首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Influenza virus neuraminidase (NA) plays an essential role in release and spread of progeny virions, following the intracellular viral replication cycle. To test whether NA could also facilitate virus entry into cell, we infected cultures of human airway epithelium with human and avian influenza viruses in the presence of the NA inhibitor oseltamivir carboxylate. Twenty- to 500-fold less cells became infected in drug-treated versus nontreated cultures (P < 0.0001) 7 h after virus application, indicating that the drug suppressed the initiation of infection. These data demonstrate that viral NA plays a role early in infection, and they provide further rationale for the prophylactic use of NA inhibitors.  相似文献   

3.
In this study, the effect of innate serum inhibitors on influenza virus infection was addressed. Seasonal influenza A(H1N1) and A(H3N2), 2009 pandemic A(H1N1) (H1N1pdm) and highly pathogenic avian influenza (HPAI) A(H5N1) viruses were tested with guinea pig sera negative for antibodies against all of these viruses as evaluated by hemagglutination-inhibition and microneutralization assays. In the presence of serum inhibitors, the infection by each virus was inhibited differently as measured by the amount of viral nucleoprotein produced in Madin-Darby canine kidney cells. The serum inhibitors inhibited seasonal influenza A(H3N2) virus the most, while the effect was less in seasonal influenza A(H1N1) and H1N1pdm viruses. The suppression by serum inhibitors could be reduced by heat inactivation or treatment with receptor destroying enzyme. In contrast, all H5N1 strains tested were resistant to serum inhibitors. To determine which structure (hemagglutinin (HA) and/or neuraminidase (NA)) on the virus particles that provided the resistance, reverse genetics (rg) was applied to construct chimeric recombinant viruses from A/Puerto Rico/8/1934(H1N1) (PR8) plasmid vectors. rgPR8-H5 HA and rgPR8-H5 HANA were resistant to serum inhibitors while rgPR8-H5 NA and PR8 A(H1N1) parental viruses were sensitive, suggesting that HA of HPAI H5N1 viruses bestowed viral resistance to serum inhibition. These results suggested that the ability to resist serum inhibition might enable the viremic H5N1 viruses to disseminate to distal end organs. The present study also analyzed for correlation between susceptibility to serum inhibitors and number of glycosylation sites present on the globular heads of HA and NA. H3N2 viruses, the subtype with highest susceptibility to serum inhibitors, harbored the highest number of glycosylation sites on the HA globular head. However, this positive correlation cannot be drawn for the other influenza subtypes.  相似文献   

4.
Currently, two neuraminidase (NA) inhibitors, oseltamivir and zanamivir, which must be administrated twice daily for 5 days for maximum therapeutic effect, are licensed for the treatment of influenza. However, oseltamivir-resistant mutants of seasonal H1N1 and highly pathogenic H5N1 avian influenza A viruses have emerged. Therefore, alternative antiviral agents are needed. Recently, a new neuraminidase inhibitor, R-125489, and its prodrug, CS-8958, have been developed. CS-8958 functions as a long-acting NA inhibitor in vivo (mice) and is efficacious against seasonal influenza strains following a single intranasal dose. Here, we tested the efficacy of this compound against H5N1 influenza viruses, which have spread across several continents and caused epidemics with high morbidity and mortality. We demonstrated that R-125489 interferes with the NA activity of H5N1 viruses, including oseltamivir-resistant and different clade strains. A single dose of CS-8958 (1,500 µg/kg) given to mice 2 h post-infection with H5N1 influenza viruses produced a higher survival rate than did continuous five-day administration of oseltamivir (50 mg/kg twice daily). Virus titers in lungs and brain were substantially lower in infected mice treated with a single dose of CS-8958 than in those treated with the five-day course of oseltamivir. CS-8958 was also highly efficacious against highly pathogenic H5N1 influenza virus and oseltamivir-resistant variants. A single dose of CS-8958 given seven days prior to virus infection also protected mice against H5N1 virus lethal infection. To evaluate the improved efficacy of CS-8958 over oseltamivir, the binding stability of R-125489 to various subtypes of influenza virus was assessed and compared with that of other NA inhibitors. We found that R-125489 bound to NA more tightly than did any other NA inhibitor tested. Our results indicate that CS-8958 is highly effective for the treatment and prophylaxis of infection with H5N1 influenza viruses, including oseltamivir-resistant mutants.  相似文献   

