首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB) in oil reservoirs, can be controlled through nitrate or nitrite addition. To assess the effects of this containment approach on corrosion, metal coupons were installed in up-flow packed-bed bioreactors fed with medium containing 8 mM sulfate and 25 mM lactate. Following inoculation with produced water to establish biogenic H2S production, some bioreactors were treated with 17.5 mM nitrate or up to 20 mM nitrite, eliminating souring. Corrosion rates were highest near the outlet of untreated bioreactors (up to 0.4 mm year–1). Nitrate (17.5 mM) eliminated sulfide but gave pitting corrosion near the inlet of the bioreactor, whereas a high nitrite dose (20 mM) completely eliminated microbial activity and associated corrosion. More gradual, step-wise addition of nitrite up to 20 mM resulted in the retention of microbial activity and localized pitting corrosion, especially near the bioreactor inlet. We conclude that: (1) SRB control by nitrate or nitrite reduction shifts the corrosion risk from the bioreactor outlet to the inlet (i.e. from production to injection wells) and (2) souring treatment by continuous addition of a high inhibitory nitrite dose is preferable from a corrosion-prevention point of view.  相似文献   

2.
Control of biogenic H(2)S production with nitrite and molybdate   总被引:2,自引:0,他引:2  
The effects of the metabolic inhibitors, sodium nitrite and ammonium molybdate, on production of H2S by a pure culture of the sulfate-reducing bacterium (SRB) Desulfovibrio sp. strain Lac6 and a consortium of SRB, enriched from produced water of a Canadian oil field, were investigated. Addition of 0.1 mM nitrite or 0.024 mM molybdate at the start of growth prevented the production of H2S by strain Lac6. With exponentially growing cultures, higher levels of inhibitors, 0.25 mM nitrite or 0.095 mM molybdate, were required to suppress the production of H2S. Simultaneous addition of nitrite and molybdate had a synergistic effect: at time 0, 0.05 mM nitrite and 0.01 mM molybdate, whereas during the exponential phase, 0.1 mM nitrite and 0.047 mM molybdate were sufficient to stop H2S production. With an exponentially growing consortium of SRB, enriched from produced water of the Coleville oil field, much higher levels of inhibitors, 4 mM nitrite or 0.47 mM molybdate, were needed to stop the production of H2S. The addition of these inhibitors had no effect on the composition of the microbial community, as shown by reverse sample genome probing. The results indicate that the efficiency of inhibitors in containment of SRB depends on the composition and metabolic state of the microbial community. Journal of Industrial Microbiology & Biotechnology (2001) 26, 350–355. Received 02 August 2000/ Accepted in revised form 17 April 2001  相似文献   

3.

Microbial souring (H2S production) in porous medium was investigated in an anaerobic upflow porous medium reactor at 60°C using produced waters obtained from the North Sea Ninian oilfield as the inoculum. Multiple carbon sources commonly found in oil field waters (formate, acetate, propionate, iso‐ and n‐butyrates) with inorganic sulfate as the electron acceptor were used as the substrates. Stoichiometry and the rate of souring in the reactor column were calculated. A large proportion of H2S was trapped in the column as FeS and possibly as a gas phase. Concentration gradients for the substrates (organic acids and sulfate) and H2S were generated along the column. At steady state, the highest volumetric substrate consumption and H2S production were found at the front part (inlet) of the reactor column. The average volumetric sulfate reduction rate after H2S production had stabilized was calculated to be 203 ± 51 mg sulfate‐S.l‐1.d‐1. Comparison of the results with the authors’ previous work on the Alaska Kuparuk oilfield waters indicates that the two different microbial inocula (produced waters) exhibited the same experimental trends (rates and location) for souring in the experimental reactor system. This indicates that abiotic factors, as well as microbial parameters, may play an important role for microbial souring in the system.  相似文献   

