首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CAATCH1 (cation-amino acid transporter/channel) is a recently cloned insect epithelial membrane protein related to mammalian Na(+)-, Cl(-)-coupled neurotransmitter transporters (Feldman, D. H., Harvey, W. R., and Stevens, B. R. (2000) J. Biol. Chem. 275, 24518-24526). In the present study we analyze the relationship between CAATCH1-mediated amino acid transport and ion fluxes by utilizing the Xenopus oocyte expression system in conjunction with electrophysiology and radiotracer uptake. Simultaneous flux measurements reveal that electrical currents and amino acid transport are thermodynamically uncoupled. This observation is supported by measuring significant uptake even in the absence of external alkali cations. Remarkably, CAATCH1-associated Na(+) or K(+) currents are large and do not saturate with voltage nor with cation concentration. These currents reverse in Nernstian fashion, thereby conferring channel activity in CAATCH1. Upon step-changes in the membrane potential, CAATCH1-expressing oocytes exhibit transient currents. Detailed analyses of these transients in the absence and presence of amino acids reveal direct ligand-protein interaction, demonstrating that binding by different amino acids (e.g. proline, threonine, methionine) differentially affects the state probability of CAATCH1 but has no effect on the maximal charge movement (Q(max)). Together these data suggest that CAATCH1 is a multifunction membrane protein that mediates thermodynamically uncoupled amino acid uptake but functions predominantly as an amino acid-gated alkali cation channel.  相似文献   

2.
KAAT1 and CAATCH1 are amino acid transporters cloned from the intestine of the lepidoptera Manduca sexta.1,2 They are members of the SLC6/NSS family, which groups membrane proteins that use Na+, K+, and Cl- gradients for the coupled transport of amines and amino acids. The report of the atomic-resolution x-ray crystal structure of the eubacterium Aquifex aeolicus leucine transporter (AaLeuT)3 has contributed significantly to understanding of the structure–function relationship in NSS proteins. Transport by AaLeuT is Cl- independent, whereas many neurotransmitter:sodium symporters like serotonin transporter (SERT), GABA transporter (GAT1), dopamine transporter, and norephinephrine transporter, among others, are strongly Cl- dependent.4 A single Cl- ion is found bound to one of the extracellular loops, EL2 in AaLeuT. The Cl- is 20 Ã… away from the Na and leucine binding sites, and thus it is unclear whether this Cl- binding site is physiologically important. The nature of the association of Cl- ions with these proteins during transport remains to be resolved. The Cl- binding site of two members of the family, the serotonin transporter SERT 4 and the GABA transporter GAT1 5, has been recently modelled on the basis of their functional properties and by structural homology to AaLeuT. The analyses have highlighted the role of a serine residue, that in the Cl--independent AaLeuT corresponds to Glu 290, and of an asparagine (Asn 286) that also contributes to the coordination of Na+ in the Na1 binding site of AaLeuT. KAAT1 and CAATCH1 are able to transport different amino acids depending on the contransported cation (Na+ or K+) but their Cl- dependence is not completely defined yet. With the aim to clarify the role exerted by chloride in SLC6/NSS transporters, the Cl--dependence of KAAT1 and CAATCH1 have been investigated by the expression in Xenopus laevis oocytes and the measurement of induced amino acid uptakes. Despite KAAT1 and CAATCH1 posses the same residue of serine (Ser342, KAAT1 numbering) present in strictly chloride dependent transporters, their transport activities resulted weakly Cl--dependent compared to GAT1. By analysis of the pH dependence of the KAAT1 and CAATCH1 transport activity, we obtained more information to define their (particular) peculiar Cl- dependence.  相似文献   