5.
The recently identified human infections with a novel avian influenza H7N9 virus in China raise important questions regarding possible risk to humans. However, the entry properties and tropism of this H7N9 virus were poorly understood. Moreover, neuraminidase inhibitor resistant H7N9 isolates were recently observed in two patients and correlated with poor clinical outcomes. In this study, we aimed to elucidate the entry properties of H7N9 virus, design and evaluate inhibitors for H7N9 virus entry. We optimized and developed an H7N9-pseudotyped particle system (H7N9pp) that could be neutralized by anti-H7 antibodies and closely mimicked the entry process of the H7N9 virus. Avian, human and mouse-derived cultured cells showed high, moderate and low permissiveness to H7N9pp, respectively. Based on influenza virus membrane fusion mechanisms, a potent anti-H7N9 peptide (P155-185-chol) corresponding to the C-terminal ectodomain of the H7N9 hemagglutinin protein was successfully identified. P155-185-chol demonstrated H7N9pp-specific inhibition of infection with IC50 of 0.19 µM. Importantly, P155-185-chol showed significant suppression of A/Anhui/1/2013 H7N9 live virus propagation in MDCK cells and additive effects with NA inhibitors Oseltamivir and Zanamivir. These findings expand our knowledge of the entry properties of the novel H7N9 viruses, and they highlight the potential for developing a new class of inhibitors targeting viral entry for use in the next pandemic.  相似文献   

6.
Roles of neuraminidase in the initial stage of influenza virus infection   总被引:2,自引:0,他引:2  
We propose a concept that neuraminidase (NA) promotes virus entry into target cells during the initial stage of viral infection, in addition to the generally accepted concept that influenza virus NA promotes the release of progeny virus from a host cell at the final stage of viral replication. When NA activity was inhibited with specific inhibitors such as zanamivir and oseltamivir carboxylate, infection efficiency of the virus to MDCK and A549 cells was reduced to approximately 1/4 and 1/8, respectively. NA inhibitors did not significantly affect virus binding and envelope fusion activities, when assessed using an erythrocyte and virus system. Since the initial stage of viral infection involves binding of the virus to the target cell, virus entry into an endosome and envelope fusion with the endosomal membrane, our results indicated that NA inhibitors interfered with the virus entry step. Thus, NA is thought to promote virus entry, and thereby enhances infection efficiency.  相似文献   

7.
We investigated the synergism between influenza virus and Streptococcus pneumoniae, particularly the role of deletions in the stalk region of the neuraminidase (NA) of H2N2 and H9N2 avian influenza viruses. Deletions in the NA stalk (ΔNA) had no effect on NA activity or on the adherence of S. pneumoniae to virus-infected human alveolar epithelial (A549) and mouse lung adenoma (LA-4) cells, although it delayed virus elution from turkey red blood cells. Sequential S. pneumoniae infection of mice previously inoculated with isogenic recombinant H2N2 and H9N2 influenza viruses displayed severe pneumonia, elevated levels of intrapulmonary proinflammatory responses, and death. No differences between the WT and ΔNA mutant viruses were detected with respect to effects on postinfluenza pneumococcal pneumonia as measured by bacterial growth, lung inflammation, morbidity, mortality, and cytokine/chemokine concentrations. Differences were observed, however, in influenza virus-infected mice that were treated with oseltamivir prior to a challenge with S. pneumoniae. Under these circumstances, mice infected with ΔNA viruses were associated with a better prognosis following a secondary bacterial challenge. These data suggest that the H2N2 and H9N2 subtypes of avian influenza A viruses can contribute to secondary bacterial pneumonia and deletions in the NA stalk may modulate its outcome in the context of antiviral therapy.  相似文献   

8.