4.
Microbial souring (production of hydrogen sulfide by sulfate-reducing bacteria, SRB) in crushed Berea sandstone columns with oil field-produced water consortia incubated at 60°C was inhibited by the addition of nitrate (NO3) or nitrite (NO 2 ). Added nitrate (as nitrogen) at a concentration of 0.71 mM resulted in the production of 0.57–0.71 mM nitrite by the native microbial population present during souring and suppressed sulfate reduction to below detection limits. Nitrate added at 0.36 mM did not inhibit active souring but was enough to maintain inhibition if the column had been previously treated with 0.71 mM or greater. Continuous addition of 0.71–0.86 mM nitrite also completely inhibited souring in the column. Pulses of nitrite were more effective than the same amount of nitrite added continuously. Nitrite was more effective at inhibiting souring than was glutaraldehyde, and SRB recovery was delayed longer with nitrite than with glutaraldehyde. It was hypothesized that glutaraldehyde killed SRB while nitrite provided a long-term inhibition without cell death. Removal of nitrate after as long as 3 months of continuous addition allowed SRB in a biofilm to return to their previous level of activity. Inhibition was achieved with much lower levels of nitrate and nitrite, and at higher temperatures, than noted by other researchers.  相似文献   

5.
Biogenic production of hydrogen sulphide (H2S) is a problem for the oil industry as it leads to corrosion and reservoir souring. Continuous injection of a low nitrate concentration (0.25–0.33 mM) replaced glutaraldehyde as corrosion and souring control at the Veslefrikk and Gullfaks oil field (North Sea) in 1999. The response to nitrate treatment was a rapid reduction in number and activity of sulphate-reducing bacteria (SRB) in the water injection system biofilm at both fields. The present long-term study shows that SRB activity has remained low at ≤0.3 and ≤0.9 μg H2S/cm2/day at Veslefrikk and Gullfaks respectively, during the 7–8 years with continuous nitrate injection. At Veslefrikk, 16S rRNA gene based community analysis by PCR–DGGE showed that bacteria affiliated to nitrate-reducing sulphide-oxidizing Sulfurimonas (NR–SOB) formed major populations at the injection well head throughout the treatment period. Downstream of deaerator the presence of Sulfurimonas like bacteria was less pronounced, and were no longer observed 40 months into the treatment period. The biofilm community during nitrate treatment was highly diverse and relative stable for long periods of time. At the Gullfaks field, a reduction in corrosion of up to 40% was observed after switch to nitrate treatment. The present study show that nitrate injection may provide a stable long-term inhibition of SRB in sea water injection systems, and that corrosion may be significantly reduced when compared to traditional biocide treatment.  相似文献   

6.
Sulfide accumulation due to bacterial sulfate reduction is responsible for a number of serious problems in the oil industry. Among the strategies to control the activity of sulfate-reducing bacteria (SRB) is the use of nitrate, which can exhibit a variety of effects. We investigated the relevance of this approach to souring oil fields in Oklahoma and Alberta in which water flooding is used to enhance oil recovery. SRB and nitrate-reducing bacteria (NRB) were enumerated in produced waters from both oil fields. In the Oklahoma field, the rates of sulfate reduction ranged from 0.05 to 0.16 μM S day−1 at the wellheads, and an order of magnitude higher at the oil–water separator. Sulfide production was greatest in the water storage tanks in the Alberta field. Microbial counts alone did not accurately reflect the potential for microbial activities. The majority of the sulfide production appeared to occur after the oil was pumped aboveground, rather than in the reservoir. Laboratory experiments showed that adding 5 and 10 mM nitrate to produced waters from the Oklahoma and Alberta oil fields, respectively, decreased the sulfide content to negligible levels and increased the numbers of NRB. This work suggests that sulfate reduction control measures can be concentrated on aboveground facilities, which will decrease the amount of sulfide reinjected into reservoirs during the disposal of oil field production waters. Journal of Industrial Microbiology & Biotechnology (2001) 27, 80–86. Received 30 January 2001/ Accepted in revised form 30 June 2001  相似文献   