3.
4.
A cDNA clone encoding a Na(+)- and Cl(-)-dependent high affinity taurine transporter was isolated from a common carp cell line, Epithelioma papulosum cyprini (EPC), as a hyperosmotic stress-inducible gene by RNA arbitrarily primed PCR. The clone contained a 2.5-kb cDNA fragment including an open reading frame of 1878 bp encoding a protein of 625 amino acids. The deduced amino acid sequence of carp taurine transporter shows 78-80% identity to those of cloned mammalian taurine transporters. The functional characteristics of the cloned transporter were analyzed by expression in COS-7 cells. Transfection with the cDNA induced Na(+)- and Cl(-)-dependent taurine transport activity with an apparent K(m) of 56 microM. The Na(+)/Cl(-)hepatopancreas. Taurine transporter mRNA level increased up to 7.5-fold on raising the ambient osmolality from 300 to 450 mosmol/kgH(2)O. These data suggest the significant role of taurine as an osmolyte in carp cells.  相似文献   

5.
The highly homologous neutral amino acid transporters KAAT1 and CAATCH1, cloned from the midgut epithelium of the Manduca sexta larva, are members of the Na+/Cl-dependent transporter family. Recent evidence indicates that transporters of this family form constitutive oligomers. CAATCH1 and KAAT1 give rise to specific kinds of current depending on the transported amino acid, cotransported ion, pH, and membrane voltage. Different substrates induce notably distinct transport-associated currents in the two proteins that represent useful tools in structural-functional studies. To determine whether KAAT1 and CAATCH1 form functional oligomers, we have constructed four concatameric proteins for electrophysiological analysis, consisting of one KAAT1 protein covalently linked to another KAAT1 (K-K concatamer) or to CAATCH1 (K-C concatamer) and vice versa (C-C concatamer and C-K concatamer), and eight constructs where the two transporters were linked to yellow or cyan fluorescent protein in the NH2 or COOH terminus, to determine the oligomer formation and the relative distance between the different subunits by fluorescence resonance energy transfer (FRET) analysis. Heterologous expression of the concatenated constructs and coinjection of the original proteins in different proportions allowed us to compare the characteristics of the currents to those of the oocytes expressing only the wild-type proteins. All the constructs were fully active, and their electrophysiological behavior was consistent with the activity as monomeric proteins. However, the FRET studies indicate that these transporters form oligomers in agreement with the LeuTAa atomic structure and confirm that the COOH termini of the adjacent subunits are closer than NH2 termini. transport; oligomerization; Slc6; fret  相似文献   

6.
To date, two different transporters that are capable of transporting alpha-(methylamino)isobutyric acid, the specific substrate for amino acid transport system A, have been cloned. These two transporters are known as ATA1 and ATA2. We have cloned a third transporter that is able to transport the system A-specific substrate. This new transporter, cloned from rat skeletal muscle and designated rATA3, consists of 547 amino acids and has a high degree of homology to rat ATA1 (47% identity) and rat ATA2 (57% identity). rATA3 mRNA is present only in the liver and skeletal muscle. When expressed in Xenopus laevis oocytes, rATA3 mediates the transport of alpha-[(14)C](methylamino)isobutyric acid and [(3)H]alanine. With the two-microelectrode voltage clamp technique, we have shown that exposure of rATA3-expressing oocytes to neutral, short-chain aliphatic amino acids induces inward currents. The amino acid-induced current is Na(+)-dependent and pH-dependent. Analysis of the currents with alanine as the substrate has shown that the K(0. 5) for alanine (i.e., concentration of the amino acid yielding half-maximal current) is 4.2+/-0.1 mM and that the Na(+):alanine stoichiometry is 1:1.  相似文献   

7.
Amino acids are essential building blocks of all mammalian cells. In addition to their role in protein synthesis, amino acids play an important role as energy fuels, precursors for a variety of metabolites and as signalling molecules. Disorders associated with the malfunction of amino acid transporters reflect the variety of roles that they fulfil in human physiology. Mutations of brain amino acid transporters affect neuronal excitability. Mutations of renal and intestinal amino acid transporters affect whole-body homoeostasis, resulting in malabsorption and renal problems. Amino acid transporters that are integral parts of metabolic pathways reduce the function of these pathways. Finally, amino acid uptake is essential for cell growth, thereby explaining their role in tumour progression. The present review summarizes the involvement of amino acid transporters in these roles as illustrated by diseases resulting from transporter malfunction.  相似文献   