Background

The major role of the neuraminidase (NA) protein of influenza A virus is related to its sialidase activity, which disrupts the interaction between the envelope hemagglutin (HA) protein and the sialic acid receptors expressed at the surface of infected cells. This enzymatic activity is known to promote the release and spread of progeny viral particles following their production by infected cells, but a potential role of NA in earlier steps of the viral life cycle has never been clearly demonstrated. In this study we have examined the impact of NA expression on influenza HA-mediated viral membrane fusion and virion infectivity.

Methodology/Principal Findings

The role of NA in the early stages of influenza virus replication was examined using a cell-cell fusion assay that mimics HA-mediated membrane fusion, and a virion infectivity assay using HIV-based pseudoparticles expressing influenza HA and/or NA proteins. In the cell-cell fusion assay, which bypasses the endocytocytosis step that is characteristic of influenza virus entry, we found that in proper HA maturation conditions, NA clearly enhanced fusion in a dose-dependent manner. Similarly, expression of NA at the surface of pseudoparticles significantly enhanced virion infectivity. Further experiments using exogeneous soluble NA revealed that the most likely mechanism for enhancement of fusion and infectivity by NA was related to desialylation of virion-expressed HA.

Conclusion/Significance

The NA protein of influenza A virus is not only required for virion release and spread but also plays a critical role in virion infectivity and HA-mediated membrane fusion.  相似文献   

9.
Highly pathogenic avian H5N1 influenza viruses remain a pandemic threat. Antiviral drugs such as neuraminidase (NA) inhibitors will be crucial for disease control in the event of a pandemic. Should drug-resistant H5N1 viruses develop, all defense strategies will be compromised. To determine the likelihood and mechanisms of emergence of NA inhibitor-resistant H5N1 variants in humans, we serially passaged two H5N1 viruses, A/Hong Kong/213/03 and A/Turkey/65-1242/06, in normal human bronchial epithelial (NHBE) cells in the presence of oseltamivir, zanamivir, or peramivir. To monitor the emergence of changes associated with the adaptation of H5N1 viruses to humans, we passaged the strains in the absence of drugs. Under pressure of each NA inhibitor, A/Turkey/65-1242/06 developed mutations in the hemagglutinin (HA) (H28R and P194L/T215I) and NA (E119A) proteins that reduced virus binding to α2,3-sialyl receptor and NA activity. Oseltamivir pressure selected a variant of A/Hong Kong/213/03 virus with HA P194S mutation that decreased viral binding to α2,6 receptor. Under peramivir pressure, A/Hong Kong/213/03 virus developed a novel NA mutation, R156K, that reduced binding to all three drugs, caused about 90% loss of NA activity, and compromised replication in NHBE cells. Both strains were eliminated in NHBE cells when they were cultivated in the absence of drugs. Here, we show for the first time that decreased NA activity mediated through NA inhibitors is essential for the adaptation of pandemic H5N1 influenza virus to humans. This ability of decreased NA activity to promote H5N1 infection underlines the necessity to optimize management strategies for a plausible H5N1 pandemic.  相似文献   

10.
Effective antiviral drugs are essential for early control of an influenza pandemic. It is therefore crucial to evaluate the possible threat posed by neuraminidase (NA) inhibitor-resistant influenza viruses with pandemic potential. Four NA mutations (E119G, H274Y, R292K, and N294S) that have been reported to confer resistance to NA inhibitors were each introduced into recombinant A/Vietnam/1203/04 (VN1203) H5N1 influenza virus. For comparison, the same mutations were introduced into recombinant A/Puerto Rico/8/34 (PR8) H1N1 influenza virus. The E119G and R292K mutations significantly compromised viral growth in vitro, but the H274Y and N294S mutations were stably maintained in VN1203 and PR8 viruses. In both backgrounds, the H274Y and N294S mutations conferred resistance to oseltamivir carboxylate (50% inhibitory concentration [IC(50)] increases, >250-fold and >20-fold, respectively), and the N294S mutation reduced susceptibility to zanamivir (IC(50) increase, >3.0-fold). Although the H274Y and N294S mutations did not compromise the replication efficiency of VN1203 or PR8 viruses in vitro, these mutations slightly reduced the lethality of PR8 virus in mice. However, the VN1203 virus carrying either the H274Y or N294S mutation exhibited lethality similar to that of the wild-type VN1203 virus. The different enzyme kinetic parameters (V(max) and K(m)) of avian-like VN1203 NA and human-like PR8 NA suggest that resistance-associated NA mutations can cause different levels of functional loss in NA glycoproteins of the same subtype. Our results suggest that NA inhibitor-resistant H5N1 variants may retain the high pathogenicity of the wild-type virus in mammalian species. Patients receiving NA inhibitors for H5N1 influenza virus infection should be closely monitored for the emergence of resistant variants.  相似文献   

