首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin-like growth factor II binding and action in human fetal fibroblasts   总被引:5,自引:0,他引:5  
To investigate the role of insulin-like growth factor II (IGF-II) in human prenatal growth, IGF-II binding and biological action were studied in four lines of fetal and three lines of postnatal human fibroblasts. Specific binding of IGF-II was similar in both groups: 15.7% and 14.9% for fetal and postnatal fibroblasts, respectively. This was 5-10 times the amount of IGF-I binding found in these cells. IGF-I and IGF-II caused dose-dependent increases in [14C]aminoisobutyric acid (AIB) uptake. IGF-II was sevenfold less potent than IGF-I in stimulating this metabolic response in both fetal and postnatal fibroblasts. The maximal effect of IGF-II in stimulating [14C]AIB uptake approach that of IGF-I. Similar results were obtained when IGF-I and IGF-II stimulation of [3H]thymidine incorporation was compared in fetal and postnatal fibroblasts. Incubation in the presence of alpha IR-3, a monoclonal antibody to the type I IGF receptor, inhibited the ability of both IGF-I and IGF-II to stimulate [14C]AIB uptake and [3H]thymidine incorporation in fetal and postnatal cells. A monoclonal antibody to the insulin receptor did not affect IGF action. These data indicate that IGF-II is a potent metabolic and mitogenic stimulus for human fetal fibroblasts. However, despite the presence of abundant type II IGF receptors on both fetal and postnatal human fibroblasts, IGF-II stimulation of amino acid transport and DNA synthesis appears to be mediated through the type I rather than through its own type II IGF receptor.  相似文献   

2.
The insulin-like growth factors IGF-I and IGF-II are mitogenic polypeptides with a high degree of chemical homology. Two distinct subtypes of receptors for the IGFs have been identified on the basis of structure and binding specificity. Type I IGF receptors bind IGF-I with equal or greater affinity than IGF-II, and also bind insulin with a low but definite affinity. They are structurally homologous to insulin receptors, containing disulfide-linked a-subunits that bind the peptides and beta-subunits that have intrinsic tyrosine-specific kinase activity. Type II IGF receptors typically bind IGF-II with greater affinity than IGF-I, and do not interact with insulin. They consist of a single polypeptide and lack tyrosine kinase activity. Because of the extensive cross-reactivity of IGF-I and IGF-II with both type I and type II receptors, we believe that potentially either receptor may mediate the biological responses of either peptide. Type I IGF receptors have been shown to mediate the mitogenic effects of the IGFs in some cell types. Whether type II IGF receptors mediate the same or different functions remains to be elucidated.  相似文献   

3.
In competent Balb/c 3T3 cells primed with epidermal growth factor (primed competent cells), insulin-like growth factor-II (IGF-II) stimulated calcium influx in a concentration dependent manner with the ED50 of 450 pM. When receptor-bound [125I]IGF-II was cross-linked by use of disuccinimidyl suberate, a 240 K-Da protein was radiolabeled. Excess amount of unlabeled IGF-II inhibited the affinity-labeling of the 240 K-Da protein. To further examine whether IGF-II stimulates calcium influx by acting on the type II IGF receptor, we employed polyclonal antibody raised against rat type II IGF receptor, R-II-PABl. This antibody immunoprecipitated the type II IGF receptor and inhibited IGF-II binding in Balb/c 3T3 cell membrane without affecting IGF-I binding. In primed competent cells, R-II-PABl elicited an agonistic action in stimulating [3H]thymidine incorporation. Under the same condition, R-II-PABl elicited a marked stimulation of calcium influx. These results suggest that, in Balb/c 3T3 cells, 1) relatively low concentrations of IGF-II act mainly on the type II IGF receptor; 2) the type II IGF receptor is coupled to a calcium gating system; and 3) binding of a ligand to the type II IGF receptor leads to the stimulation of DNA synthesis.  相似文献   

