首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brown trout Salmo trutta is endemic to Europe, western Asia and north-western Africa; it is a prominent member of freshwater and coastal marine fish faunas. The species shows two resident (river-resident, lake-resident) and three main facultative migratory life histories (downstream–upstream within a river system, fluvial–adfluvial potamodromous; to and from a lake, lacustrine–adfluvial (inlet) or allacustrine (outlet) potamodromous; to and from the sea, anadromous). River-residency v. migration is a balance between enhanced feeding and thus growth advantages of migration to a particular habitat v. the costs of potentially greater mortality and energy expenditure. Fluvial–adfluvial migration usually has less feeding improvement, but less mortality risk, than lacustrine–adfluvial or allacustrine and anadromous, but the latter vary among catchments as to which is favoured. Indirect evidence suggests that around 50% of the variability in S. trutta migration v. residency, among individuals within a population, is due to genetic variance. This dichotomous decision can best be explained by the threshold-trait model of quantitative genetics. Thus, an individual's physiological condition (e.g., energy status) as regulated by environmental factors, genes and non-genetic parental effects, acts as the cue. The magnitude of this cue relative to a genetically predetermined individual threshold, governs whether it will migrate or sexually mature as a river-resident. This decision threshold occurs early in life and, if the choice is to migrate, a second threshold probably follows determining the age and timing of migration. Migration destination (mainstem river, lake, or sea) also appears to be genetically programmed. Decisions to migrate and ultimate destination result in a number of subsequent consequential changes such as parr–smolt transformation, sexual maturity and return migration. Strong associations with one or a few genes have been found for most aspects of the migratory syndrome and indirect evidence supports genetic involvement in all parts. Thus, migratory and resident life histories potentially evolve as a result of natural and anthropogenic environmental changes, which alter relative survival and reproduction. Knowledge of genetic determinants of the various components of migration in S. trutta lags substantially behind that of Oncorhynchus mykiss and other salmonines. Identification of genetic markers linked to migration components and especially to the migration–residency decision, is a prerequisite for facilitating detailed empirical studies. In order to predict effectively, through modelling, the effects of environmental changes, quantification of the relative fitness of different migratory traits and of their heritabilities, across a range of environmental conditions, is also urgently required in the face of the increasing pace of such changes.  相似文献   

2.
The proper development and functioning of the vertebrate brain depends on the correct positioning of neuronal precursors which is achieved by the widespread and far-ranging migration of cells from their birthplaces. The vast majority of neuronal precursors use cellular substrates for their migration. Until very recently, it was assumed that these cellular substrates were either glial (glia-mediated or gliophilic migration) or neuronal (neuron-mediated or neurophilic migration) in nature. The widely studied examples of gliophilic and neurophilic migrations in the developing brain are displacement of neuronal precursors along the processes of radial glia in the developing cortex and migration of neurons expressing gonadotropin-releasing hormone (GnRH) along the vomeronasal axons, respectively. Recent data indicate, however, that neuronal precursors might also use blood vessels as a physical substrate for their migration. The vasculature-guided (vasophilic) migration of neuronal precursors has been observed not only under normal conditions, in the healthy brain, but also following strokes. The purpose of this review is to highlight emerging principles and delineate putative mechanisms of vasculature-guided neuronal migration under both normal and pathological conditions.  相似文献   

3.
Vertical migration of Chaoborus flavicans in a Scottish loch   总被引:1,自引:0,他引:1  
The pattern of diel vertical migration of Chaoborus flavicans larvae in a shallow Scottish loch varies according to the instar and, in third and fourth instars, according to the season. The planktonic phase of the migration is not exclusively concerned with predation, the larvae feeding at least equally actively in the benthos. Although there is no conclusive evidence as to the role of vertical migration in Chaoborus flavicans, it has some of the characteristics of an epideictic display. Upward and downward locomotion can be induced experimentally in a plankton wheel by manipulating light intensity alone. However, the responses are complex and there is a great deal of individual variation, suggesting that additional factors are involved.  相似文献   