11.
Resistance of influenza A viruses to neuraminidase inhibitors can arise through mutations in the neuraminidase (NA) gene. We show here that a Q136K mutation in the NA of the 2009 pandemic H1N1 virus confers a high degree of resistance to zanamivir. Resistance is accompanied by reduced numbers of NA molecules in viral particles and reduced intrinsic enzymatic activity of mutant NA. Interestingly, the Q136K mutation strongly impairs viral fitness in the guinea pig transmission model.  相似文献   

12.
The influenza virus neuraminidase (NA) is a tetrameric, virus surface glycoprotein possessing receptor-destroying activity. This enzyme facilitates viral release and is a target of anti-influenza virus drugs. The NA structure has been extensively studied, and the locations of disulfide bonds within the NA monomers have been identified. Because mutation of cysteine residues in other systems has resulted in temperature-sensitive (ts) proteins, we asked whether mutation of cysteine residues in the influenza virus NA would yield ts mutants. The ability to rationally design tight and stable ts mutations could facilitate the creation of efficient helper viruses for influenza virus reverse genetics experiments. We generated a series of cysteine-to-glycine mutants in the influenza A/WSN/33 virus NA. These were assayed for neuraminidase activity in a transient expression system, and active mutants were rescued into infectious virus by using established reverse genetics techniques. Mutation of two cysteines not involved in intrasubunit disulfide bonds, C49 and C146, had modest effects on enzymatic activity and on viral replication. Mutation of two cysteines, C303 and C320, which participate in a single disulfide bond located in the beta5L0,1 loop, produced ts enzymes. Additionally, the C303G and C320G transfectant viruses were found to be attenuated and ts. Because both the C303G and C320G viruses exhibited stable ts phenotypes, they were tested as helper viruses in reverse genetics experiments. Efficiently rescued were an N1 neuraminidase from an avian H5N1 virus, an N2 neuraminidase from a human H3N2 virus, and an N7 neuraminidase from an H7N7 equine virus. Thus, these cysteine-to-glycine NA mutants allow the rescue of a variety of wild-type and mutant NAs into influenza virus.  相似文献   

13.
Like the histidine-to-tyrosine substitution at position 274 in neuraminidase (NA H274Y), an asparagine-to-serine mutation at position 294 in this protein (NA N294S) confers oseltamivir resistance to highly pathogenic H5N1 influenza A viruses. However, unlike viruses with the NA H274Y mutation, the properties of viruses possessing NA N294S are not well understood. Here, we assessed the effect of the NA N294S substitution on the replication and pathogenicity of human H5N1 viruses and on the efficacy of the NA inhibitors oseltamivir and zanamivir in mouse and ferret models. Although NA N294S-possessing H5N1 viruses were attenuated in mice and ferrets compared to their oseltamivir-sensitive counterparts, one of the infected ferrets died from systemic infection, demonstrating the potential lethality in ferrets of oseltamivir-resistant H5N1 viruses with the NA N294S substitution. The efficacy of oseltamivir, but not that of zanamivir, against an NA N294S-possessing virus was substantially impaired both in ferrets and in vitro. These results demonstrate the considerable pathogenicity of NA N294S substitution-possessing H5N1 viruses and underscore the importance of monitoring the emergence of the NA N294S mutation in circulating H5N1 viruses.  相似文献   