4.
Using affinity cross-linking techniques, we report the presence of type I IGF and type II IGF receptors in Madin-Darby canine kidney cells, a line of cells lacking insulin receptors. The IGF receptors were further characterized by competition binding studies and found to be similar to IGF receptors in other tissue types. In Madin-Darby canine kidney cells, the type I IGF receptor binds IGF-I greater than IGF-II greater than insulin and the type II IGF receptor binds IGF-II and IGF-I with approximately the same affinity, but does not bind insulin.  相似文献   

5.
Human insulin-like growth factor I and II (IGF-I and IGF-II) in concentrations of 1-30 ng/ml, were shown to stimulate ornithine decarboxylase activity and [3H]thymidine incorporation in human SH-SY5Y neuroblastoma cells. Proliferation of these cells was also stimulated by IGF-I and II when added to RPMI 1640 medium, fortified with selenium, hydrocortisone, transferrin, and beta-estradiol. Labeled IGF-I and II bound to SH-SY5Y cells. The cross-reaction pattern of IGF-I, IGF-II, and insulin in competing with the binding of labeled IGF-I and IGF-II, respectively, indicated that SH-SY5Y cells express both type I and type II IGF receptors. Treatment of SH-SY5Y cells for 4 d with 12-O-tetradecanoylphorbol-13-acetate (TPA), which resulted in morphological and functional differentiation and growth inhibition, abolished the mitogenic response to both IGF-I and II. Concomitantly, the binding of IGF-II disappeared almost totally, which offers a possible explanation for the reduced biological response to IGF-II after TPA treatment. In contrast, the IGF-I binding in TPA-treated cells was only reduced to approximately 70% of the binding to control cells. It is therefore not excluded that the IGF-I receptor could be uncoupled by TPA, with persistent binding capacity for IGF-I.  相似文献   

6.
To better define the biologic function of the type II insulin-like growth factor (IGF) receptor, we raised a blocking antiserum in a rabbit by immunizing with highly purified rat type II IGF receptor. On immunoblots of crude type II receptor preparations, only bands corresponding to the type II IGF receptor were seen with IgG 3637, indicating that the antiserum was specific for the type II receptor. Competitive binding and chemical cross-linking experiments showed that IgG 3637 blocked binding of 125I-IGF-II to the rat type II IGF receptor, but did not block binding of 125I-IGF-I to the type I IGF receptor, nor did IgG 3637 block binding of 125I-insulin to the insulin receptor. In addition, IgG 3637 did not inhibit the binding of 125I-IGF-II to partially purified 150- and 40-kDa IGF carrier proteins from adult and fetal rat serum. L6 myoblasts have both type I and type II IGF receptors. IGF-I was more potent than IGF-II in stimulating N-methyl-alpha-[14C]aminoisobutyric acid uptake, 2-[3H]deoxyglucose uptake, and [3H]leucine incorporation into cellular proteins. IgG 3637 did not stimulate either 2-[3H]deoxyglucose uptake, N-methyl-alpha-[14C]aminoisobutyric acid uptake, or [3H]leucine incorporation into protein when tested alone. Furthermore, IgG 3637 at concentrations sufficient to block type II receptors under conditions of the uptake and incorporation experiments did not cause a shift to the right of the dose-response curve for stimulation of these biologic functions by IGF-II. We conclude that the type II IGF receptor does not mediate IGF stimulation of N-methyl-alpha-[14C]aminoisobutyric acid and 2-[3H]deoxyglucose uptake and protein synthesis in L6 myoblasts; presumably, the type I receptor mediates these biologic responses. The anti-type II receptor antibody inhibited IGF-II degradation in the media by greater than 90%, suggesting that the major degradative pathway for IGF-II in L6 myoblasts utilizes the type II IGF receptor.  相似文献   