8.
9.
The ability of the two highly homologous Na+/Cl-dependent neutral amino acid transporters KAAT1 and CAATCH1, cloned from the midgut epithelium of the larva Manduca sexta, to transport different amino acids depends on the cotransported ion, on pH, and on the membrane voltage. Different organic substrates give rise to transport-associated currents with their own characteristics, which are notably distinct between the two proteins. Differences in amplitude, kinetics, and voltage dependence of the transport-associated currents have been observed, as well as different substrate selectivity patterns measured by radioactive amino acid uptake assays. These diversities represent useful tools to investigate the structural determinants involved in the substrate selectivity. To identify these regions, we built four chimeric proteins between the two transporters. These proteins, heterologously expressed in Xenopus laevis oocytes, were analyzed by two-electrode voltage clamp and uptake measurements. Initially, we exchanged the first three domains, obtaining the chimeras C3K9 and K3C9 (where numbers indicate the transmembrane domains and letters represent the original proteins), which showed electrophysiological and [3H]amino acid uptake characteristics resembling those of KAAT1 and CAATCH1, respectively. Subsequent substitution of the last four domains in C3K9 and K3C9 gave the proteins C3K5C4 and K3C5K4, which showed the same behavior as KAAT1 and CAATCH1 in electrophysiological and transport determinations. These results suggest that in KAAT1 and CAATCH1, only the central transmembrane domains (from 4 to 8) of the protein are responsible for substrate selectivity. structure and function; Manduca sexta  相似文献   

10.
A cDNA encoding a high-affinity Na(+)/anion(-)-dependent octopamine transporter (OAT) was isolated via an RT-PCR-based approach from caterpillars of the cabbage looper, Trichoplusia ni. The deduced amino acid sequence of the OAT cDNA predicts a 670 amino acid protein bearing strong homology to previously cloned monoamine transporters. The expression pattern of OAT mRNA in the central nervous system revealed by in situ hybridization closely resembles that of OA-ergic neurons identified by the presence of mRNA for tyramine beta-hydroxylase, a marker enzyme for OA-ergic neurons in invertebrates. In vitro, insect cells infected with OAT-expressing baculovirus accumulated both (3)H-OA and (3)H-dopamine with saturation kinetics typical of carrier-mediated processes. (3)H-dopamine uptake by OAT was most inhibited by tyramine, OA, dopamine and the tricyclic antidepressants desipramine and imipramine. Substitution studies for Na(+) and Cl(-) indicate that OAT has a strong requirement for Na(+) and a less stringent requirement for Cl(-). The pharmacological profile of OAT is distinct from those of other cloned monoamine transporters and makes OAT a potential target for neuro-active pest control agents.  相似文献   

11.
The present study examined the functional characteristics of L-DOPA transporters in two functionally different clonal subpopulations of opossum kidney (OKLC and OKHC) cells. The uptake of L-DOPA was largely Na+-independent, though in OKHC cells a minor component (approximately 15%) required extracellular Na+. At least two Na+-independent transporters appear to be involved in L-DOPA uptake. One of these transporters has a broad specificity for small and large neutral amino acids, is stimulated by acid pH and inhibited by 2-aminobicyclo(2,2,l)-heptane-2-carboxylic acid (BCH; OKLC, Ki = 291 mM; OKHC, Ki = 380 mM). The other Na+-independent transporter binds neutral and basic amino acids and also recognizes the di-amino acid cystine. [14C]-L-DOPA efflux from OKLC and OKHC cells over 12 min corresponded to a small amount of intracellular [14C]-L-DOPA. L-Leucine, nonlabelled L-DOPA, BCH and L-arginine, stimulated the efflux of [14C]-L-DOPA in a Na+-independent manner. It is suggested that L-DOPA uses at least two major transporters, systems LAT-2 and b0,+. The transport of L-DOPA by LAT-2 corresponds to a Na+-independent transporter with a broad specificity for small and large neutral amino acids, stimulated by acid pH and inhibited by BCH. The transport of L-DOPA by system b0,+ is a Na+-independent transporter for neutral and basic amino acids that also recognizes cystine. LAT-2 was found equally important at the apical and basolateral membranes, whereas system b0,+ had a predominant distribution in apical membranes.  相似文献   