4.
Eight derivatives of tetrahydropyrimidine scaffold were designed and prepared as hybrid compounds possessing the structural features of both monastrol as an anticancer drug and nifedipine as a fascin blocking agent. All of the compounds were evaluated for their cytotoxic potency and the ability to inhibit 4T1 breast cancer cells migration. Then, they were investigated in silico for their ability to inhibit the fascin protein using molecular docking simulation. The most potent compound was 4d and the weakest one was 4a according to the in vitro cytotoxicity assay. The corresponding IC50 values were 193.70 and 248.75 μm , respectively. The least cytotoxic compound ( 4a ) was one of the strongest ones in binding to the fascin binding site according to the molecular docking results. 4a and 4e inhibited the 4T1 cells migration better than other compounds. They were more potent than nifedipine in inhibiting the migration process. In silico studies proved 4h to be the most potent fascin inhibitor in terms of ΔGbind although it was not inhibiting migration. The controversy between the in vitro and in silico results may cancel the theory of the involvement of the fascin inhibition in the migration inhibition. However, the considerable antimigratory effects of some of the synthesized compounds encourage performing further in vivo experiments to introduce novel tumor metastasis inhibitors.  相似文献   

5.
Abstract Migration of 51Cr-labelled T cells from irradiated mice into lymph nodes of syngeneic unirradiated recipients decreased in a dose-dependent fashion. Influx of labelled T cells between 4 and 24 hr after injection (secondary migration) is more radiosensitive than lymph-node migration of T cells in the first 4 hr (primary migration). Treatment of T cells from irradiated mice in vitro with Con A or with trypsin does not enhance radiation-induced alteration of their migratory properties, but irradiation enhances the effects of Con A and trypsin on T-cell migration. Recovery of primary migration of irradiated T cells is completed 3 months after irradiation; it is probably caused by T-cell renewal. the defect of T-cell secondary migration is more stable: it remains 6 months after irradiation in a dose of 4 Gy. Post-irradiation defects of the T-cell differentiation process as a cause of long-lasting alteration of T-cell secondary migration are discussed.  相似文献   

6.
What little is known about the seaward migration of Salmo salar smolt migration through standing waters indicates that it is both slow and results in high mortality rates, compared with riverine migration. This may be partly because smolts in lakes need to swim more actively and require more complex directional cues than they do in rivers. In this telemetry study of smolt migration through Loch Lomond, S. salar smolts made repeated movements in directions away from the outflowing river, which considerably increased migration time.  相似文献   

7.
This short review looks at the implications of the title of The Age of Migration. It argues that most ages, not specifically our own time, could be defined as ‘ages of migration’. It argues that the specific characteristics of our particular age are those of internal more than international migrations and a dramatic rise in a series of forms of non-permanent population movements that can better be captured under the term ‘mobility’. In terms of longer-term forms of migration, it is also deceptive to assume that they will necessarily continue to increase. The piece focuses on forms of internal migration and on mobility.  相似文献   

8.
An attempt is presented to extract cell kinetic information from histomorphological features. It is applicable to rapidly proliferating tissues like the intestinal epithelium. Each replicating tissue has an origin where cells are formed and a periphery toward which cells migrate. The migration path along which they move is denominated as tissue radius on which all cell positions are mapped. Cell migration on the radius is associated with cell proliferation at tissue origin. Each mitosis there is associated with the displacement of all cells distal to it by one cell position. The more mitoses positioned between a cell and tissue origin, the greater its migration velocity. It is possible therefore to derive the cell migration velocity v(x) from the cumulative mitotic distribution on the radius, N(x). v(x) = N(x)/tm (tm= mitotic time). In this form v(x) represents also cell production at any point on the radius and may serve for the computation of other cell kinetic parameters like generation time. These arguments are illustrated on the rat incisor tooth inner enamel epithelium which has been studied in the normal and rapidly erupting tooth.  相似文献   

9.
Directed cell migration in tissues mediates various physiological processes and is guided by complex cellular factors such as chemoattractant gradients and electric fields. Direct current (DC) electric fields can be generated in physiological settings and the electric field guided migration of various cell types (i.e., electrotaxis) has been demonstrated both in vitro and in vivo. Although several mechanisms have been proposed for electrotaxis, there are so far very few quantitative models. Furthermore, because chemoattractant gradients and electric fields co-exist in tissues, it is important to understand how chemotaxis and electrotaxis interact for mediating cell migration and trafficking. In this study, we developed a mathematical model to investigate the role of electromigration of cell surface chemoattractant receptors in mediating electrochemical sensing and migration of cells. Our results show that electromigration of chemoattractant receptors enables cell electrotactic sensing and migration in the presence of a uniform chemoattractant field. Furthermore, in the physiologically-relevant range of receptor electromigration rates, application of electric fields overcomes chemical guiding signals for directional sensing and migration of cells in co-existing competing electric fields and chemoattractant gradients.  相似文献   