7.
Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB.  相似文献   

8.
Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266–269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields.  相似文献   

9.
Produced water from the Coleville oil field in Saskatchewan, Canada was used to inoculate continuous up-flow packed-bed bioreactors. When 7.8 mM sulfate and 25 mM lactate were present in the in-flowing medium, H(2)S production (souring) by sulfate-reducing bacteria (SRB) was prevented by addition of 17.5 mM nitrate or 20 mM nitrite. Changing the sulfate or lactate concentration of the in-flowing medium indicated that the concentrations of nitrate or nitrite required for containment of souring decreased proportionally with a lowered concentration of the electron donor lactate, while the sulfate concentration of the medium had no effect. Microbial communities were dominated by SRB. Nitrate addition did not give rise to changes in community composition, indicating that lactate oxidation and H(2)S removal were caused by the combined action of SRB and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Apparently the nitrite concentrations formed by these NR-SOB did not inhibit the SRB sufficiently to cause community shifts. In contrast, significant community shifts were observed upon direct addition of high concentrations (20 mM) of nitrite. Strains NO3A and NO2B, two newly isolated, nitrate-reducing bacteria (NRB) emerged as major community members. These were found to belong to the epsilon-division of the Proteobacteria, to be most closely related to Campylobacter lari, and to oxidize lactate with nitrate or nitrite as the electron acceptor. Thus the mechanism of microbial H(2)S removal in up-flow packed-bed bioreactors depended on whether nitrate (SRB/NR-SOB) or nitrite (SRB/NR-SOB as well as NRB) was used. However, the amount of nitrate or nitrite needed to completely remove H(2)S was dictated by the electron donor (lactate) concentration, irrespective of mechanism.  相似文献   

10.
An unique stable isotope labelling experiment was conducted whereby mixtures of sulfate and sulfite of different isotopic compositions were metabolized by Clostridium pasteurianum. The results showed during reduction of 1 mM SO 3 = plus 1 mM SO 4 = , essentially all evolved H2S arose from the sulfite whereas in the case of cellular sulfur, 85% was derived from sulfite and the remainder from sulfate.  相似文献   

11.
Reservoir souring in offshore oil fields is caused by hydrogen sulphide (H2S) produced by sulphate-reducing bacteria (SRB), most often as a consequence of sea water injection. Biocide treatment is commonly used to inhibit SRB, but has now been replaced by nitrate treatment on several North Sea oil fields. At the Statfjord field, injection wells from one nitrate-treated reservoir and one biocide-treated reservoir were reversed (backflowed) and sampled for microbial analysis. The two reservoirs have similar properties and share the same pre-nitrate treatment history. A 16S rRNA gene-based community analysis (PCR-DGGE) combined with enrichment culture studies showed that, after 6 months of nitrate injection (0.25 mM NO3 ), heterotrophic and chemolithotrophic nitrate-reducing bacteria (NRB) formed major populations in the nitrate-treated reservoir. The NRB community was able to utilize the same substrates as the SRB community. Compared to the biocide-treated reservoir, the microbial community in the nitrate-treated reservoir was more phylogenetically diverse and able to grow on a wider range of substrates. Enrichment culture studies showed that SRB were present in both reservoirs, but the nitrate-treated reservoir had the least diverse SRB community. Isolation and characterisation of one of the dominant populations observed during nitrate treatment (strain STF-07) showed that heterotrophic denitrifying bacteria affiliated to Terasakiella probably contributed significantly to the inhibition of SRB. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Oil fields that use water flooding to enhance oil recovery may become sour because of the production of H2S from the reduction of sulfate by sulfate-reducing bacteria (SRB). The addition of nitrate to produced waters can stimulate the activities of nitrate-reducing bacteria (NRB) and control sulfide production. Many previous studies have focused on chemolithotrophic bacteria that can use thiosulfate or sulfide as energy sources while reducing nitrate. Little attention has been given to heterotrophic NRB in oil field waters. Three different media were used in this study to enumerate various types of planktonic NRB present in waters from five oil fields in western Canada. The numbers of planktonic SRB and bacteria capable of growth under aerobic conditions were also determined. In general, microbial numbers in the produced waters were very low (<10 ml−1) in samples taken near or at wellheads. However, the numbers increased in the aboveground facilities. No thiosulfate-oxidizing NRB were detected in the oil field waters, but other types of NRB were detected in 16 of 18 produced water samples. The numbers of heterotrophic NRB were equal to or greater than the number of sulfide-oxidizing, chemolithotrophic NRB in 12 of 15 samples. These results showed that each of the oil fields contained NRB, which might be stimulated by nitrate amendment to control H2S production by SRB. Journal of Industrial Microbiology & Biotechnology (2002) 29, 83–92 doi:10.1038/sj.jim.7000274 Received 20 February 2002/ Accepted in revised form 14 May 2002  相似文献   