14.
We describe the characterization of influenza A virus infection of an established in vitro model of human pseudostratified mucociliary airway epithelium (HAE). Sialic acid receptors for both human and avian viruses, alpha-2,6- and alpha-2,3-linked sialic acids, respectively, were detected on the HAE cell surface, and their distribution accurately reflected that in human tracheobronchial tissue. Nonciliated cells present a higher proportion of alpha-2,6-linked sialic acid, while ciliated cells possess both sialic acid linkages. Although we found that human influenza viruses infected both ciliated and nonciliated cell types in the first round of infection, recent human H3N2 viruses infected a higher proportion of nonciliated cells in HAE than a 1968 pandemic-era human virus, which infected proportionally more ciliated cells. In contrast, avian influenza viruses exclusively infected ciliated cells. Although a broad-range neuraminidase abolished infection of HAE by human parainfluenza virus type 3, this treatment did not significantly affect infection by influenza viruses. All human viruses replicated efficiently in HAE, leading to accumulation of nascent virus released from the apical surface between 6 and 24 h postinfection with a low multiplicity of infection. Avian influenza A viruses also infected HAE, but spread was limited compared to that of human viruses. The nonciliated cell tropism of recent human H3N2 viruses reflects a preference for the sialic acid linkages displayed on these cell types and suggests a drift in the receptor binding phenotype of the H3 hemagglutinin protein as it evolves in humans away from its avian virus precursor.  相似文献   

15.
In the vast majority of influenza A viruses characterized to date, hemagglutinin (HA) is the receptor-binding and fusion protein, whereas neuraminidase (NA) is a receptor-cleaving protein that facilitates viral release but is expendable for entry. However, the NAs of some recent human H3N2 isolates have acquired receptor-binding activity via the mutation D151G, although these isolates also appear to retain the ability to bind receptors via HA. We report here the laboratory generation of a mutation (G147R) that enables an N1 NA to completely co-opt the receptor-binding function normally performed by HA. Viruses with this mutant NA grow to high titers even in the presence of extensive mutations to conserved residues in HA''s receptor-binding pocket. When the receptor-binding NA is paired with this binding-deficient HA, viral infectivity and red blood cell agglutination are blocked by NA inhibitors. Furthermore, virus-like particles expressing only the receptor-binding NA agglutinate red blood cells in an NA-dependent manner. Although the G147R NA receptor-binding mutant virus that we characterize is a laboratory creation, this same mutation is found in several natural clusters of H1N1 and H5N1 viruses. Our results demonstrate that, at least in tissue culture, influenza virus receptor-binding activity can be entirely shifted from HA to NA.  相似文献   

16.
Influenza viruses are a major public health threat worldwide, and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs. Using pseudotype virus-based high-throughput screens, we have identified several new small molecules capable of inhibiting influenza virus entry. We prioritized two novel inhibitors, MBX2329 and MBX2546, with aminoalkyl phenol ether and sulfonamide scaffolds, respectively, that specifically inhibit HA-mediated viral entry. The two compounds (i) are potent (50% inhibitory concentration [IC50] of 0.3 to 5.9 μM); (ii) are selective (50% cytotoxicity concentration [CC50] of >100 μM), with selectivity index (SI) values of >20 to 200 for different influenza virus strains; (iii) inhibit a wide spectrum of influenza A viruses, which includes the 2009 pandemic influenza virus A/H1N1/2009, highly pathogenic avian influenza (HPAI) virus A/H5N1, and oseltamivir-resistant A/H1N1 strains; (iv) exhibit large volumes of synergy with oseltamivir (36 and 331 μM2 % at 95% confidence); and (v) have chemically tractable structures. Mechanism-of-action studies suggest that both MBX2329 and MBX2546 bind to HA in a nonoverlapping manner. Additional results from HA-mediated hemolysis of chicken red blood cells (cRBCs), competition assays with monoclonal antibody (MAb) C179, and mutational analysis suggest that the compounds bind in the stem region of the HA trimer and inhibit HA-mediated fusion. Therefore, MBX2329 and MBX2546 represent new starting points for chemical optimization and have the potential to provide valuable future therapeutic options and research tools to study the HA-mediated entry process.  相似文献   