10.
Interdemic selection by the differential migration of individuals out from demes of high fitness and into demes of low fitness (Phase III) is one of the most controversial aspects of Wright's Shifting Balance Theory. I derive a relationship between Phase III migration and the interdemic selection differential, S, and show its potential effect on FST. The relationship reveals a diversifying effect of interdemic selection by Phase III migration on the genetic structure of a metapopulation. Using experimental metapopulations, I explored the effect of Phase III migration on FST by comparing the genetic variance among demes for two different patterns of migration: (1) island model migration and (2) Wright's Phase III migration. Although mean migration rates were the same, I found that the variance among demes in migration rate was significantly higher with Phase III than with island model migration. As a result, FST for the frequency of a neutral marker locus was higher with Phase III than it was with island model migration. By increasing FST, Phase III enhanced the genetic differentiation among demes for traits not subject to interdemic selection. This feature makes Wright's process different from individual selection which, by reducing effective population size, decreases the genetic variance within demes for all other traits. I discussed this finding in relation to the efficacy of Phase III and random migration for effecting peak shifts, and the contribution of genes with indirect effects to among‐deme variation.  相似文献   

11.
 A generalized transport model is derived for cell migration in an anisotropic environment and is applied to the specific cases of biased cell migration in a gradient of a stimulus (taxis; e.g., chemotaxis or haptotaxis) or along an axis of anisotropy (e.g., contact guidance). The model accounts for spatial or directional dependence of cell speed and cell turning behavior to predict a constitutive cell flux equation with drift velocity and diffusivity tensor (termed random motility tensor) that are explicit functions of the parameters of the underlying random walk model. This model provides the connection between cell locomotion and the resulting persistent random walk behavior to the observed cell migration on longer time scales, thus it provides a framework for interpreting cell migration data in terms of underlying motility mechanisms. Received: 8 April 1999  相似文献   

12.
Jinliang Wang 《Molecular ecology》2014,23(13):3191-3213
Coupled with rapid developments of efficient genetic markers, powerful population genetic methods were proposed to estimate migration rates (m) in natural populations in much broader spatial and temporal scales than the traditional mark‐release‐recapture (MRR) methods. Highly polymorphic (e.g. microsatellites) and genomic‐wide (e.g. SNPs) markers provide sufficient information to assign individuals to their populations or parents of origin and thereby to estimate directly m in a way similar to MRR. Such direct estimates of current migration rates are particularly useful in understanding the ecology and microevolution of wild populations and in managing the populations in the future. In this study, I proposed and implemented, in the software MigEst, a likelihood method to use marker‐based parentage assignments in jointly estimating m and candidate parent sampling proportions (x) in a subset of populations, investigated its power and accuracy using data simulated in various scenarios of population properties (e.g. the actual m, number, size and differentiation of populations) and sampling properties (e.g. the numbers of sampled parent candidates, offspring and markers), compared it with the population assignment approach implemented in the software BayesAss and demonstrated its usefulness by analysing a microsatellite data set from three natural populations of Brazilian bats. Simulations showed that MigEst provides unbiased and accurate estimates of m and performs better than BayesAss except when populations are highly differentiated with very small and ecologically insignificant migration rates. A valuable property of MigEst is that in the presence of unsampled populations, it gives good estimates of the rate of migration among sampled populations as well as of the rate of migration into each sampled population from the pooled unsampled populations.  相似文献   

13.
Whether time of seaward migration of young Atlantic salmon Salmo salar influences their subsequent survival and growth was investigated in the River Imsa, south‐western Norway. Salmo salar were tagged when moving downstream through a trap near the outlet between 1976 and 2010 and recaptured on their adult return. Most descended as smolts in April and May, but some descended during the other months of the year. Annual variation in timing of the smolt migration was significantly correlated with variation in water temperature during spring. Mean total body length of the descending S. salar varied with month of seaward migration. The sea survival of S. salar emigrating from the River Imsa between January and May was 2·8 times higher than for those descending between June and December. The sea survival of the various cohorts decreased with increasing river temperature in April to May, prior to the smolt migration, and decreasing day number when the smolts moved to sea. The size of smolts descending the river between April and May did not affect the survival at sea as much as it affected the survival of migrants descending in any other month of the year. The majority of the downstream migrating S. salar were 2 years old, but proportionally, more 1 year olds moved downstream in the autumn than in the rest of the year. Mean duration between downstream migration of the young and the return migration of the grilse was shortest (12·7 months) for those descending in July and August and longest for those descending in October (21 months). Mean monthly specific growth rate was highest for those migrating downstream between May and July and lowest for those emigrating in September. Based on the present results, it was hypothesized that S. salar emigrating between April and August migrated directly out into the ocean, while those that emigrated between October and March stayed in the estuary until the subsequent spring.  相似文献   