13.
Phosphogypsum (CaSO4), a primary by-product of phosphoric acid production, is accumulated in large stockpiles and occupies vast areas of land. It poses a severe threat to the quality of water and land in countries producing phosphoric acid. In this study, the potential of sulfate-reducing bacteria for biodegradation of this sulfur-rich industrial solid waste was assessed. The effect of phosphogypsum concentration, carbon and nitrogen sources, temperature, pH and stirring on the growth of sulfate-reducing bacteria was investigated. Growth of sulfate-reducing bacteria was monitored by measuring sulfide production. Phosphogypsum was shown to be a good source of sulfate, albeit that the addition of organic carbon was necessary for bacterial growth. Biogenic sulfide production occurred with phosphogypsum up to a concentration of 40 g L−1, above which no growth of sulfate-reducing bacteria was observed. Optimal growth was obtained at 10 g L−1 phosphogypsum. Both the gas mixture H2/CO2 and lactate supported high amounts of H2S formation (19 and 11 mM, respectively). The best source of nitrogen for sulfate-reducing bacteria was yeast extract, followed by ammonium chloride. The presence of nitrate had an inhibitory effect on the process of sulfate reduction. Stirring the culture at 150 rpm slightly stimulated H2S formation, probably by improving sulfate solubility.  相似文献   

14.
n-Hexadecane added as electron donor and carbon source to an anaerobic enrichment culture from an oil production plant or to anoxic marine sediment samples allowed dissimilatory sulfate reduction to sulfide. The enrichment from the oil field was purified via serial dilutions in liquid medium under a hexadecane phase and in agar medium with caprylate. A pure culture of a sulfate-reducing bacterium, strain Hxd3, with relatively tiny cells (0.4–0.5 by 0.8–2 m) was isolated that grew anaerobically on hexadecane without addition of further organic substrates. Most of the cells were found to adhere to the hydrocarbon phase. It was verified that neither organic impurities in hexadecane nor residual oxygen were responsible for growth. Strain Hxd3 was grown with n-hexadecane of high purity (99.5%) in anoxic glass ampoules sealed by fusion. Of 0.4 ml hexadecane added per l (1.4 mmol per l), 90% was degraded with concomitant reduction of sulfate. Controls with pasteurized cells or a common Desulfovibrio species neither consumed hexadecane nor reduced sulfate. Incubation of cell-free medium with low reducing capacity and a redox indicator showed that the ampoules were completely oxygen-tight. Measured degradation balances and enzyme activities suggested a complete oxidation of the alkane to CO2 via the carbon monoxide dehydrogenase pathway. However, the first step in anaerobic alkane oxidation is unknown. On hexadecane, strain Hxd3 produced as much as 15 to 20 mM H2S, but growth was rather slow; with 5% inoculum, cultures were fully grown after 5 to 7 weeks. The new sulfate reducer grew on alkanes from C12 to C20, 1-hexadecene, 1-hexadecanol, 2-hexadecanol, palmitate and stearate. Best growth occurred on stearate (doubling time around 26 h). Growth on soluble fatty acids such as caprylate was very poor. Alkanes with chains shorter than C12, lactate, ethanol or H2 were not used. Strain Hxd3 is the first anaerobe shown to grow definitely on saturated hydrocarbons.Abbreviations CO dehydrogenase carbon monoxide dehydrogenase - DTE 1,4-dithioerythritol - Tris tris(hydroxymethyl)-aminomethane Dedicated to Dr. Ralph S. Wolfe on occasion of his 70th birthday  相似文献   