12.
We cloned two cDNAs encoding proton/amino acid cotransporters, designated as mPAT1 and mPAT2, from murine tissues. They were identified by sequence similarity to the amino acid/auxin permease family member of lower eukaryotes. We functionally characterized both transporters by flux studies and electrophysiology after expression in Xenopus laevis oocytes. Both mPAT1 and mPAT2 induced a pH-dependent electrogenic transport activity for small amino acids (glycine, alanine, and proline) that is altered by membrane potential. Direct evidence for amino acid/H(+)-symport was shown by intracellular acidification, and a flux coupling stoichiometry for proline/H(+)-symport of 1:1 was determined for both transporters. Besides small apolar L-amino acids, the transporters also recognize their D-enantiomers and selected amino acid derivatives such as gamma-aminobutyric acid. The mPAT1 transporter, the murine orthologue of the recently cloned rat LYAAT-1 transporter, can be considered as a low affinity system when compared with mPAT2. The mRNA of mPAT1 is highly expressed in small intestine, colon, kidney, and brain; the mPAT2-mRNA is mainly found in heart and lung. Phenotypically, the PAT1 transporter possesses the same functional characteristics as the previously described proton-dependent amino acid transport process in apical membranes of intestinal and renal epithelial cells.  相似文献   

13.
A cDNA was isolated from the mouse brain that encodes a novel Na(+)-independent neutral amino acid transporter. The encoded protein, designated as Asc-1 (asc-type amino acid transporter 1), was found to be structurally related to recently identified mammalian amino acid transporters for the transport systems L, y(+)L, x(C)(-), and b(0,+), which are linked, via a disulfide bond, to the type II membrane glycoproteins, 4F2 heavy chain (4F2hc), or rBAT (related to b(0,+) amino acid transporter). Asc-1 required 4F2hc for its functional expression. In Western blot analysis in the nonreducing condition, a 118-kDa band, which seems to correspond to the heterodimeric complex of Asc-1 and 4F2hc, was detected in the mouse brain. The band shifted to 33 kDa in the reducing condition, confirming that Asc-1 and 4F2hc are linked via a disulfide bond. Asc-1-mediated transport was not dependent on the presence of Na(+) or Cl(-). Although Asc-1 showed a high sequence homology (66% identity at the amino acid level) to the Na(+)-independent broad scope neutral amino acid transporter LAT2 (Segawa, H., Fukasawa, Y., Miyamoto, K., Takeda, E., Endou, H., and Kanai, Y. (1999) J. Biol. Chem. 274, 19745-19751), Asc-1 also exhibited distinctive substrate selectivity and transport properties. Asc-1 preferred small neutral amino acids such as Gly, L-Ala, L-Ser, L-Thr, and L-Cys, and alpha-aminoisobutyric acid as substrates. Asc-1 also transported D-isomers of the small neutral amino acids, in particular D-Ser, a putative endogenous modulator of N-methyl-D-aspartate-type glutamate receptors, with high affinity. Asc-1 operated preferentially, although not exclusively, in an exchange mode. Asc-1 mRNA was detected in the brain, lung, small intestine, and placenta. The functional properties of Asc-1 seem to be consistent with those of a transporter subserving the Na(+)-independent small neutral amino acid transport system asc.  相似文献   