7.
Although several studies have shown that an induction of insulin-like growth factor (IGF) components occurs during hyperoxia-mediated lung injury, the role of these components in tissue repair is not well known. The present study aimed to elucidate the role of IGF system components in normal tissue remodeling. We used a rat model of lung injury and remodeling by exposing rats to > 95% oxygen for 48 h and allowing them to recover in room air for up to 7 days. The mRNA expression of IGF-I, IGF-II, and IGF-1 receptor (IGF-1R) increased during injury. However, the protein levels of these components remained elevated until day 3 of the recovery and were highly abundant in alveolar type II cells. Among IGF binding proteins (IGFBPs), IGFBP-5 mRNA expression increased during injury and at all the recovery time points. IGFBP-2 and -3 mRNA were also elevated during injury phase. In an in vitro model of cell differentiation, the expression of IGF-I and IGF-II increased during trans-differentiation of alveolar epithelial type II cells into type-I like cells. The addition of anti-IGF-1R and anti-IGF-I antibodies inhibited the cell proliferation and trans-differentiation to some extent, as evident by cell morphology and the expression of type I and type II cell markers. These findings demonstrate that the IGF signaling pathway plays a critical role in proliferation and differentiation of alveolar epithelium during tissue remodeling.  相似文献   

8.
Sheep thyroid cells cultured in serum-free medium were used to study the biologic activity, binding, and production of the insulin-like growth factors (IGFs). IGF-I, IGF-II, and insulin stimulated thyroid cell division. Abundant, specific IGF receptors on sheep thyroid cell membranes were identified by binding displacement studies. Maximal specific binding of [125I]-labeled IGF-I and IGF-II to 25 micrograms of membrane protein averaged 21% and 27% respectively. The presence of type I and type II IGF receptors was confirmed by polyacrylamide gel electrophoresis of [125I]IGFs covalently cross-linked to cell membranes. Under reducing conditions, [125I]IGF-I bound to a moiety of approximate Mr = 135,000 and [125I]IGF-II to a moiety of approximate Mr = 260,000. Cross-linking of [125I]IGF-I to medium conditioned by thyroid cells indicated the presence of four IGF binding proteins with apparent Mr = 34,000, 26,000, 19,000 and 14,000. Thyroid cells also secreted IGF-I and II into the medium. IGF synthesis was enhanced consistently by recombinant growth hormone. These data indicate that sheep thyroid cells are a site for IGF action, binding, and production and provide further evidence that IGFs may modulate thyroid gland growth in an autocrine or paracrine manner.  相似文献   

9.
Insulin-like growth factor (IGF)-binding proteins (BPs) bind IGF-I and IGF-II with high affinity. They are present in extracellular fluids and modulate the interactions of their ligands with the type 1 IGF cell surface receptor. These studies utilized IGF-I analogs that have reduced binding affinity for either the type 1 IGF receptor or binding proteins to study the ligand specificity of IGF-BP-1 and the role of IGF-BP-1 in modulating the biological activity of IGF-I. The data indicate that the regions of IGF-I which are responsible for binding to IGF-BP-1 and to human serum-binding proteins are distinct but overlapping and are clearly distinct from the type I receptor binding sites. In the absence of exogenously added IGF-BP-1, the analogs with reduced affinity for IGF-BP-1 are more potent than IGF-I in stimulating DNA synthesis by porcine aortic smooth muscle cells. In contrast, when cells are concomitantly exposed to IGF-BP-1, two of the analogs with reduced affinity for binding protein give only 40-65% of the maximal IGF-I response. [Leu24, 1-62]IGF-I, which has a 100-fold reduced affinity for the type 1 IGF receptor, gave a value that was 62% of the maximal IGF-BP-1 potentiated response. A second biological response, that of stimulating binding protein secretion by IGF-I, was also examined. [Leu24, 1-62]IGF-I is more potent than IGF-I whereas the activity of the analogs with lower affinity for IGF-BP-1 is significantly reduced. Thus, the ability to activate DNA synthesis and binding protein secretion maximally in the presence of IGF-BP-1 is dependent on the affinity of IGFs for both type 1 receptors and binding proteins.  相似文献   