14.
Neuron migration defects are an important aspect of human neuropathies. The underlying molecular mechanisms of such migration defects are largely unknown. Actin dynamics has been recognized as an important determinant of neuronal migration, and we recently found that the actin-binding protein profilin1 is relevant for radial migration of cerebellar granule neurons (CGN). As the exploited brain-specific mutants lacked profilin1 in both neurons and glial cells, it remained unknown whether profilin1 activity in CGN is relevant for CGN migration in vivo. To test this, we capitalized on a transgenic mouse line that expresses a tamoxifen-inducible Cre variant in CGN, but no other cerebellar cell type. In these profilin1 mutants, the cell density was elevated in the molecular layer, and ectopic CGN occurred. Moreover, 5-bromo-2′-deoxyuridine tracing experiments revealed impaired CGN radial migration. Hence, our data demonstrate the cell autonomous role of profilin1 activity in CGN for radial migration.  相似文献   

15.
刘彬  安玉亭  薛丹丹  王立波  许鹏  鲁长虎 《生态学报》2021,41(19):7870-7878
江苏盐城沿海具有广阔的平原与湿地滩涂,但缺少自然林地。经过多年的防风林建设,沿海海堤逐渐形成了特有的、南北走向的条带林生境,为迁徙鸟类提供了通道和停歇地,是研究鸟类迁徙规律的理想地点。柳莺属鸟类个体小,野外种类识别难,其迁徙规律缺乏深入研究。分别于2018年和2019年两个秋季,采用雾网法对盐城沿海海堤林带柳莺属鸟类的迁徙规律进行研究。结果表明:两个秋季共捕获柳莺属鸟类8种608只,其中极北柳莺(Phylloscopus borealis)、冕柳莺(P. coronatus)、淡脚柳莺(P. tenellipes)和黄眉柳莺(P. inornatus)的捕获数量分别为245只、131只、107只和94只,占捕获总数量的95%,是秋季迁徙期的优势种。对优势种柳莺日捕获率进行比较:2019年极北柳莺的日捕获率显著高于淡脚柳莺和黄眉柳莺(U test,P<0.05)。对捕获数量随时间变化进行分析,4种柳莺都以集中在短时间内快速通过的迁徙策略穿越盐城沿海海堤林带,符合秋季小型雀形目鸟类迁徙采取时间最小化假说。不同种类的柳莺在通过盐城沿海海堤林带的时间顺序上存在显著差异(K-W test,P<0.05),2018年和2019年均以黄眉柳莺通过最晚。随着时间的推移,四种柳莺的脂肪度都逐渐下降。繁殖地纬度的差异可能是导致4种柳莺通过盐城沿海海堤林带时间差异的原因。盐城沿海海堤林带为柳莺属等雀形目小型鸟类的迁徙提供了非常理想的迁徙通道,应当加强海堤林带在鸟类迁徙和保护中的作用研究。  相似文献   

16.
It is believed that specialist predators of spider mites often migrate by flight or aerial transport to exploit patchily distributed prey. The migration is an important factor in determining the seasonal occurrence of the predators in a field. Several species of specialist insect predators, such as Oligota kashmirica benefica (Coleoptera: Staphylinidae) and Scolothrips takahashii (Thysanoptera: Thripidae), migrate between orchard trees and plants near the trees (e.g., groundcover, weeds, or windbreaks) to exploit abundant spider mites. This migration is at least partly triggered by prey scarcity in the original local habitats. Although these predators are tiny insects, they have flight abilities. For example, adult O. kashmirica benefica (body length, ∼1 mm) could move at least 5–16 m in one flight. Presumably, migration of the insect predators between prey-infested plants occurs mainly by flights. Predatory mites, such as Amblyseius fallacis and Amblyseius womersleyi (Acari: Phytoseiidae), migrated to spider mite-infested plants outside an orchard by aerial transport when they suffered from prey scarcity in the orchard. S. takahashii can use plant volatiles from lima bean plants induced by the spider mite Tetranychus urticae as cues for prey location during migration in Satsuma mandarin groves. However, it remains unknown how far from the trap boxes S. takahashii could respond to herbivore-induced plant volatiles in the groves. Received: August 25, 2000 / Accepted: February 1, 2001  相似文献   