14.
This report describes the primary structure and functional characteristics of human ATA1, a subtype of the amino acid transport system A. The human ATA1 cDNA was isolated from a placental cDNA library. The cDNA codes for a protein of 487 amino acids with 11 putative transmembrane domains. The transporter mRNA ( approximately 9.0 kb) is expressed most prominently in the placenta and heart, but detectable level of expression is evident in other tissues including the brain. When expressed heterologously in mammalian cells, the cloned transporter mediates Na(+)-coupled transport of the system A-specific model substrate alpha-(methylamino)isobutyric acid. The transport process is saturable with a Michaelis-Menten constant of 0. 89 +/- 0.12 mM. The Na(+):amino acid stoichiometry is 1:1 as deduced from the Na(+)-activation kinetics. The transporter is specific for small short-chain neutral amino acids. The gene for the transporter is located on human chromosome 12.  相似文献   

15.
Amino acids are constituents of proteins, precursors of many secondary metabolites and nitrogen carriers in plants. Transport across intracellular membranes and translocation of amino acids within the plant is mediated by membrane amino acid transporters. However, the amino acid transport in tea plant is rarely reported. In this study, six cationic amino acid transporter (CAT) family genes were cloned. Phylogenetic analysis categorized these CsCATs into four subgroups. These CsCATs all contain the 12–14 transmembrane domains and the conserved CAT motifs. Their expression was tissue-specific, with higher expression levels in root and stem and correlated to the abundances of key free amino acids such as Theanine. Some CsCATs expression responded to some abiotic stress conditions and to the exogenous application of theanine (Thea), glutamine or ethylamine hydrochloride, an ethylamine precursor for Thea biosynthesis. Our results indicated that the CsCATs expression is regulated by amino acid contents and is sensitive to abiotic stresses. These findings shed light on the mechanism of amino acid transport in tea plants.  相似文献   

16.
Zhang Z  Grewer C 《Biophysical journal》2007,92(7):2621-2632
The sodium-coupled neutral amino acid transporter SNAT2 mediates cellular uptake of glutamine and other small, neutral amino acids. Here, we report the existence of a leak anion pathway associated with SNAT2. The leak anion conductance was increased by, but did not require the presence of, extracellular sodium. The transported substrates L-alanine, L-glutamine, and alpha-(methylamino)isobutyrate inhibited the anion leak conductance, each with different potency. A transporter with the mutation H-304A did not catalyze alanine transport but still catalyzed anion leak current, demonstrating that substrate transport is not required for anion current inhibition. Both the substrate and Na+ were able to bind to the SNAT2H-304A transporter normally. The selectivity sequence of the SNAT2H-304A anion conductance was SCN->NO3->I->Br->Cl->Mes-. Anion flux mediated by the more hydrophobic anion SCN- was not saturable, whereas nitrate flux demonstrated saturation kinetics with an apparent Km of 29 mM. SNAT2, which belongs to the SLC38 family of transporters, has to be added to the growing number of secondary, Na+-coupled transporters catalyzing substrate-gated or leak anion conductances. Therefore, we can speculate that such anion-conducting pathways are general features of Na+-transporting systems.  相似文献   

17.
A cDNA encoding a GABA transporter in the caterpillar Trichoplusia ni has been cloned and expressed in baculovirus-infected insect cells. The cDNA contains an ORF encoding a 608-residue protein, designated TrnGAT. Hydropathy analysis of the deduced amino acid sequence suggests 12 transmembrane domains, a structure similar to that of all other cloned Na+/Cl(-)-dependent GABA transporters. The deduced amino acid sequence shows high identity with a GABA transporter (MasGAT) expressed in the embryo of Manduca sexta. Expression of TrnGAT mRNA was detected only in the brain. Sf21 cells infected with recombinant baculovirus exhibited a 20- to 30-fold increase in [3H]GABA uptake compared to control-infected cells. Several blockers of GABA uptake were used to determine the pharmacological profile of TrnGAT. Although most similar to mammalian neuronal GABA transporter GAT-1 in its kinetic properties, stoichiometry of ionic dependence and pharmacological properties, TrnGAT may be distinguished from mammalian GAT-1 by the inability of cyclic GABA analogues, such as nipecotic acid and its derivatives, to inhibit GABA uptake by the insect protein. The unique pharmacology of TrnGAT suggests that the GABA transport system in the lepidopteran CNS could be a useful target in the future development of rapidly-acting neuroactive agents used to control agriculturally-important insects.  相似文献   

