首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Satellite cells are quiescent cells located under the basal lamina of skeletal muscle fibers that contribute to muscle growth, maintenance, repair, and regeneration. Mouse satellite cells have been shown to be muscle stem cells that are able to regenerate muscle fibers and self-renew. As human skeletal muscle is also able to regenerate following injury, we assume that the human satellite cell is, like its murine equivalent, a muscle stem cell. In this review, we compare human and mouse satellite cells and highlight their similarities and differences. We discuss gaps in our knowledge of human satellite cells, compared with that of mouse satellite cells, and suggest ways in which we may advance studies on human satellite cells, particularly by finding new markers and attempting to re-create the human satellite cell niche in vitro. (J Histochem Cytochem 58:941–955, 2010)  相似文献   

2.
Following skeletal muscle injury, new fibers form from resident satellite cells which reestablish the fiber composition of the original muscle. We have used a cell culture system to analyze satellite cells isolated from adult chicken and quail pectoralis major (PM; a fast muscle) and anterior latissimus dorsi (ALD; a slow muscle) to determine if satellite cells isolated from fast or slow muscles produce one or several types of fibers when they form new fibers in vitro in the absence of innervation or a specific extracellular milieu. The types of fibers formed in satellite cell cultures were determined using immunoblotting and immunocytochemistry with monoclonal antibodies specific for avian fast and slow myosin heavy chain (MHC) isoforms. We found that satellite cells were of different types and that fast and slow muscles differed in the percentage of each type they contained. Primary satellite cells isolated from the PM formed only fast fibers, while up to 25% of those isolated from ALD formed fibers that were both fast and slow (fast/slow fibers), the remainder being fast only. Fast/slow fibers formed from chicken satellite cells expressed slow MHC1, while slow MHC2 predominated in fast/slow fibers formed from quail satellite cells. Prolonged primary culture did not alter the relative proportions of fast to fast/slow fibers in high density cultures of either chicken or quail satellite cells. No change in commitment was observed in fibers formed from chicken satellite cell progeny repeatedly subcultured at high density, while fibers formed from subcultured quail satellite cell progeny demonstrated increasing commitment to fast/slow fiber type formation. Quail satellite cells cloned from high density cultures formed colonies that demonstrated a similar change in commitment from fast to fast/slow, as did serially subcloned individual satellite cell progeny, indicating that the observed change from fast to fast/slow differentiation resulted from intrinsic changes within a satellite cell. Thus satellite cells freshly isolated from adult chicken and quail are committed to form fibers of at least two types, satellite cells of these two types are found in different proportions in fast and slow muscles, and repeated cell proliferation of quail satellite cell progeny may alter satellite cell progeny to increasingly form fibers of a single type.  相似文献   

3.
Culturing satellite cells from living single muscle fiber explants   总被引:21,自引:0,他引:21  
Summary Conventional methods for isolating myogenic (satellite) cells are inadequate when only small quantities of muscle, the tissue in which satellite cells reside, are available. We have developed a tissue culture system that reliably permits isolation of intact, living, single muscle fibers with associated satellite cells from predominantly fast and slow muscles of rat and mouse; maintenance of the isolated fibers in vitro; dissociation, proliferation, and differentiation of satellite cells from each fiber; and removal of the fiber from culture for analysis.  相似文献   

4.
We studied the forelimb interosseus muscle in horses, Equus caballus, to determine the muscular properties inherent in its function. Some authors have speculated that the equine interosseus contains muscle fibers at birth only to undergo loss of these fibers through postnatal ontogeny. We describe the muscle fibers in eight interosseus specimens from adult horses. These fibers were studied histochemically using myosin ATPase studies and immunocytochemically using several antibodies directed against type I and type II myosin heavy chain antibodies. We determined that 95% of the fibers were type I, presumed slow-twitch fibers. All fibers exhibited normal morphological appearance in terms of fiber diameter and cross-sectional area, suggesting that the muscles are undergoing normal cycles of recruitment. SDS-PAGE studies of myosin heavy chain isoforms were consistent with these observations of primarily slow-twitch muscle. Fibers were determined to be approximately 800 microm long when studied using nitric acid digestion protocols. Short fiber length combined with high pinnation angles suggest that the interosseus muscle is able to generate large amounts of force but can produce little work (measured as pulling the distal tendon proximally). While the equine interosseus muscle has undergone a general reduction of muscle content during its evolution, it remains composed of a significant muscular component that likely contributes to forelimb stability and elastic storage of energy during locomotion.  相似文献   

