction of netropsin to poly(dA-dT)·poly(dA-dT) involves two binding modes at low ionic strength. The first and second binding modes are distinguished by a defined shift of the CD maximum and the presence of characteristic isodichroic points in the long wavelength range from 313 nm to 325 nm. The first binding mode is independent of ionic strength and is primarily determined by specific interaction to dA·dT base pairs. Employing a netropsin derivative and different salt conditions it is demonstrated that ionic contacts are essential for the second binding mode. Other alternating duplexes and natural DNA also exhibit more or less a second step in the interaction with netropsin observable at high ratio of ligand per nucleotide. The second binding mode is absent for poly(dA)·poly(dT). The presence of a two-step binding mechanism is also demonstrated in the complex formation of poly(dA-dT)·poly(dA-dT) with the distamycin analog consisting of pentamethylpyrrolecarboxamide. While the binding mode I of netropsin is identical with its localization in the minor groove, for binding mode II we consider two alternative interpretations.  相似文献   

13.
Crystalline complexes of yeast tRNA(phe) and the oligopeptide antibiotics netropsin and distamycin A were prepared by diffusing drugs into crystals of tRNA. X-ray structure analyses of these complexes reveal a single common binding site for both drugs which is located in the major or deep groove of the tRNA T-stem. The netropsin-tRNA complex is stabilized by specific hydrogen bonds between the amide groups of the drug and the tRNA bases G51 O(6), U52 O(4) and G53 N(7) on one strand, and is further stabilized by electrostatic interactions between the positively charges guanidino side chain of the drug and the tRNA phosphate P53 on the same strand and the positively charged amidino propyl side chain and the phosphates P61, P62 and P63 on the opposite strand of the double helix. These results are in contrast to the implicated minor groove binding of these drugs to non-guanine sequences in DNA. The binding to the GUG sequence in tRNA implies that major groove binding to certain DNA sequences is possible.  相似文献   

14.
Anticancer drugs that bind to DNA and inhibit DNA-processing enzymes represent an important class of anticancer drugs. Combilexin molecules, which combine DNA minor groove binding and intercalating functionalities, have the potential for increased DNA binding affinity and increased selectivity due to their dual mode of DNA binding. This study describes the synthesis of DNA minor groove binder netropsin analogs containing either one or two N-methylpyrrole carboxamide groups linked to DNA-intercalating anthrapyrazoles. Those hybrid molecules which had both two N-methylpyrrole groups and terminal (dimethylamino)alkyl side chains displayed submicromolar cytotoxicity towards K562 human leukemia cells. The combilexins were also evaluated for DNA binding by measuring the increase in DNA melting temperature, for DNA topoisomerase IIα-mediated double strand cleavage of DNA, for inhibition of DNA topoisomerase IIα decatenation activity, and for inhibition of DNA topoisomerase I relaxation of DNA. Several of the compounds stabilized the DNA–topoisomerase IIα covalent complex indicating that they acted as topoisomerase IIα poisons. Some of the combilexins had higher affinity for DNA than their parent anthrapyrazoles. In conclusion, a novel group of compounds combining DNA intercalating anthrapyrazole groups and minor groove binding netropsin analogs have been designed, synthesized and biologically evaluated as possible novel anticancer agents.  相似文献   

15.
16.
The interaction of pirprofen enantiomers with human serum albumin (HSA) was investigated by means of high-performance liquid chromatography (HPLC), circular dichroism (CD), and 1H NMR spectroscopy. HPLC experiments indicated that both pirprofen enantiomers were bound to one class of high-affinity binding sites (n(+) = 1.91 +/- 0.13, K(+) = (4.09 +/- 0.64) x 10(5) M-1, n(-) = 2.07 +/- 0.13, K(-) = (6.56 +/- 1.35) x 10(5) M-1) together with nonspecific binding (n'K'(+) = (1.51 +/- 0.21) x 10(4) M-1, n'K'(-) = (0.88 +/- 0.13) x 10(-4) M-1). Slight stereoselectivity in specific binding was demonstrated by the difference in product n(+)K(+) = (0.77 +/- 0.08) x 10(6) M-1 vs. n(-)K(-) = (1.30 +/- 0.21) x 10(6) M-1, i.e., the ratio n(-)K(-)/n(+)K(+) = 1.7. CD measurements showed changes in the binding sites located on the aromatic amino acid side chains (a small positive band at 315 nm and a pronounced negative extrinsic Cotton effect in the region 250-280 nm). The protein remains, however, in its predominantly alpha-helical conformation. The 1H NMR difference spectra confirmed that both pirprofen enantiomers interacted with HSA specifically, most probably with site II on the albumin molecule.  相似文献   