18.
Nitric oxide synthesis depends on the availability of its precursor L-arginine, which could be regulated by the presence of a specific uptake system. In the present report, the characterization of the L-arginine transport system in mouse adrenal Y1 cells was performed. L-arginine transport was mediated by the cationic/neutral amino acid transport system y+L and the cationic amino acid transporter (CAT) y+ in Y1 cells. These Na+-independent transporters were identified by their selectivity for neutral amino acids in both the presence and absence of Na+ and by the effect of N-ethylmaleimide. Transport data correlated to expression of genes encoding for CAT-1, CAT-2, CD-98, and y+LAT-2. A similar expression profile was detected in rat adrenal zona fasciculata. In addition, cationic amino acid uptake in Y1 cells was upregulated by ACTH and/or cAMP with a concomitant increase in nitric oxide (NO) production.  相似文献   

19.
System A and N amino acid transporters are key effectors of movement of amino acids across the plasma membrane of mammalian cells. These Na+-dependent transporters of the SLC38 gene family are highly sensitive to changes in pH within the physiological range, with transport markedly depressed at pH 7.0. We have investigated the possible role of histidine residues in the transporter proteins in determining this pH-sensitivity. The histidine-modifying agent DEPC (diethyl pyrocarbonate) markedly reduces the pH-sensitivity of SNAT2 and SNAT5 transporters (representative isoforms of System A and N respectively, overexpressed in Xenopus oocytes) in a concentration-dependent manner but does not completely inactivate transport activity. These effects of DEPC were reversed by hydroxylamine and partially blocked in the presence of excess amino acid substrate. DEPC treatment also blocked a reduction in apparent affinity for Na+ (K0.5Na+) of the SNAT2 transporter at low external pH. Mutation of the highly conserved C-terminal histidine residue to alanine in either SNAT2 (H504A) or SNAT5 (H471A) produced a transport phenotype exhibiting reduced, DEPC-resistant pH-sensitivity with no change in K0.5Na+ at low external pH. We suggest that the pH-sensitivity of these structurally related transporters results at least partly from a common allosteric mechanism influencing Na+ binding, which involves an H+-modifier site associated with C-terminal histidine residues.  相似文献   

20.
Tao Z  Gameiro A  Grewer C 《Biochemistry》2008,47(48):12923-12930
The excitatory amino acid carrier EAAC1 belongs to a family of glutamate transporters that use the electrochemical transmembrane gradients of sodium and potassium to mediate uphill transport of glutamate into the cell. While the sites of cation interaction with EAAC1 are unknown, two cation binding sites were observed in the crystal structure of the bacterial glutamate transporter homologue GltPh. Although occupied by Tl(+) in the crystal structure, these sites were proposed to be Na(+) binding sites. Therefore, we tested whether Tl(+) has the ability to replace Na(+) also in the mammalian transporters. Our data demonstrate that Tl(+) can bind to EAAC1 with high affinity and mediate a host of different functions. Tl(+) can functionally replace potassium when applied to the cytoplasm and can support glutamate transport current. When applied extracellularly, Tl(+) induces some behavior that mimics that of the Na(+)-bound transporter, such as activation of the cation-induced anion conductance and creation of a substrate binding site, but it cannot replace Na(+) in supporting glutamate transport current. Moreover, our data show a differential effect of mutations to two acidic amino acids potentially involved in cation binding (D367 and D454) on Na(+) and Tl(+) affinity. Overall, our results demonstrate that the ability of the glutamate transporters to interact with Tl(+) is conserved between GltPh and a mammalian member of the transporter family. However, in contrast to GltPh, which does not bind K(+), Tl(+) is more efficient in mimicking K(+) than Na(+) when interacting with the mammalian protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号