5.
We test the hypothesis that cat jaw satellite cells belong to a distinct lineage preprogrammed to express masticatory-specific isoforms of myosin heavy-chain (m-MyHC), myosin-binding protein-C (m-MBP-C), and tropomyosin (m-Tm) during myogenesis in vitro. A monoclonal antibody (MAb) against m-MyHC and MAbs raised here against cat m-MBP-C and m-Tm were used to stain cryostat sections of cat masseter muscle and cultured myotubes derived from satellite cells of cat temporalis and limb muscles, using peroxidase immunohistochemistry. MAbs against m-MBP-C bound purified m-MBP-C in Western blots. MAbs against m-Tm failed to react with m-Tm in Western blots, but reacted with native m-Tm in gel electrophoresis–derived ELISA. In cat masseter sections, MAbs against m-MyHC, m-MBP-C, and m-Tm stained all masticatory fibers, but not the jaw-slow fibers. Cat jaw and limb muscle cultures mature significantly more slowly relative to rodent cultures. However, at 3 weeks, all three MAbs extensively stained temporalis myotubes, whereas they apparently stained isolated myotubes weakly in cat limb and rat jaw cultures. We conclude that satellite cells of masticatory fibers are preprogrammed to express these isoforms during myogenesis in vitro. These results consolidate the notion that masticatory and limb muscle allotypes are distinct. (J Histochem Cytochem 58:623–634, 2010)  相似文献   

6.
Knowledge of the events underlying satellite cell activation and the counterpart maintenance of quiescence is essential for planning therapies that will promote the growth and regeneration of skeletal muscle in healthy, disease and aging. By modeling those events of satellite cell activation in studies of single muscle fibers or muscles in culture, the roles of mechanical stretching and nitric oxide are becoming understood. Recent studies demonstrated that stretch-induced activation is very rapid and exhibits some features of satellite cell heterogeneity. As well, gene expression studies showed that expression of the c-met receptor gene rises rapidly after stretching muscles in culture compared to those without stretch. This change in gene expression during activation, and the maintenance of quiescence in both normal and dystrophic muscles are dependent on NO, as they are blocked by inhibition of nitric oxide synthase (NOS). Mechanical, contractile activity is the defining feature of muscle function. Therefore, ongoing studies of stretch effects in satellite cell activation and quiescence in quiescent fiber and muscle cultures provides appropriate models by which to explore the regulatory steps in muscle in vivo under many conditions related to disease, repair, rehabilitation, growth and the prevention or treatment of atrophy.  相似文献   

7.
Skeletal muscle fibers are surrounded by an extracellular matrix. The extracellular matrix is composed of glycoproteins, collagen, and proteoglycans. Proteoglycans have been suggested to play an important functional role in tissue differentiation. However, an understanding of how the extracellular matrix affects skeletal muscle development and function is largely unknown. In the avian genetic muscle weakness, low score normal (LSN), a late embryonic increase in the expression of decorin is followed by a subsequent increase in collagen crosslinking. The sarcomere organization, collagen fibril diameter and organization were investigated using transmission electron microscopy. Measurements were made at 20 days of embryonic development and 6 weeks posthatch. These studies showed changes in sarcomere organization and deterioration of muscle fibril structure in the LSN pectoral muscle. In vitro satellite cell cultures were developed and assayed for mitochondrial activity, and protein synthesis and degradation. In these analyses, mitochondrial activity from LSN satellite cells was significantly higher than those from normal pectoral muscle satellite cells. Protein synthesis rates between the normal and LSN satellite cell-derived myotubes were similar, but protein degradation rates were higher in the LSN cultures. Based on the reported functions of decorin as a regulator of cell proliferation and collagen fibril organization, it is possible that the late embryonic increase in decorin may be influencing the alterations in LSN sarcomere and collagen organization.  相似文献   