17.
Using CD measurements we show that the interaction of netropsin to poly(dA-dT).poly(dA-dT) involves two binding modes at low ionic strength. The first and second binding modes are distinguished by a defined shift of the CD maximum and the presence of characteristic isodichroic points in the long wavelength range from 313 nm to 325 nm. The first binding mode is independent of ionic strength and is primarily determined by specific interaction to dA.dT base pairs. Employing a netropsin derivative and different salt conditions it is demonstrated that ionic contacts are essential for the second binding mode. Other alternating duplexes and natural DNA also exhibit more or less a second step in the interaction with netropsin observable at high ratio of ligand per nucleotide. The second binding mode is absent for poly(dA).poly(dT). The presence of a two-step binding mechanism is also demonstrated in the complex formation of poly(dA-dT).poly(dA-dT) with the distamycin analog consisting of pentamethylpyrrolecarboxamide. While the binding mode I of netropsin is identical with its localization in the minor groove, for binding mode II we consider two alternative interpretations.  相似文献   

18.
Lah J  Vesnaver G 《Biochemistry》2000,39(31):9317-9326
Circular dichroism (CD), isothermal calorimetric titrations (ITC), and temperature-dependent UV spectroscopy were used to investigate binding of the minor groove-directed ligands distamycin A (Dst) and netropsin (Net) to the following duplexes: d(GTTAGTATTTGG). d(CCAAATACTAAC), d(GTTAGTATATGG).d(CCATATACTAAC), d(GTTAGTACTTGG). d(CCAAGTACTAAC), and d(GTTAGTAGTTGG).d(CCAACTACTAAC). Our results reveal that Dst binds within the minor grooves of these dodecamers that contain five-AT and/or four-AT.GC binding sites exclusively in a dimeric high-affinity 2:1 binding mode (K approximately 10(16) M(-)(2)). By contrast, Net exhibits high-affinity binding only when it binds in a 1:1 mode (K(1) approximately 10(9) M(-)(1)) to the two duplexes that contain five-AT sites (5'-TATTT-3' and 5'-TATAT-3'). Its further binding to these two duplexes occurs in a low-affinity mode (K(2) approximately 10(6) M(-)(1)) and results in the formation of 2:1 Net-DNA complexes. To the other two duplexes that contain sequences with at most three AT consecutive base pairs Net binds in two distinctive low-affinity 1:1 binding modes (K(1) approximately 10(7) M(-)(1), K(2) approximately 10(6) M(-)(1)). Competition experiments (CD and ITC titrations) reveal that Dst entirely displaces Net from its 1:1 and 2:1 complexes with any of the four duplexes. We discuss and interpret our optical and calorimetric results in the context of the available structural information about the complexes between DNA and the sequence-specific minor groove binders Dst and Net.  相似文献   

19.
Four different footprinting techniques have been used to probe the DNA sequence selectivity of Thia-Net, a bis-cationic analogue of the minor groove binder netropsin in which the N-methylpyrrole moieties are replaced by thiazole groups. In Thia-Net the ring nitrogen atoms are directed into the minor groove where they could accept hydrogen bonds from the exocyclic 2-amino group of guanine. Three nucleases (DNAase I, DNAase II, and micrococcal nuclease) were employed to detect binding sites on the 160bp tyr T fragment obtained from plasmid pKM delta-98, and further experiments were performed with 117mer and 253mer fragments cut out of the plasmid pBS. MPE.Fe(II) was used to footprint binding sites on an EcoRI/HindIII fragment from pBR322. Thia-Net binds to sites in the minor groove containing 4 or 5 base pairs which are predominantly composed of alternating A and T residues, but with significant acceptance of intrusive GC base pairs. Unlike the parent antibiotic netropsin, Thia-Net discriminates against homooligomeric runs of A and T. The evident preference of Thia-Net for AT-rich sites, despite its containing thiazole nitrogens capable of accepting GC sites by hydrogen bonding, supports the view that the biscationic nature of the ligand imposes a bias due to the electrostatic potential differences in the receptor which favour the ligand reading alternating AT sequences.  相似文献   

20.
The interaction of tomaymycin and 8-O-methyltomaymycin with calf thymus DNA was studied by steady-state fluorescence techniques. The 8-phenolic proton of tomaymycin has a pK = 8.0, and the phenolate anion is essentially nonfluorescent. However, the fluorescence of the DNA adduct does not decrease until pH greater than 10.5, when the DNA double helix denatures. Acrylamide quenches the fluorescence of the free antibiotic with a quenching rate constant kq = 7 x 10(9) M-1 s-1. In DNA adducts, the quenching rate constant is reduced about 50-fold, indicating that the aromatic ring of the drug is shielded from the solvent. The four possible binding modes of the antibiotics were modeled on a 6-mer duplex by molecular mechanics calculations in the absence and presence of water and counterions. The modeling studies show that the antibiotic is buried in the minor groove in all binding modes, with the 8-substituent pointing away from the DNA core. Three or five waters are displaced from the minor groove, depending on the orientation of the drug on the DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号