15.
By means of15N-tracer and oxidant pulse methods and with nitrate-grownParacoccus denitrificans it was found that KSCN completely inhibited reduction of N2O and nitrate in the 1 to 10 mM range, but had little or no effect on reduction of O2 or nitrite at 150 mM. These observations confirm a previous report. Potassium thiocyanate was insufficiently permeant across the cytoplasmic membrane ofParacoccus denitrificans andPseudomonas denitrificans even at 150 mM to prevent membrane polarization when oxidant pulses were large. Polarization and inhibition artifacts due to KSCN have created some confusion in the literature. Whereas valinomycin had little direct effect on reduction of nitrite, N2O, and O2 individually byPa. denitrificans, it caused a temporary nitrite-dependent inhibition of N2O reduction. Under nonpolarizing conditions the H+/2e ratios for O2, N2O, and nitrite (8.0, 4.3, and 4.5, respectively) confirmed those reported previously from this laboratory. The present results largely but not entirely agree with data from another laboratory.  相似文献   

16.
Characteristics of dissimilatory nitrate reduction by Propionibacterium acidi-propionici, P. freudenreichii, P. jensenii, P. shermanii and P. thoenii were studied. All strains reduced nitrate to nitrite and further to N2O. Recovery of added nitrite-N as N2O-N approached 100%, so that no other end product existed in a significant quantity. Specific rates of N2O production were 3 to 6 orders of magnitude lower than specific rates of N2 production by common denitrifiers. Oxygen but not acetylene inhibited N2O production in P. acidi-propionici and P. thoenii. Nitrite reduction rates were generally higher than nitrate reduction rates. The enzymes involved in nitrate and nitrite reduction were either constitutive or derepressed by anacrobiosis. Nitrate stimulated synthesis of nitrate reductase in P. acidi-propionici. Specific growth rates and growth yields were increased by nitrate. At 10 mM, nitrite was toxic to all strains, and at 1 mM its effect ranged from none to total inhibition. No distinction was obvious between incomplete forms of denitrification and dissimilatory nitrate reduction to ammonia. N2O production from nitrite by propionibacteria may represent a detoxication mechanism rather than a part of an energy transformation system.  相似文献   

17.
The effect of different substrates and different levels of sulfate and sulfide on methane production relative to sulfate reduction in high-rate anaerobic digestion was evaluated. Reactors could be acclimated so that sulfate up to a concentration of 5 g of sulfate S per liter did not significantly affect methanogenesis. Higher levels gave inhibition because of salt toxicity. Sulfate reduction was optimal at a relatively low level of sulfate, i.e., 0.5 g of sulfate S per liter, but was also not significantly affected by higher levels. Both acetoclastic and hydrogenotrophic methane-producing bacteria adapted to much higher levels of free H2S than the values reported in the literature (50% inhibition occurred only at free H2S levels of more than 1,000 mg/liter). High levels of free H2S affected the sulfate-reducing bacteria only slightly. Formate and acetate supported the sulfate-reducing bacteria very poorly. In the high-rate reactors studied, intensive H2S formation occurred only when H2 gas or an H2 precursor such as ethanol was supplied.  相似文献   