8.
Following muscle damage, fast- and slow-contracting fibers regenerate, owing to the activation of their satellite cells. In rats, crush-induced regeneration of extensor digitorum longus (EDL, a fast muscle) and soleus (a slow muscle) present different characteristics, suggesting that intrinsic differences exist among their satellite cells. An in vitro comparative study of the proliferation and differentiation capacities of satellite cells isolated from these muscles is presented there. We observed several differences between soleus and EDL satellite cell cultures plated at high density on gelatin-coated dishes. Soleus satellite cells proliferated more actively and fused into myotubes less efficiently than EDL cells. The rate of muscular creatine kinase enzyme appeared slightly lower in soleus than in EDL cultures at day 11 after plating, when many myotubes were formed, although the levels of muscular creatine kinase mRNA were similar in both cultures. In addition, soleus cultures expressed higher levels of MyoD and myogenin mRNA and of MyoD protein than EDL satellite cell cultures at day 12. A clonal analysis was also carried out on both cell populations in order to determine if distinct lineage features could be detected among satellite cells derived from EDL and soleus muscles. When plated on gelatin at clonal density, cells from both muscles yielded clones within 2 weeks, which stemmed from 3–15 mitotic cycles and were classified into three classes according to their sizes. Myotubes resulting from spontaneous fusion of cells from the progeny of one single cell were seen regardless of the clone size in the standard culture medium we used. The proportion of clones showing myotubes in each class depended on the muscle origin of the cells and was greater in EDL- than in soleus-cell cultures. In addition, soleus cells were shown to improve their differentiation capacity upon changes in the culture condition. Indeed, the proportions of clones showing myotubes, or of cells fusing into myotubes in clones, were increased by treatments with a myotube-conditioned medium, with phorbol ester, and by growth on extra-cellular matrix components (Matrigel). These results, showing differences among satellite cells from fast and slow muscles, might be of importance to muscle repair after trauma and in pathological situations.  相似文献   

9.
Single-fiber cultures can be used to model satellite cell activation in vivo. Although technical deficiencies previously prevented study of stretch-induced events, here we describe a method developed to study satellite cell gene expression by in situ hybridization (ISH) using protocol modifications for fiber adhesion and fixation. The hypothesis that mechanical stretching activates satellite cells was tested. Fiber cultures were established from normal flexor digitorum brevis muscles and plated on FlexCell dishes with a layer of Vitrogen. After 2 hr of stretch in the presence of BrdU, satellite cells on fibers attached to Vitrogen were activated above control levels. In the absence of activating treatments or mechanical stretch, ISH studies showed 0-6 c-Met+ satellite cells per fiber. Time course experiments demonstrated stable quiescence in the absence of stretch and significant peaks in activation after 30 min and 2 hr of stretch. Frequency distributions for unstretched fiber cultures showed a significantly greater number of quiescent c-Met+ satellite cells than were activated by stretching, suggesting that typical activation stimuli did not trigger cycling in the entire c-Met+ population of satellite cells. These methods have a strong potential to further dissect the nature of stretch-induced activation and gene expression among characterized populations of individual quiescent and activated satellite cells.  相似文献   

10.
肌卫星细胞在失重肌萎缩中的可塑性变化及机制   总被引:1,自引:0,他引:1  
肌卫星细胞在骨骼肌生长发育和出生后骨骼肌损伤修复中起着重要的作用,但是有关肌萎缩中肌卫星细胞的可塑性变化、作用及其机制尚不清楚.本研究采用小鼠尾悬吊模拟失重效应诱导失重肌萎缩,动态分析了失重肌萎缩发生过程中不同类型肌纤维的肌卫星细胞数量和增殖、分化潜能可塑性的改变,发现在失重肌萎缩过程中,处于安静状态的肌卫星细胞显著增多、激活增殖的肌卫星细胞显著减少,而具有成肌分化潜能的肌卫星细胞有持续减少趋势.此外,在失重肌萎缩比目鱼肌单根肌纤维移出的体外培养中,证明了失重肌萎缩肌纤维肌卫星细胞可塑性降低的特征性变化.进一步,通过对比分析Smad3基因敲除及其同窝野生型小鼠,在失重肌萎缩中肌卫星细胞可塑性的差异性变化,揭示了Smad3在调控失重肌萎缩肌卫星细胞可塑性变化中的关键作用.  相似文献   