10.
We have previously shown that insulin-like growth factor II (IGF-II) is produced by bone cells and that IGF-II stimulates cell proliferation and collagen synthesis in bone cells. We now extend these in vitro findings by demonstrating specific IGF-II binding to bone cells derived from newborn mouse calvaria and embryonic chick calvaria. The kinetics of [125I] IGF-II binding in embryonic chick calvaria cells showed time and temperature dependence. Scatchard analysis of [125I]IGF-II binding to chick calvaria cells showed an apparent Kd of 1.4 x 10(-10) M, with a calculated receptor site concentration of 40,000/cell. The specificity characteristics showed that IGF-II was significantly more potent than IGF-I or insulin in displacing IGF-II tracer. Competition for binding of [125I]IGF-II by unlabeled IGF-II showed a dose-dependent displacement between 0.5 and 25 ng/ml. Fifty percent displacement of [125I]IGF-II binding to chick and mouse calvarial cells was achieved at 1-2 ng/ml; 90% of specific binding of [125I]IGF-II was displaceable in the presence of 125 ng/ml of unlabeled IGF-II. IGF-I showed less than 5% cross reactivity for displacement of [125I]IGF-II binding to chick and mouse bone cells. Type II receptor inhibitory antibodies, R-II-PAB1 inhibited the binding of [125I]IGF-II to mouse bone cells and H-35 rat hepatoma cells (which contain type II but not type I receptors) in a dose-dependent manner. R-II-PAB1 also inhibited basal cell proliferation as well as IGF-II-, IGF-I-, and fibroblast growth factor (FGF)-induced cell proliferation in mouse bone cells. In chick calvaria bone cells and TE89 human osteosarcoma cells, R-II-PABI inhibited neither binding of [125I]IGF-II nor IGF-II-induced cell proliferation. These results together with our findings that IGF-II increased chick bone cell proliferation in the presence of maximal doses of IGF-I suggest that at least part of the mitogenic action of IGF-II is mediated through type II rather than type I receptors in bone cells.  相似文献   

11.
Although insulin-like growth factors (IGF) I and II bind with high affinity to structurally discrete receptors, they bind with a lesser affinity to each other's receptor. We have evaluated the affinity of five different IGF-I preparations (three natural IGF-I preparations, one synthetic preparation, and one recombinant DNA-derived) for the IGF-II receptor in rat placental membranes, 18-54,SF cells and BRL-3A cells. In all tissues tested, the natural IGF-I preparations demonstrated an affinity for the IGF-II receptor which was 10-20% that of IGF-II. However, the recombinant and synthetic IGF-I preparations exhibited substantially lower affinities than natural IGF-I for this receptor, with only 10-25% reduction in (125-I)iodo IGF-II binding at peptide concentrations up to 400 ng/ml. Radioimmunoassay of the natural IGF-I preparations with an antibody directed against the unique C-peptide region of IGF-II demonstrated that contamination of IGF-I preparations with immunoreactive IGF-II could not exceed 5%. These results demonstrate that IGF-I purified from human plasma has a different affinity for the IGF-II receptor than does synthetic or recombinant IGF-I. Furthermore, these data are consistent with the hypothesis that IGF-I, itself, may be heterogeneous, and that subforms may vary in their affinities for the IGF receptors. Alternatively, IGF-I preparations which have been considered to be pure may be contaminated with small amounts of IGF-II, resulting in overestimation of the affinity of IGF-I for the type II IGF receptor.  相似文献   

12.
To clarify whether insulin-like growth factor I (IGF-I) is an autocrine growth factor of rat medullary thyroid carcinoma (MTC) cell line, 6-23 (clone 6), IGF-I binding to MTC cell membranes, IGF-I levels in the conditioned culture medium of MTC cells and the effects of IGF-I on methyl-[3H]thymidine incorporation to MTC cells were examined. Scatchard analysis of saturation binding studies revealed the association constant and the maximal binding capacity were 1.0 x 10(9) M-1 and 199 fmol/mg of membrane protein, respectively. The binding of [125I]IGF-I to MTC cell membranes was inhibited by unlabeled IGF-I, IGF-II and insulin; the relative potencies were IGF-I greater than IGF-II much greater than insulin, suggesting the presence of type I IGF receptors in MTC cells. IGF-I levels in the conditioned culture medium of MTC cells were 120 +/- 3 pM (mean + SE). IGF-I (10(-10) to 10(-8) M) dose-dependently stimulated methyl-[3H]thymidine incorporation to MTC cells. These findings suggest a possible role of IGF-I as an autocrine growth factor for MTC cells.  相似文献   