17.
The results of molecular analysis of 15 influenza A(H3N2) and 17-A(H1N1) epidemic strains isolated in the Russian Federation in 1995-2007 are described. The analysis on the M2 and neuraminidase influenza A virus genes was performed. The M2 sequences analysis among the remantadin resistant viruses demonstrated the S31N substitution in all strains. Besides S31N substitution, additional mutations were detected in both proteins. Mutations associated with S31N substitution were detected in each virus subtype, which may be considered as new markers for the identification of remantadin-resistant strains. The sequencing of the NA segments from all viruses showed no amino acid substitutions known to cause resistance to neuraminidase inhibitors, which indicates susceptibility to NA inhibitors among the strains.  相似文献   

18.
Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations.  相似文献   

19.
Humans infected by the highly pathogenic H5N1 avian influenza viruses (HPAIV) present unusually high concentrations in serum of proinflammatory cytokines and chemokines, which are believed to contribute to the high pathogenicity of these viruses. The hemagglutinins (HAs) of avian influenza viruses preferentially bind to sialic acids attached through α2,3 linkages (SAα2,3) to the terminal galactose of carbohydrates on the host cell surface, while the HAs from human strains bind to α2,6-linked SA (SAα2,6). To evaluate the role of the viral receptor specificity in promoting innate immune responses in humans, we generated recombinant influenza viruses, one bearing the HA and neuraminidase (NA) genes from the A/Vietnam/1203/2004 H5N1 HPAIV in an influenza A/Puerto Rico/8/1934 (A/PR/8/34) backbone with specificity for SAα2,3 and the other a mutant virus (with Q226L and G228S in the HA) with preferential receptor specificity for SAα2,6. Viruses with preferential affinity for SAα2,3 induced higher levels of proinflammatory cytokines and interferon (IFN)-inducible genes in primary human dendritic cells (DCs) than viruses with SAα2,6 binding specificity, and these differences were independent of viral replication, as shown by infections with UV-inactivated viruses. Moreover, human primary macrophages and respiratory epithelial cells showed higher expression of proinflammatory genes after infection with the virus with SAα2,3 affinity than after infection with the virus with SAα2,6 affinity. These data indicate that binding to SAα2,3 by H5N1 HPAIV may be sensed by human cells differently than binding to SAα2,6, inducing an exacerbated innate proinflammatory response in infected individuals.  相似文献   

20.
Two surface glycoproteins of influenza virus, haemagglutinin (HA) and neuraminidase (NA), play opposite roles in terms of their interaction with host sialic acid receptors. HA attaches to sialic acid on host cell surface receptors to initiate virus infection while NA removes these sialic acids to facilitate release of progeny virions. This functional opposition requires a balance. To explore what might happen when NA of an influenza virus was replaced by one from another isolate or subtype, in this study, we generated three recombinant influenza A viruses in the background of A/PR/8/34 (PR8) (H1N1) and with NA genes obtained respectively from the 2009 pandemic H1N1 virus, a highly pathogenic avian H5N1 virus, and a lowly pathogenic avian H9N2 virus. These recombinant viruses, rPR8-H1N1NA, rPR8-H5N1NA, and rPR8-H9N2NA, were shown to have similar growth kinetics in cells and pathogenicity in mice. However, much more rPR8-H5N1NA and PR8-wt virions were released from chicken erythrocytes than virions of rPR8-H1N1NA and rPR8-H9N2NA after 1 h. In addition, in MDCK cells, rPR8-H5N1NA and rPR8-H9N2NA infected a higher percentage of cells, and induced cell-cell fusion faster and more extensively than PR8-wt and rPR8-H1N1NA did in the early phase of infection. In conclusion, NA replacement in this study did not affect virus replication kinetics but had different effects on infection initiation, virus release and fusion of infected cells. These phenomena might be partially due to NA proteins’ different specificity to α2-3/2-6-sialylated carbohydrate chains, but the exact mechanism remains to be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号