11.
Skeletal muscles display a remarkable diversity in their arrangement of fibers into fascicles and in their patterns of innervation, depending on functional requirements and species differences. Most human muscle fascicles, despite their great length, consist of fibers that extend continuously from one tendon to the other with a single nerve endplate band. Other mammalian muscles have multiple endplate bands and fibers that do not insert into both tendons but terminate intrafascicularly. We investigated whether these alternate structural features may dictate different modes of cell hypertrophy in two mouse gracilis muscles, in response to expression of a muscle-specific insulin-like growth factor (IGF)-1 transgene (mIGF-1) or to chronic exercise. Both hypertrophic stimuli independently activated GATA-2 expression and increased muscle cross-sectional area in both muscle types, with additive effects in exercising myosin light chain/mIGF transgenic mice, but without increasing fiber number. In singly innervated gracilis posterior muscle, hypertrophy was characterized by a greater average diameter of individual fibers, and centralized nuclei. In contrast, hypertrophic gracilis anterior muscle, which is multiply innervated, contained longer muscle fibers, with no increase in average diameter, or in centralized nuclei. Different modes of muscle hypertrophy in domestic and laboratory animals have important implications for building appropriate models of human neuromuscular disease.  相似文献   

12.
In view of the supposition that a dolphin can swim faster than would be predicted based on its physical features and presumed muscle power potential, studies were initiated to reevaluate the assumptions made in reaching these conclusions. Several previous studies have shown that the architectural and histochemical properties of a skeletal muscle dictate its force, velocity and displacement properties. This study examined the muscle fiber lengths and tendon arrangements of the dorsal and ventral axial muscles in dolphins ( Tursiops truncatus ). Fiber type and fiber size distributions were determined to reflect the general biochemical characteristics of the musculature. The dorsal muscles had a higher mean fiber length (167 Vs. 90 mm) and the range within and across different dorsal muscles was less (141–199 vs. 37–185 mm) than in the ventral muscles. Both the dorsal and ventral muscles consisted of an overall mean of 50 percent slow twitch and 50 percent fast twitch fiber types. The fast twitch fibers were 67 percent larger (2,200 vs. 1,317 μ m 2) than the slow twitch fibers in the ventral and 38 percent larger (1,213 Vs. 879 μm2) in the dorsal muscles. In addition, the mean cross sectional area of the fibers in the ventral muscles was approximately 65 percent greater (1,750 vs. 1,072 μm2) than those in the dorsal muscles. The shorter, larger-diameter fibers of the ventral musculature give it a greater potential for force production for a given amount of muscle mass. In contrast, the dorsal muscles appear to be designed to optimize velocity and displacement, ( i.e. , longer fibers). These findings contribute to the information necessary for the determination of the power potential of the musculature of the dolphin.  相似文献   

13.
14.
The R1 abdominal retractor muscles of the insect Tenebrio molitor change position during the course of metamorphosis. These muscles detach from the epidermal tendon cells at their anterior ends, and migrate in a posterior direction, parallel to the body axis, to form completely new attachments shortly before adult emergence. Movement is preceded by the loss of sarcomere structure, and the muscles migrate in a partially dedifferentiated condition, closely accompanied by satellite cells and haemocytes. Movement appears to result from the extension of muscle processes towards the epidermis posterior to the larval attachment sites, which contact reciprocal processes extended from the epidermis. Contacts at the new posterior sites are then reinforced, and relinquished at the anterior. This cycle is subsequently repeated. It is envisaged that migration ceases when the muscles encounter a contour in the epidermal gradient known to specify the position of the adult muscle attachment sites. This positional information may be encoded in the epidermal basal lamina. The muscles then redifferentiate, with concurrent differentiation of new epidermal tendon cells. Development of adult muscle attachments appears to require reciprocal morphogenetic interactions between muscle and epidermis.  相似文献   

15.
In the rat, the fast and slow twitch muscles respectively Extensor digitorum longus (EDL) and Soleus present differential characteristics during regeneration. This suggests that their satellite cells responsible for muscle growth and repair represent distinct cellular populations. We have previously shown that satellite cells dissociated from Soleus and grown in vitro proliferate more readily than those isolated from EDL muscle. Fibroblast growth factors (FGFs) are known as regulators of myoblast proliferation and several studies have revealed a relationship between the response of myoblasts to FGF and the expression of myogenic regulatory factors (MRF) of the MyoD family by myoblasts. Therefore, we presently examined the possibility that the satellite cells isolated from EDL and Soleus muscles differ in the expression of FGF receptors (FGF-R) and of MRF expression. FGF-R1 and -R4 were strongly expressed in proliferating cultures whereas FGF-R2 and R3 were not detected in these cultures. In differentiating cultures, only -R1 was present in EDL satellite cells while FGF-R4 was also still expressed in Soleus cells. Interestingly, the unconventional receptor for FGF called cystein rich FGF receptor (CFR), of yet unknown function, was mainly detected in EDL satellite cell cultures. Soleus and EDL satellite cell cultures also differed in the expression MRFs. These results are consistent with the notion that satellite cells from fast and slow twitch muscles belong to different types of myogenic cells and suggest that satellite cells might play distinct roles in the formation and diversification of fast and slow fibres.  相似文献   