13.
Summary Previous investigations have demonstrated specific receptors and associated mitogenic actions for insulin and insulinlike growth factors I and II (IGF-I and II) in postnatal bovine aortic smooth muscle. Using fetal tissue we have observed different patterns of binding and action for these peptides. Smooth muscle cells isolated from near-term fetal bovine aortae were studied in early passage. Specific receptors for both IGF-I and IGF-II were identified. Specific binding averaged 5.7%/2.5×105 cells for IGF-I, and 16.2% for IGF-II, and 0.3% for insulin. High affinity K d for both IGF receptors were nanomolar. IGF-II was fivefold less potent than IGF-I in displacing IGF-I binding. IGF-I showed no affinity for the IGF-II receptor. Insulin, at physiologic concentrations, was incapable of displacing either IGF-I or IGF-II binding. Cellular incorporation of [methyl-3H]thymidine was stimulated at the lowest dose of IGF-I tested, 0.5 ng/ml. IGF-II showed no effect up to 100 ng/ml, after which a sharp increase in incorporation was noted. Insulin had a similar effect only at concentrations >0.5 μg/ml, with a maximal response noted at 5 to 10 μg/ml. Our results indicate that fetal bovine aortic smooth muscle cells have an abundance of IGF receptors but lack specific insulin receptors. In addition, IGF-II binding levels are three times higher than for IGF-I. These results are consistent with observations in other species, in which a predominance of IGF over insulin receptors has been demonstrated in fetal tissue, and provide further evidence for a role for the IGFs in embryonic cellular metabolism. This project was supported by grants AM22190 (R. L. H.), AM28229 (R. G. R.) from the National Institutes of Health, Bethesda, MD, and Research Career Development Award AM01275 from the NIH (R. G. R.). Dr. Lee was the recipient of a fellowship award from the Juvenile Diabetes Foundation International and is currently supported by funds from the American Diabetes Association. Dr. Benitz is the recipient of a Clinician-Scientist Award from the American Heart Association, with funds contributed in part by the California Affiliate.  相似文献   

14.
The insulin-like growth factors I and II (IGF-I, IGF-II), their receptors, and high affinity binding proteins (IGFBPs) represent a family of cellular modulators that play essential roles in the development and differentiation of cells and tissues including the skeleton. Recently, the human osteosarcoma cell line HOS 58 cells were used as an in vitro model of osteoblast differentiation characterized by (i) a rapid proliferation rate in low-density cells that decreased continuously with time of culture and (ii) an increasing secretion of matrix proteins during their in vitro differentiation. In the present paper, HOS 58 cells with low cell density at early time points of the in vitro differentiation (i) displayed a low expression of IGF-I and -II; (ii) synthesized low levels of IGFBP-2, -3, -4, and -5, but (iii) showed high expression levels of both the type I and II IGF receptors. During the in vitro differentiation of HOS 58 cells, IGF-I and -II expressions increased continuously in parallel with an upregulation of IGFBP-2, -3, -4, and -5 whereas the IGF-I receptor and IGF-II/M6P receptor mRNA were downregulated. In conclusion, the high proliferative activity in low cell density HOS 58 cells was associated with high mRNA levels of the IGF-IR, but low concentrations of IGFBP-2. The rate of proliferation of HOS 58 cells continuously decreased during cultivation in parallel with a decline in IGF-IR expression, but increase of mitoinhibitory IGFBP-2. These data are indicative for a role of the IGF axis during the in vitro differentiation of HOS 58 cells.  相似文献   

15.
The chicken liver cation-independent mannose 6-phosphate receptor has been purified to apparent homogeneity by affinity chromatography on pentamannose phosphate-Sepharose and tested for its ability to bind iodinated human IGF-I, human IGF-II, and chicken IGF-II. In contrast to the bovine, rat, and human cation-independent mannose 6-phosphate receptors, which bind human IGF-II and IGF-I with nanomolar and micromolar affinities, respectively, the chicken receptor failed to bind either radioligand at receptor concentrations as high as 1 microM. The bovine receptor binds chicken IGF-II with high affinity while the chicken receptor binds this ligand with only low affinity, which we estimate to be in the micromolar range. These data demonstrate that the chicken cation-independent mannose 6-phosphate receptor lacks the high affinity binding site for IGF-II. These results provide an explanation for the failure of previous investigators to identify the type II IGF receptor by IGF-II cross-linking to chicken cells and indicate that the mitogenic activity of IGF-II in chick embryo fibroblasts is most likely mediated via the type I IGF receptor.  相似文献   