17.
In the nervous system, neurons form in different regions, then they migrate and occupy specific positions. We have previously shown that RP2/sib, a well-studied neuronal pair in the Drosophila ventral nerve cord (VNC), has a complex migration route. Here, we show that the Hem protein, via the WAVE complex, regulates migration of GMC-1 and its progeny RP2 neuron. In Hem or WAVE mutants, RP2 neuron either abnormally migrates, crossing the midline from one hemisegment to the contralateral hemisegment, or does not migrate at al and fail to send out its axon projection. We report that Hem regulates neuronal migration through stabilizing WAVE. Since Hem and WAVE normally form a complex, our data argues that in the absence of Hem, WAVE, which is presumably no longer in a complex, becomes susceptible to degradation. We also find that Abelson tyrosine kinase affects RP2 migration in a similar manner as Hem and WAVE, and appears to operate via WAVE. However, while Abl negatively regulates the levels of WAVE, it regulates migration via regulating the activity of WAVE. Our results also show that during the degradation of WAVE, Hem function is opposite to that of and downstream of Abl.  相似文献   

18.
In the vast majority of migratory bird species studied so far, spring migration has been found to proceed faster than autumn migration. In spring, selection pressures for rapid migration are purportedly higher, and migratory conditions such as food supply, daylength, and/or wind support may be better than in autumn. In swans, however, spring migration appears to be slower than autumn migration. Based on a comparison of tundra swan Cygnus columbianus tracking data with long‐term temperature data from wheather stations, it has previously been suggested that this was due to a capital breeding strategy (gathering resources for breeding during spring migration) and/or to ice cover constraining spring but not autumn migration. Here we directly test the hypothesis that Bewick's swans Cygnus columbianus bewickii follow the ice front in spring, but not in autumn, by comparing three years of GPS tracking data from individual swans with concurrent ice cover data at five important migratory stop‐over sites. In general, ice constrained the swans in the middle part of spring migration, but not in the first (no ice cover was present in the first part) nor in the last part. In autumn, the swans migrated far ahead of ice formation, possibly in order to prevent being trapped by an early onset of winter. We conclude that spring migration in swans is slower than autumn migration because spring migration speed is constrained by ice cover. This restriction to spring migration speed may be more common in northerly migrating birds that rely on freshwater resources.  相似文献   

19.
The purpose of this study was to describe the autumn migration dynamics of juvenile (n = 3075) and adult (n = 596) robin Erithacus rubecula in Hungary. Capturing and ringing of birds took place at five bird ringing stations of Actio Hungarica between 13 August and 27 October, 2004. The number of captured juvenile and adult individuals rated to one net was the lowest in the reeds of Izsák and the highest in the woody areas of Szalonna, where adults were present at a higher proportion. The migration dynamics of the robin showed that the end of September and the beginning of October was the peak time for passing through Hungary. Based on the estimated time of the 10% of daily capture, it can be stated that juvenile birds started their migration as early as the end of August or at the beginning of September while the migration of the adults started later. The migration started earliest in Szalonna and latest in Izsák. The comparison of daily catch dynamics (based on the estimated time of 10% and 50% of daily captures) of juveniles and adults between study sites showed that similarity of daily capture was higher in the case of juveniles. The five study sites had different qualities from the point of view of the robins’ habitat preference. Our results showed that the reed-bed of Izsák had only peripheral importance while the other forest and bushy study areas played a key role in resting and feeding during the migration of the robin.  相似文献   

20.
A good understanding of how migratory animals use their habitat network is expected to provide important insights for the prediction of population dynamics at both local and regional scales. We focused on how the physical structure of a habitat network could affect fish migration between Lake Biwa and its tributary lagoons. Although the lagoons provide suitable breeding and nursery grounds for native fishes, it is a matter of concern that they can also be a hotbed of invasive exotic fishes. Here, we assessed the migration patterns of native crucian carps (Carassius spp.) and exotic largemouth bass (Micropterus salmoides) and bluegill sunfish (Lepomis macrochirus) using their carbon and nitrogen stable isotopes as migration tracers. As there were marked differences in the carbon isotope ratios of basal food webs between the main lake and its tributary lagoons, stable isotopic signatures of individual fishes collected from each lagoon enabled us to judge whether they were residents of the lagoon or recent immigrants from the main lake. The analysis revealed that native and invasive fishes showed different migration patterns across a variety of lagoons. Exotic fishes frequently immigrated from the main lake to the lagoon as the distance of the channel connecting these two habitats was short. For native crucian carps, in contrast, their migrations were unaffected by the channel distance but were promoted by narrow channels. Physical barriers of weirs and dense vegetation within the channel obstructed their migrations. Such ecological information on migration behavior will be vital to plan designs for habitat restoration to conserve native fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号