16.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

17.
Muscle satellite cells are a stem cell population required for postnatal skeletal muscle development and regeneration, accounting for 2-5% of sublaminal nuclei in muscle fibers. In adult muscle, satellite cells are normally mitotically quiescent. Following injury, however, satellite cells initiate cellular proliferation to produce myoblasts, their progenies, to mediate the regeneration of muscle. Transplantation of satellite cell-derived myoblasts has been widely studied as a possible therapy for several regenerative diseases including muscular dystrophy, heart failure, and urological dysfunction. Myoblast transplantation into dystrophic skeletal muscle, infarcted heart, and dysfunctioning urinary ducts has shown that engrafted myoblasts can differentiate into muscle fibers in the host tissues and display partial functional improvement in these diseases. Therefore, the development of efficient purification methods of quiescent satellite cells from skeletal muscle, as well as the establishment of satellite cell-derived myoblast cultures and transplantation methods for myoblasts, are essential for understanding the molecular mechanisms behind satellite cell self-renewal, activation, and differentiation. Additionally, the development of cell-based therapies for muscular dystrophy and other regenerative diseases are also dependent upon these factors.However, current prospective purification methods of quiescent satellite cells require the use of expensive fluorescence-activated cell sorting (FACS) machines. Here, we present a new method for the rapid, economical, and reliable purification of quiescent satellite cells from adult mouse skeletal muscle by enzymatic dissociation followed by magnetic-activated cell sorting (MACS). Following isolation of pure quiescent satellite cells, these cells can be cultured to obtain large numbers of myoblasts after several passages. These freshly isolated quiescent satellite cells or ex vivo expanded myoblasts can be transplanted into cardiotoxin (CTX)-induced regenerating mouse skeletal muscle to examine the contribution of donor-derived cells to regenerating muscle fibers, as well as to satellite cell compartments for the examination of self-renewal activities.  相似文献   

18.
19.
The limited ability of damaged muscle to regenerate after gross injuries is a major clinical problem. To date, there is no effective therapeutic treatment for muscle injuries. In the present study, we have examined the ability of crude and fractionated human skeletal muscle extracts to promote myogenic cell proliferation and differentiation. It was found that the crude muscle extract could significantly stimulate BrdU incorporation in C2C12 myogenic cell line. In addition, the extract also promoted myogenic cell alignment and fusion. Using electrophoresis techniques, in conjunction with in vitro refolding technique, a protein with molecular weight of approximately 40 kDa was identified that could produce the same effects as the crude muscle exdtract. We also tested the ability of semipurified (30-50 kDa) muscle extract to promote muscle repair in adult rats. Surgical intervention was used to induce muscle damage in the tibialis anterior. The semipurified muscle extract (fraction H) was injected subcutaneously over the tibialis anterior for a period of 5 days. It was found that the damaged muscle fibers were replaced by newly regenerated muscle fibers. These newly regenerated fibers originated from the fusion of differentiated satellite cells as revealed by BrdU-labeling analysis. In contrast, the injury site of muscles treated with BSA control protein contained mainly fibroblasts.  相似文献   

20.
Adult skeletal muscles adapt their fiber size to workload. We show that serum response factor (Srf) is required for satellite cell-mediated hypertrophic muscle growth. Deletion of Srf from myofibers and not satellite cells blunts overload-induced hypertrophy, and impairs satellite cell proliferation and recruitment to pre-existing fibers. We reveal a gene network in which Srf within myofibers modulates interleukin-6 and cyclooxygenase-2/interleukin-4 expressions and therefore exerts a paracrine control of satellite cell functions. In Srf-deleted muscles, in vivo overexpression of interleukin-6 is sufficient to restore satellite cell proliferation but not satellite cell fusion and overall growth. In contrast cyclooxygenase-2/interleukin-4 overexpression rescue satellite cell recruitment and muscle growth without affecting satellite cell proliferation, identifying altered fusion as the limiting cellular event. These findings unravel a role for Srf in the translation of mechanical cues applied to myofibers into paracrine signals, which in turn will modulate satellite cell functions and support muscle growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号