16.
The insulin-like growth factor (IGF) system is actively involved in the control of proliferation and differentiation of several myogenic cell lines, and phenotypic differences between myoblasts are associated with modifications of the equilibrium of the components of the IGF system. To determine whether this observation is a physiologic feature that also concerns the phenotypes of ex vivo adult satellite myoblasts in primary cell culture, we investigated the IGF system in rabbit slow-twitch muscle-derived satellite myoblasts (SSM), which differ phenotypically from fast-twitch muscle-derived satellite myoblasts (FSM) by their proliferation and differentiation kinetics in vitro. The expression of IGF-I and IGF-II were similar in SSM and FSM as well as their concentrations measured in cell-conditioned media. Ligand blotting of conditioned media samples indicated the presence of five IGF binding protein (IGFBP) species of Mr 37–40, 32, 30–31, 28, and 24 kDa. The 30–31 kDa doublet was visible in SSM-conditioned medium only and associated with the presence of a 22-kDa protein, which may represent a proteolytic fragment. In contrast, the 32-kDa band was observed in FSM-conditioned medium only. The other IGFBP moieties were present in both SSM- and FSM-conditioned media. Cross-linking experiments revealed the presence of the M6P/IGF-II receptor on both SSM and FSM membranes. We also observed an IGF-I receptor form bearing unusual high affinity for IGF-II: the binding of [125I]IGF-I on this receptor was preferentially displaced by IGF-I but that of [125I]IGF-II was mostly inhibited by IGF-II, suggesting that the two tracers did not bind on the same epitopes. [125I]IGF-II binding to this receptor was greater on SSM than on FSM membranes. Autophosphorylation of WGA-purified receptors revealed an ∼400-kDa band after SDS-PAGE under nonreducing conditions, which corresponded to the α2β2 form of the IGF-I receptor, and two β subunit moieties of Mr 101 and 105 kDa under reducing conditions in both SSM and FSM extracts. Phosphorylation of the 105-kDa moiety was more intensively increased than that of the 101-kDa protein after growth factor stimulation. Basal phosphorylation state of the two β subunits was similarly stimulated by IGF-I and IGF-II and less by insulin. Since both insulin and IGF-I receptors were expressed in FSM and SSM, one of the two β subunits may actually correspond to that of the insulin receptor. We conclude that the IGF system is not considerably affected by the phenotypes of SSM and FSM. The differences observed, which mostly concern IGFBP species, more likely appear as regulatory adaptations than as phenotypic changes targeting the components of the IGF system. © 1996 Wiley-Liss, Inc.  相似文献   

17.
We have reevaluated IGF binding specificity to membrane receptors in rabbit mammary gland (RMG) and hypophysectomized rat liver (HRL) using recombinant DNA-derived and synthetic analogues of human IGF-I and highly purified IGF-II. SDS-PAGE demonstrated that [125I]IGF-I bound to type-I IGF receptors in RMG; this binding was inhibited in a similar fashion by the IGF-I analogues (IC50 = 10 ng/ml) and to a lesser extent by IGF-II (IC50 = 60 ng/ml). [125I]IGF-II bound to type-II IGF receptors in both RMG and HRL. The IC50 for IGF-II was 9 and 3 ng/ml with RMG and HRL, respectively. At a dose as high as 1 microgram/ml, IGF-I analogues inhibited less than 20% of [125I]IGF-II binding. These results suggest that IGF-I has little or no affinity for type-II IGF receptors.  相似文献   