18.
长期注水开发促进了渤海湾海域油藏中硫酸盐还原菌(SRP)的生长繁殖,产生了大量H2S,引起油藏酸化(souring)等问题. 本文首先以改进的API RP 38培养基富集了渤海湾海域某油藏采出井井口采出液中的SRP,再通过批次试验研究了不同浓度NO3-和NO2-对SRP富集培养物SO42-还原活性的抑制效应. 结果表明: 渤海湾海域油藏中的SRP富集培养物SO42-还原活性较强,SO42-还原速率为10.4 mmol SO42-·d-1·g-1 dry cell;加入浓度为0.4、0.8、1.8、4.2 mmol·L-1NO3-时,SRP富集培养物的SO42-还原活性均可被抑制,维持时间分别为5、9、20和大于35 d;加入浓度为0.6、0.9、1.4、2.6或4.6 mmol·L-1的NO2-时,SO42-还原活性也被抑制,维持时间分别为3、12、22和大于39 d. SRP富集培养物具有异化NO3-还原成NH4+的代谢途径.当环境中同时存在SO42-、NO3-、NO2-时,SRP富集培养物优先利用NO3-和NO2-. SRP富集培养物对电子受体的优先利用及NO2-的毒性效应是NO3-/NO2-抑制渤海湾海域油藏中SO42-还原活性的主要原因.  相似文献   

19.
长期注水开发促进了渤海湾海域油藏中硫酸盐还原菌(SRP)的生长繁殖,产生了大量H2S,引起油藏酸化(souring)等问题. 本文首先以改进的API RP 38培养基富集了渤海湾海域某油藏采出井井口采出液中的SRP,再通过批次试验研究了不同浓度NO3-和NO2-对SRP富集培养物SO42-还原活性的抑制效应. 结果表明: 渤海湾海域油藏中的SRP富集培养物SO42-还原活性较强,SO42-还原速率为10.4 mmol SO42-·d-1·g-1 dry cell;加入浓度为0.4、0.8、1.8、4.2 mmol·L-1NO3-时,SRP富集培养物的SO42-还原活性均可被抑制,维持时间分别为5、9、20和大于35 d;加入浓度为0.6、0.9、1.4、2.6或4.6 mmol·L-1的NO2-时,SO42-还原活性也被抑制,维持时间分别为3、12、22和大于39 d. SRP富集培养物具有异化NO3-还原成NH4+的代谢途径.当环境中同时存在SO42-、NO3-、NO2-时,SRP富集培养物优先利用NO3-和NO2-. SRP富集培养物对电子受体的优先利用及NO2-的毒性效应是NO3-/NO2-抑制渤海湾海域油藏中SO42-还原活性的主要原因.  相似文献   

20.
Concentrations of various sulfur compounds (SO42−, H2S, S0, acid-volatile sulfide, and total sulfur) were determined in the profundal sediments and overlying water column of a shallow eutrophic lake. Low concentrations of sulfate relative to those of acid-volatile sulfide and total sulfur and a decrease in total sulfur with sediment depth implied that the contribution of dissimilatory sulfur reduction to H2S production was relatively minor. Addition of 1.0 mM Na235SO4 to upper sediments in laboratory experiments resulted in the production of H235S with no apparent lag. Kinetic experiments with 35S demonstrated an apparent Km of 0.068 mmol of SO42− reduced per liter of sediment per day, whereas tracer experiments with 35S indicated an average turnover time of the sediment sulfate pool of 1.5 h. Total sulfate reduction in a sediment depth profile to 15 cm was 15.3 mmol of sulfate reduced per m2 per day, which corresponds to a mineralization of 30% of the particulate organic matter entering the sediment. Reduction of 35S0 occurred at a slower rate. These results demonstrated that high rates of sulfate reduction occur in these sediments despite low concentrations of oxidized inorganic compounds and that this reduction can be important in the anaerobic mineralization of organic carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号