18.
Insulin-like growth factors (IGFs) I and II are two single-chain polypeptide hormones that are structurally related to each other and to proinsulin. Among the large number of growth factors involved in ovarian physiology, IGF-I and IGF-II are considered to be important progression factors for ovarian follicular development. To explore the ovarian expression of IGF-I, IGF-II and their receptor genes, a solution hybridization/RNase protection assay, was used. IGF-I mRNA was seen in the granulosa cells, and IGF-II mRNA in the theca-interstitial compartment. To study the hormonal regulation of the IGF-I and IGF-II gene, immature (21-day-old) hypohysectomized rats were treated with FSH (10 μg/day),GH (150 μg/day) and diethylstilbestrol (DES subcutaneous implant/5 days). Estrogen differentially regulated ovarian IGF-I and IGF-II gene expression. In concert with GH, estrogen up-regulated ovarian IGF-I mRNA, but significantly decreased hepatic IGF-I gene expression. Both IGF receptors (type I and type II) as well as the insulin receptor gene, were expressed in both ovarian cells. The expression of the type IIGF receptor gene (but not the type II IGF gene) was up-regulated by FSH and estrogen in vivo. In conclusion, these studies may serve to better understand the auto paracrine role of IGF, and their receptors in the pathophysiology of follicle recruitment, oocyte maturation and potentially embryo development.  相似文献   

19.
The insulin-like growth factor (IGF) system plays an important role in cell proliferation and survival. However, more recently, a small number of studies have shown that IGFs induce apoptosis in some cells. Our initial studies showed this occurred in LIM 1215 colon cancer cells but not RD rhabdomyosarcoma cells. IGFs induced both proliferation and apoptosis in LIM 1215 cells, and the induction of apoptosis was dose-dependent. [R54, R55]IGF-II, which binds to the IGF-I receptor with normal affinity but does not bind to the IGF-II receptor, induced apoptosis to the same extent as IGF-II, whereas [L27]IGF-II, which binds to the IGF-I receptor with 1000-fold reduced affinity, had no effect on apoptosis. These results suggest that the IGF-I receptor is involved in induction of apoptosis. Western blot analyses demonstrated that Akt and Erk1/2 were constitutively activated in RD cells. In contrast, phosphorylation of Akt and Erk1/2 were transient and basal expression of Akt protein was lower in LIM 1215 cells. Analysis of apoptosis-related proteins showed that IGFs decreased pro-caspase-3 levels and increased expression of pro-apoptotic Bad in LIM 1215 cells. IGFs co-activate proliferative and apoptotic pathways in LIM 1215 cells, which may contribute to increased cell turnover. Since high turnover correlates with poor prognosis in colorectal cancer, this study provides further evidence for the role of the IGF system in its progression.  相似文献   

20.
A series of insulin-like growth factor I (IGF-I) structural analogs in which one or more of the three tyrosine residues were replaced with nonaromatic residues were produced and their binding properties characterized. The single point mutations, [Leu24]IGF-I, [Ala31]IGF-I, and [Leu60]IGF-I result in an 18-, 6-, or 20-fold loss in affinity, respectively, for the type 1 IGF receptor. Multiple mutations, [Ala31,Leu60]IGF-I, [Leu24, Ala31]IGF-I, [Leu24, Leu60]IGF-I, or [Leu24, Ala31, Leu60]IGF-I result in a 520-, 240-, 1200-, or greater than 1200-fold loss in affinity, respectively, at the type 1 IGF receptor. In contrast, none of the analogs display greater than a 2-fold loss in affinity for the acid-stable human serum binding proteins. At the insulin receptor, [Ala31]IGF-I and [Leu24]IGF-I are equipotent to and 5-fold less potent than IGF-I, whereas [Leu60]IGF-I and the multiple mutation analogs are inactive up to 10 microM. Analogs [Leu24]IGF-I, [Ala31]IGF-I, and [Leu24, Ala31]IGF-I are equipotent to IGF-I at the type 2 IGF receptor, whereas all analogs containing Leu60 demonstrate little measurable affinity at this receptor. Thus, Tyr24, Tyr31, and Tyr60 are involved in the high affinity binding of IGF-I to the type 1 IGF receptor, while Tyr60 is important for maintaining binding to the type 2 IGF receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号